首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stratigraphical-structural units separated by regional unconformities in the Andes of Peru and Chile, display a pattern of low grade burial metamorphism. Each stratigraphical-structural unit shows a particular facies series covering part or all the range between the zeolite and the greenschist facies. These facies series were episodically generated as part of the geological evolution of each unit prior to its own folding. Mineralogical breaks are found to coincide with the regional unconformities and often cases of higher grade assemblages on top of lower grade ones occur. This pattern may be explained by a process of sealing of each unit after its particular metamorphic episode took place. Porosity and permeability conditioning P f, as demonstrated for individual lava flows, are the significant controlling factors in the production of the metamorphic assemblages.  相似文献   

2.
R Offler  L Aguirre  B Levi  S Child 《Lithos》1980,13(1):31-42
An unconformity bound, episodic pattern of burial metamorphism is preserved in marine and terrestrial volcanic and sedimentary rocks which were deposited in the West Peruvian Trough during the Mesozoic and Cenozoic Eras. A particular metamorphic facies series is developed in each of the stratigraphic-structural units bounded by unconformities. In each unit, grade increases with stratigraphic depth and covers part or all of the range from zeolite to greenschist facies. At every unconformity a mineralogic break occurs where higher grade assemblages on top of the unconformity plane overlie lower grade assemblages. The presence of wairakite and the development of a wide range of metamorphic facies in thin sequences suggest high geothermal gradients, possibly related to generation of magma at depth.  相似文献   

3.
 右江盆地三叠纪槽盆相浊流沉积岩系遭受过区域极低级变质作用。依据地质观察和伊利石结晶度、绿泥石-云母堆垛集合体、标志性粘土矿物及白云母(伊利石)b0参数测定资料,阐述了泥质岩石的成岩变质作用经浅层(近)变质作用到浅变质作用的转换特征。变质温度区间为150-350℃,低压类型,具高地温梯度(40-43℃/km).变质级及亚带总体与地层时代及岩层在地层柱中的位置有耦合关系,而与区域变形强度无关。最后指出区域极低级变质作用是印支-燕山构造旋回早期及区域变形前的地质事件,属于地壳伸展构造背景下右江边缘型盆地内部的埋藏型变质作用。  相似文献   

4.
Abstract The metamorphic history of the Middle to Upper Jurassic volcanic and hypabyssal rocks exposed in the Klamath Mountains and Sierra Nevada of California is related, in part, to the rifting of a volcano-plutonic arc. The Callovian to Kimmeridgian rocks exposed in the region consist of, from north-west to south-east, a back-arc ophiolite, a rifted volcanic arc and a volcanic arc complex. All of these units have been metamorphosed and contain various combinations of the phases chlorite, amphibole, epidote, prehnite and pumpellyite. Projection of coexisting phases onto the composition plane MgO/(MgO + FeO) and Al2O3+ Fe2O3 - 0.75 CaO - Na2O through quartz, water, albite and epidote results in consistent mineralogical compatibilities within each region, but crossing tie-lines between regions. This suggests that the volcanic and hypabyssal rocks from each region have equilibrated under different intensive conditions. The back-arc ophiolite in the north has suffered subseafloor high-T/P hydrothermal metamorphism with geothermal gradients on the order of 100° C km?1. The rifted volcanic arc has undergone synchronous burial, hydrothermal and contact metamorphism. Metamorphic field gradients in the region pass through the prehnite-pumpellyite and greenschist facies suggesting geothermal gradients on the order of 30° C km?1. The southernmost volcanic arc complexes contain metavolcanics of the pumpellyiteactinolite and greenschist facies suggesting moderate- to high-P/T metamorphism and geothermal gradients on the order of 20° C km?1. The apparent increase in rifting and calculated geothermal gradients from south-east to north-west suggest that the observed very low- and low-grade metamorphism may be a response to enhanced thermal gradients during extension of the volcanic arc. This correlation between the extent of rifting and metamorphism is consistent with a model of diastathermal metamorphism of a propagating rift along the western margin of North America during the Late Jurassic. The plate tectonic setting may be analogous to the present-day Andaman Sea region.  相似文献   

5.
The Ordovician volcanic rocks in the Mayaxueshan area have been pervasively altered or metamorphosed and contain abundant secondary minerals such as albite, chlorite, epidote, prehnite, pumpellyite, actinolite, titanite, quartz, and/or calcite. They were denoted as spilites or spilitic rocks in terms of their petrographic features and mineral assemblages. The metamorphic grades of the volcanic rocks are equivalent to that of the intercalated metaclastic rocks. This indicates that both the spilitic volcanic rocks and metaclastic rocks in the Mayaxueshan area have formed as a result of Caledonian regional metamorphism. We suggest that the previously denoted spilitic rocks or altered volcanic rocks should be re-denoted as metabasalts or metabasaltic rocks. The metamorphic grade of the volcanic rocks increases with their age: prehnite-pumpellyite facies for the upper part of the Middle Ordovician volcanic rocks, prehnite-pumpeilyite to lower greenschist facies for the lower part of the Middle Ordovician vol  相似文献   

6.
Raman spectra of carbonaceous material in metasediments: a new geothermometer   总被引:13,自引:0,他引:13  
Metasedimentary rocks generally contain carbonaceous material (CM) deriving from the evolution of organic matter originally present in the host sedimentary rock. During metamorphic processes, this organic matter is progressively transformed into graphite s.s. and the degree of organisation of CM is known as a reliable indicator of metamorphic grade. In this study, the degree of organisation of CM was systematically characterised by Raman microspectroscopy across several Mesozoic and Cenozoic reference metamorphic belts. This degree of organisation, including within‐sample heterogeneity, was quantified by the relative area of the defect band (R2 ratio). The results from the Schistes Lustrés (Western Alps) and Sanbagawa (Japan) cross‐sections show that (1) even through simple visual inspection, changes in the CM Raman spectrum appear sensitive to variations of metamorphic grade, (2) there is an excellent agreement between the R2 values calculated for the two sections when considering samples with an equivalent metamorphic grade, and (3) the evolution of the R2 ratio with metamorphic grade is controlled by temperature (T). Along the Tinos cross‐section (Greece), which is characterised by a strong gradient of greenschist facies overprint on eclogite facies rocks, the R2 ratio is nearly constant. Consequently, the degree of organisation of CM is not affected by the retrogression and records peak metamorphic conditions. More generally, analysis of 54 samples representative of high‐temperature, low‐pressure to high‐pressure, low‐temperature metamorphic gradients shows that there is a linear correlation between the R2 ratio and the peak temperature [T(°C) = ?445 R2 + 641], whatever the metamorphic gradient and, probably, the organic precursor. The Raman spectrum of CM can therefore be used as a geothermometer of the maximum temperature conditions reached during regional metamorphism. Temperature can be estimated to ± 50 °C in the range 330–650 °C. A few technical indications are given for optimal application.  相似文献   

7.
The metamorphic rocks of Mesozoic age, found sandwiched between the Pennine nappes of Simplon area, were subjected to a detailed structural-petrological investigation with a view to clarify the nature of the Alpine metamorphism.Preliminary structural works demonstrated the existence of two B-axes — B1 and B2 — both being younger than the regional folding and thrusting movements. Of these two, B1 is restricted to the northernmost belt of the present area and has been imprinted uniformly on the older crystalline rocks of the Aar-Gotthard massif as well as on their Mesozoic sedimentary cover. The B1-axis, with its usually steeply plunging habit, can be traced southwards upto the northernmost fringe of the Pennine Mesozoic metamorphites. The subhorizontal to weakly plunging B2-lineation overprints B1 in the northernmost sector of the region under consideration. Further southwards, it gains rapidly in prominence and becomes the sole linear fabric element. For the most part, B2 coincides roughly with the axes of the regional large scale folds B0; but at places the two may deviate from each other appreciably. The overall behaviour of the B-axes is to be seen in the structural map, in which only the statistical maximum of numerous measurements from each locality has been plotted.Zones of progressive regional metamorphism could be roughly delineated over the whole region. The metamorphic grade rises from low greenschist facies in the NW to middle almandine amphibolite facies to the SE. Although the delineation of the metamorphic facies boundaries is only tentative and it is to be expected that future work would refine them, it is firmly believed that the outline of the pattern would not be necessarily modified thereby. By correlating the individual zones of metamorphic facies of underground exposures of Simplon tunnel with the corresponding ones on the facies map, it was possible to determine approximately the lie of the facies boundary surfaces. They transgress cleanly the regional large scale structures in three dimensions in space, proving thereby that the metamorphism took place after the regional folding and thrusting movements died off. Ancillary evidences on this point were derived through a systematic study of oriented thin sections and intensive petrofabric analysis. It was established that the metamorphic recrystallisation and the post-thrusting penetrative movements leading to the origin of the secondary planar and linear fabric elements went on hand in hand, with the former process ultimately outlasting the latter. In fact, the recrystallisation continued long afterwards under a completely static condition and almost all the porphyroblasts were found to have grown at this stage. The regional metamorphism of this area is therefore independent of the penetrative movements due to Alpine orogenesis and owes its origin to the late plutonic actions.Comparison with other areas shows that the Simplon area could be regarded simply as a prototype of the usual case of regional metamorphism. It is concluded that the regional metamorphism in its ideal form is a complex overprinting of an area of previous dislocation metamorphism by a subsequent phase of plutonic metamorphism. Although deformation does not appear to have played an essential rÔle in bringing about appreciable amount of recrystallisation in regional metamorphic rocks, it ought to be regarded as a conditio sine qua non for the same. Indeed, dislocation metamorphism seems to have paved the path to be trodden over later by plutonic metamorphism — the result being crystalline schists, the products of the so called regional metamorphism. The time-honoured term regional metamorphism has got today the sole advantage of being universally understood.  相似文献   

8.
The evolution of the mineral assemblages and P–T conditions during partial melting of upper‐amphibolite facies paragneisses in the Orue Unit, Epupa Complex, NW Namibia, is modelled with calculated P–T–X phase diagrams in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O system. The close concordance of predictions from the phase diagrams to petrographic observations and thermobarometric results documents that quantitative phase diagrams are suitable to explain the phase relationships in migmatitic upper‐amphibolite facies low‐ and medium‐pressure metapelites, which occur in many high‐grade metamorphic terranes worldwide. Different mineral assemblages in the migmatitic metapelites of the Orue Unit reflect regional discrepancies in the metamorphic grade: in a Northern Zone, early biotite–sillimanite–quartz assemblages were replaced via melt‐producing reactions by cordierite‐bearing assemblages. In a Southern Zone, they were replaced via melt‐producing reactions by garnet‐bearing assemblages while cordierite is restricted to rare metapelitic granofelses, which preserve Grt–Sil–Crd–Bt peak assemblages. Peak‐metamorphic conditions of 700–750 °C at 5.5–6.7 kbar in the Southern Zone and of ~750 °C at 4.5 kbar in the Northern Zone are estimated by integrating thermobarometric calculations with data from calculated mineral composition isopleths. Retrograde back‐reactions between restite and crystallizing melt are recorded by the replacement of garnet by biotite–sillimanite and/or biotite–muscovite intergrowths. Upper‐amphibolite facies metamorphism and partial melting (c. 1340–1320 Ma) in the rocks of the Southern Zone of the Orue Unit, which underwent probably near‐isobaric heating–cooling paths, are attributed to contact metamorphism induced by the coeval (c. 1385–1319 Ma) emplacement of the Kunene Intrusive Complex, a huge massif‐type anorthosite body. The lower‐pressure metapelites of the Northern Zone are interpreted to record contact metamorphism at an upper crustal level.  相似文献   

9.
Detailed b lattice parameter and illite crystallinity (IC) studies of K-white micas in slates from the Stawell and Ballarat-Bendigo Zones (SZ, BBZ) in the western Lachlan Fold Belt of Victoria, Australia, reveal a metamorphic pattern characterized by regional metamorphism associated with crustal thickening and younger contact metamorphism accompanied by deformation. The IC data indicate that rocks regionally metamorphosed prior to the intrusion of the Early and Late Devonian granitoids, vary in grade from epizonal (greenschist facies) to diagenetic (zeolite facies) and that most are of epizonal to anchizonal (prehnite–pumpellyite facies) grade. In the BBZ, a decrease in grade from west to east occurs. Across fault zones, IC values show little change, indicating that limited vertical displacement has occurred. This is in accord with the thin skinned deformation model proposed for the western Lachlan Fold Belt. The b lattice parameters (x=9.022 Å; n=137; σn=0.009) indicate baric conditions intermediate between those of New Hampshire (P=Al2SiO5 triple point) and Otago (intermediate P ). Thus, a moderately low geothermal gradient existed 450–430 Ma ago, when these rocks were deformed. KD Fe/Mg (actinolite)/Fe/Mg (chlorite) values (0.52–0.70) obtained from coexisting actinolite and chlorite in metabasites from fault zones support the moderately high-P (c. 4 kbar) metamorphism suggested by the b cell parameter values. The metamorphic conditions indicated by these data are contrary to the low-P/high-T conditions proposed by previous authors, who inferred an intimate association between deformation, granitoid intrusion and gold mineralization. The b lattice parameter of white micas in slates adjacent to Early Devonian (c. 400 Ma) granitoids with schist bearing aureoles in the north-eastern part of the BBZ (x=9.002 Å; n=27; σn=0.007), indicate pressures in the order of c. 2.5 kbar which are in accord with those obtained from andalusite–cordierite and zoisite–garnet bearing assemblages observed in the higher grade metapelitic and calcareous rocks. This contrasts with the higher pressure (c. 4 kbar) existing during regional metamorphism and implies that c. 6.5–8 km of metasedimentary rocks in the BBZ were removed before the emplacement of the Early Devonian granitoids. Metamorphic assemblages in hornfelses associated with Late Devonian granitoids indicate a further 5–6 km of metasediment were removed in the next 40 Ma prior to their emplacement. This study shows the value of white mica studies in elucidating the tectonothermal history of a low-grade metamorphic terrane dominated by metapelitic rocks.  相似文献   

10.
During Hercynian low-pressure/high-temperature metamorphism of Palaeozoic metasediments of the southern Aspromonte (Calabria), a sequence of metamorphic zones at chlorite, biotite, garnet, staurolite–andalusite and sillimanite–muscovite grade was developed. These metasediments represent the upper part of an exposed tilted cross-section through the Hercynian continental crust. P–T information on their metamorphism supplements that already known for the granulite facies lower crust of the section and allows reconstruction of the thermal conditions in the Calabrian crust during the late Hercynian orogenic event. Three foliations formed during deformation of the metasediments. The peak metamorphic assemblages grew mainly syntectonically (S2) during regional metamorphism, but mineral growth outlasted the deformation. This is in accordance with the textural relationships found in the lower part of the same crustal section exposed in the northern Serre. Pressure conditions recorded for the base of the upper crustal metasediments are c. 2.5 kbar and estimated temperatures range from <350 °C in the chlorite zone, increasing to 500 °C in the lower garnet zone, and reaching 620 °C in the sillimanite–muscovite zone. Geothermal gradients for the peak of metamorphism indicate a much higher value for the upper crust (c. 60 °C km?1) than for the granulite facies lower crust (30–35 °C km?1). The small temperature difference between the base of the upper crust (620 °C at c. 2.5 kbar) and the top of the lower crust (690 °C at 5.5 kbar) can be explained by intrusions of granitoids into the middle crust, which, in this crustal section, took place synchronously with the regional metamorphism at c. 310– 295 Ma. It is concluded that the thermal structure of the Calabrian crust during the Hercynian orogeny – as it is reflected by peak metamorphic assemblages – was mainly controlled by advective heat input through magmatic intrusions into all levels of the crust.  相似文献   

11.
Here, we present results of the first 40Ar/39Ar dating of osumilite, a high‐T mineral that occurs in some volcanic and high‐grade metamorphic rocks. The metamorphic osumilite studied here is from a metapelitic rock within the Rogaland–Vest Agder Sector, Norway, an area that experienced regional granulite facies metamorphism and subsequent contact metamorphism between 1,100 Ma and 850 Ma. The large grain size (~1 cm) of osumilite in the studied rock, which preserves a nominally anhydrous assemblage, increases the potential for large portions of individual grains to have remained essentially unaffected by the effects of diffusive argon loss, potentially preserving prograde ages. Step‐heating diffusion experiments yielded a maximum activation energy of ~461 kJ/mol and a pre‐exponential factor of ~8.34 × 108 cm2/s for Ar diffusion in osumilite. These parameters correspond to a relatively high closure temperature of ~620°C for a cooling rate of 10°C/Ma in an osumilite crystal with a 175 µm radius. Fragments of osumilite separated from the sample preserve a range of ages between c. 1,070 and 860 Ma. The oldest ages are inferred to date the growth of coarse‐grained osumilite during prograde granulite facies regional metamorphism, which pre‐date contact metamorphism that has historically been ascribed to the growth of osumilite in the region. The majority of fragments record ages between c. 920 and 860 Ma, inferred to reflect the growth of osumilite and/or diffusive argon loss during contact metamorphism. The retention of old 40Ar/39Ar dates was facilitated by the low diffusivity of Ar in osumilite (i.e. a closed system), large grain sizes, and anhydrous metamorphic conditions. The ability to date osumilite with the 40Ar/39Ar method provides a valuable new thermochronometer that may constrain the timing and duration of high‐T magmatic and metamorphic events.  相似文献   

12.
A petrological and thermobarometric study of the Lago Teleccio hornfelses was undertaken to reconstruct the polymetamorphic evolution and constrain the P–T conditions of Permian contact metamorphism. The Lago Teleccio metasedimentary rocks record a Variscan regional metamorphism characterized by amphibolite facies mineral assemblages including quartz, plagioclase, K‐feldspar (Kfs 1), biotite, garnet (Grt 1) and staurolite; this was followed by a late‐Variscan mylonitization event. Metamorphism of the Variscan metamorphic rocks at the contact with a Permian granitic intrusion produced static recrystallization and/or new growth of quartz, garnet (Grt 2), plagioclase, K‐feldspar (Kfs 2), cordierite, green spinel, biotite and prismatic sillimanite (Contact 1). This thermal event, which occurred at a peak pressure of 0.23–0.35 GPa, temperature of 670–700 °C and aH2O of 0.751, was followed either during post‐contact metamorphism cooling or, more likely, during the early‐Alpine metamorphism by the breakdown of cordierite into an anhydrous kyanite + orthopyroxene + quartz assemblage. The poorly developed early‐Alpine eclogite facies metamorphism (Alpine 1) was characterized by relatively anhydrous mineral associations and low strain, which locally produced coronitic and pseudomorphous microstructures in metasedimentary rocks, with scanty formation of jadeite, zoisite and a new high‐pressure garnet (Grt 3). Greenschist facies retrogression (Alpine 2) was characterized by the local development of a chlorite‐ and muscovite‐bearing mineral association, suggestive of aqueous fluid incursion. In the hornfelses, the limited extent of metamorphic overprinting is suggested by the fine grain size of the Alpine mineral associations, which formed at the expense of the Permian contact metamorphic associations, and was favoured by the anhydrous mineralogy of the hornfelses.  相似文献   

13.
High‐P metamorphic rocks that are formed at the onset of oceanic subduction usually record a single cycle of subduction and exhumation along counterclockwise (CCW) P–T paths. Conceptual and thermo‐mechanical models, however, predict multiple burial–exhumation cycles, but direct observations of these from natural rocks are rare. In this study, we provide a new insight into this complexity of subduction channel dynamics from a fragment of Middle‐Late Jurassic Neo‐Tethys in the Nagaland Ophiolite Complex, northeastern India. Based on integrated textural, mineral compositional, metamorphic reaction history and geothermobarometric studies of a medium‐grade amphibolite tectonic unit within a serpentinite mélange, we establish two overprinting metamorphic cycles (M1–M2). These cycles with CCW P–T trajectories are part of a single tectonothermal event. We relate the M1 metamorphic sequence to prograde burial and heating through greenschist and epidote blueschist facies to peak metamorphism, transitional between amphibolite and hornblende‐eclogite facies at 13.8 ± 2.6 kbar, 625 ± 45 °C (error 2σ values) and subsequent cooling and partial exhumation to greenschist facies. The M2 metamorphic cycle reflects epidote blueschist facies prograde re‐burial of the partially exhumed M1 cycle rocks to peak metamorphism at 14.4 ± 2 kbar, 540 ± 35 °C and their final exhumation to greenschist facies along a relatively cooler exhumation path. We interpret the M1 metamorphism as the first evidence for initiation of subduction of the Neo‐Tethys from the eastern segment of the Indus‐Tsangpo suture zone. Reburial and final exhumation during M2 are explained in terms of material transport in a large‐scale convective circulation system in the subduction channel as the latter evolves from a warm nascent to a cold and more mature stage of subduction. This Neo‐Tethys example suggests that multiple burial and exhumation cycles involving the first subducted oceanic crust may be more common than presently known.  相似文献   

14.
Abstract The Tal y Fan Intrusion is a 110 m thick sub-concordant metabasite sheet intruded into volcaniclastic and pyroclastic rocks of Ordovician age in North Wales. Despite low grade metamorphism, primary textural zones resulting from initial cooling of the sheet are preserved and retain primary mineralogical and chemical variations which influenced the nature and extent of metamorphic recrystallization. This has resulted in a vertical sequence of secondary mineral assemblages through the intrusion. During early hydrothermal alteration K-feldspar replaced plagioclase micropheno-crysts in the marginal and contact zones, and olivine in the central zone was replaced by saponite. Subsequent regional metamorphism resulted in the development of (metastable) prehnite-pumpellyite-epidote assemblages in two sub-zones characterized by high Fe2O3. Elsewhere the assemblage prehnite-actinolite-epidote developed except in the contact and marginal zones where activity of CO2 suppressed both prehnite and pumpellyite. Both assemblages contain excess albite, quartz and chlorite and, on the basis of uniform mineral compositions over the area of an individual thin section, are considered to represent buffered equilibrium assemblages indicative of prehnite-pumpellyite and prehnite-actinolite facies conditions. A metamorphic temperature of 310° C at 1.85 kbar is obtained using the P-T-X grid of Liou, Maruyama & Cho (1985), which implies a field gradient of ~ 44° C km-1. Assuming that metamorphism relates to burial, an overburden thickness of ~ 7 km is indicated. Total maximum thicknesses, however, of Ordovician, Silurian and Lower Devonian strata, in the area, do not exceed 6 km indicating a field gradient of 52° C km-1. These relatively high gradients may possibly be related to concealed late Caledonian intrusions, or alternatively may result from high heat flow as a consequence of crustal thinning, rapid sedimentation and intense magmatic activity in a marginal basin setting.  相似文献   

15.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

16.
Abstract The Bikou Group on the Shaanxi-Gansu-Sichuan border is composed of Mid-Late Proterozoic metamorphosed bimodal volcanic rocks and flysch sediments. Its metamorphism may be divided into the blueschist and greenschist facies. Three metamorphic zones, i.e. zones A, B, and C, may be distinguished on the basis of the field distribution of metamorphic rocks and the variation of b0 values of muscovite. Blueschists are characterized by coexistence of sodic amphiboles and epidote and occur as stripes or relict patches in extensive greenschists of zone A. Studies of metamorphic minerals such as amphiboles, chlorite, epidote and muscovite and their textural relationships indicate that blueschists and greenschists were not formed under the same metamorphic physico-chemical conditions. The blueschist facies was formed at temperatures of 300-400°C and pressures of 0.5–0.6 GPa. The greenschist facies in zones A and B has similar temperatures but its pressure is only 0.4 GPa or so. The transition from the blueschist to greenschist facies is a nearly isothermal uplift process. The rock and mineral assemblages of the Bikou Group indicate that the blueschist facies metamorphism of the group might be related to crustal thickening or A-subduction accompanying the closure of an intracontinental small ocean basin.  相似文献   

17.
In situ SHRIMP U–Pb geochronology of monazite and xenotime in pelitic schists from the central Gascoyne Complex, Western Australia, shows that greenschist to amphibolite facies metamorphism occurred between c. 1030 and c. 990 Ma. Monazite from an undeformed rare‐element pegmatite from the same belt gives a 207Pb/206Pb age of c. 950 Ma, suggesting that peak metamorphism and deformation was followed by pegmatite intrusion and coeval granite magmatism. Metamorphism in the central Gascoyne Complex was previously interpreted as Barrovian, largely based on the identification of kyanite in peak metamorphic assemblages, and has been attributed to intense crustal shortening and substantial tectonic thickening during Palaeoproterozoic continent–continent collision. However, the stable Al2SiO5 polymorph has been identified in this study as andalusite rather than kyanite, and the prograde assemblages of staurolite–garnet–andalusite–biotite–muscovite–quartz indicate temperatures of 500–550 °C and pressures of 3–4 kbar. These data show that the Palaeoproterozoic Gascoyne Complex underwent an episode of Grenvillian‐aged intracontinental reworking concentrated in a NW–SE striking corridor, during the Edmundian Orogeny. Until now, the Edmundian Orogeny was thought to have involved only reactivation of structures in the Gascoyne Complex, along with deformation and very low‐ to low‐grade metamorphism of Mesoproterozoic cover rocks some time between 1070 and 755 Ma. However, we suggest that it involved regional amphibolite facies metamorphism and deformation, granite magmatism and pegmatite intrusion between c. 1030 and c. 950 Ma. Therefore, the Capricorn Orogen experienced a major phase of tectonic reworking c. 600 Myr later than previously recognized. Our results emphasize the importance of in situ geochronology integrated with petrological studies in order to link the metamorphic history of a terrane with causally related tectonic events.  相似文献   

18.
Two contrasting styles of metamorphism are preserved in the central Southern Cross Province. An early, low‐grade and low‐strain event prevailed in the central parts of the Marda greenstone belt and was broadly synchronous with the first major folding event (D1) in the region. Mineral assemblages similar to those encountered in sea‐floor alteration are indicative of mostly prehnite‐pumpellyite facies conditions, but locally actinolite‐bearing assemblages suggest conditions up to mid‐greenschist facies. Geothermobarometry indicates that peak metamorphic conditions were of the order of 250–300°C at pressures below 180 MPa in the prehnite‐pumpellyite facies, but may have been as high as 400°C at 220 MPa in the greenschist facies. A later, higher grade, high‐strain metamorphic event was largely confined to the margins of the greenstone belts. Mineral assemblages and geothermobarometry suggest conditions from upper greenschist facies at P–T conditions of about 500°C and 220 MPa to upper amphibolite facies at 670°C and 400 MPa. Critical mineral reactions in metapelitic rocks suggest clockwise P–T paths. Metamorphism was diachronous across the metamorphic domains. Peak metamorphic conditions were reached relatively early in the low‐grade terrains, but outlasted most of the deformation in the higher grade terrains. Early metamorphism is interpreted to be a low‐strain, ocean‐floor‐style alteration event in a basin with high heat flow. In contrast, differential uplift of the granitoids and greenstones, with conductive heat input from the granitoids into the greenstones, is the preferred explanation for the distribution and timing of the high‐strain metamorphism in this region.  相似文献   

19.
A sequence of psammitic and pelitic metasedimentary rocks from the Mopunga Range region of the Arunta Inlier, central Australia, preserves evidence for unusually low pressure (c. 3 kbar), regional‐scale, upper amphibolite and granulite facies metamorphism and partial melting. Upper amphibolite facies metapelites of the Cackleberry Metamorphics are characterised by cordierite‐andalusite‐K‐feldspar assemblages and cordierite‐bearing leucosomes with biotite‐andalusite selvages, reflecting P–T conditions of c. 3 kbar and c. 650–680 °C. Late development of a sillimanite fabric is interpreted to reflect either an anticlockwise P–T evolution, or a later independent higher‐P thermal event. Coexistence of andalusite with sillimanite in these rocks appears to reflect the sluggish kinematics of the Al2SiO5 polymorphic inversion. In the Deep Bore Metamorphics, 20 km to the east, dehydration melting reactions in granulite facies metapelites have produced migmatites with quartz‐absent sillimanite‐spinel‐cordierite melanosomes, whilst in semipelitic migmatites, discontinuous leucosomes enclose cordierite‐spinel intergrowths. Metapsammitic rocks are not migmatised, and contain garnet–orthopyroxene–cordierite–biotite–quartz assemblages. Reaction textures in the Deep Bore Metamorphics are consistent with a near‐isobaric heating‐cooling path, with peak metamorphism occurring at 2.6–4.0 kbar and c. 750800 °C. SHRIMP U–Pb dating of metamorphic zircon rims in a cordierite‐orthopyroxene migmatite from the Deep Bore Metamorphics yielded an age of 1730 ± 7 Ma, whilst detrital zircon cores define a homogeneous population at 1805 ± 7 Ma. The 1730 Ma age is interpreted to reflect the timing of high‐T, low‐P metamorphism, synchronous with the regional Late Strangways Event, whereas the 1805 Ma age provides a maximum age of deposition for the sedimentary precursor. The Mopunga Range region forms part of a more extensive low‐pressure metamorphic terrane in which lateral temperature gradients are likely to have been induced by localised advection of heat by granitic and mafic intrusions. The near‐isobaric Palaeoproterozoic P–T–t evolution of the Mopunga Range region is consistent with a relatively transient thermal event, due to advective processes that occurred synchronous with the regional Late Strangways tectonothermal event.  相似文献   

20.
The Altınekin Complex in south central Turkey forms part of the south‐easterly extension of the Tavşanlı Zone, a Cretaceous subduction complex formed during the closure of the Neo‐Tethys ocean. The protoliths of metamorphic rocks within the Altınekin Complex include peridotites, chromitites, basalts, ferruginous cherts and flysch‐facies impure carbonate sediments. Structurally, the complex consists of a stack of thrust slices, with massive ophiolite tectonically overlying a Cretaceous sediment‐hosted ophiolitic mélange, in turn overlying a sequence of Mesozoic sediments. Rocks within the two lower structural units have undergone blueschist–facies metamorphism. Petrographic, mineral–chemical and thermobarometric studies were undertaken on selected samples of metasedimentary and metabasic rock in order to establish the time relations of deformation and metamorphism and to constrain metamorphic conditions. Microstructures record two phases of plastic deformation, one predating the metamorphic peak, and one postdating it. Estimated peak metamorphic pressures mostly fall in the range 9–11 kbar, corresponding to burial depths of 31–38 km, equivalent to the base of a continental crust of normal thickness. Best‐fit peak metamorphic temperatures range from 375 to 450°C. Metamorphic fluids had high H2O:CO2 ratios. Peak metamorphic temperature/depth ratios (T/d values) were low (c. 10–14°C/km), consistent with metamorphism in a subduction zone. Lawsonite‐bearing rocks in the southern part of the ophiolitic mélange record lower peak temperatures and T/d values than epidote blueschists elsewhere in the unit, hinting that the latter may consist of two or more thrust slices with different metamorphic histories. Differences in peak metamorphic conditions also exist between the ophiolitic mélange and the underlying metasediments. Rocks of the Altınekin Complex were subducted to much shallower depths, and experienced higher geothermal gradients, than those of the NW Tavşanlı Zone, possibly indicating dramatic lateral variation in subduction style. Retrograde PT paths in the Altınekin Complex were strongly decompressive, resulting in localized overprinting of epidote blueschists by greenschist–facies assemblages, and of lawsonite blueschists by pumpellyite–facies assemblages. The observation that the second deformation was associated with decompression is consistent with, but not proof of, exhumation by a process that involved deformation of the hanging‐wall wedge, such as gravitational spreading, corner flow or buoyancy‐driven shallowing of the subduction zone. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号