首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 317 毫秒
1.
The coast of southeast Africa is dominated by sandy beaches that tend to be confined within log‐spiral or headland‐bound embayments. Investigations using serendipitous air imagery data set have been previously undertaken and conclusions drawn about the stability of the coast. We show that conclusions drawn from this data, with respect to the high water mark (HWM) position are fraught with errors, which include tidal state, pressure regime, beach slope, high‐swell erosion, seasonal and multi‐annual changes. We highlight and discuss these sources of error, together with their magnitudes. The most significant of these are the high‐swell, seasonal and multi‐annual variations. From case studies we show that the seasonal beach rotation and long‐term beach width variation are responsible for tens of metres of unaccounted HWM variation, 30 to 50 m is common, with maximums reaching 60 to 100 m. Overall the southeast African coastline appears to be in a state of long‐term dynamic equilibrium. There is no evidence of any sea‐level rise‐forced transgression in the coastal sediment budget, despite sea‐level rise (SLR). If such a signal is, in fact present, it is lost within the beach width variation. Some southeast African coastal reaches are suffering chronic erosion, but these are related to anthropogenic impacts. The extreme difficulty of placing a HWM, with any temporal validity on this coast precludes the routine use of the Bruun Rule. Although no transgressive signature is found, there is evidence of a decreasing coastal sand budget as a result of anthropogenic or natural climate change, or both. This decrease in the coastal sand volume is likely to result in increased future erosion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Recent work at three contrasting sites in England and Wales has shown characteristics atypical of those frequently reported elsewhere. These differences are:
  • (a) Taking each entire beach system there is no uniform trend of erosion or accretion, nor a progressive variation in beach elevation or volume alongshore, from one survey to the next. However, for Swansea Bay the ‘long-term’ (i. e. 18 months) range in profile height along that stretch of coast where the alignment of the beach is normal to the direction of wave approach, correlates well with computed wave energy derived from relevant offshore wave directions.
  • (b) While beach variability is greatest during the ‘winter’ (i. e. storm) period there is no overall tendency for a drawdown of sediment from the intertidal zone at that time. Response times are relatively short. Thus high beach levels need not necessarily be associated with ‘summer’ conditions.
  • (c) Although in Swansea Bay there is a tendency for the beach height to fluctuate least at mid-tide level this is not true of the other two sites. In no area does sediment eroded from the upper exposed part of the beach regularly appear to be deposited on the lower exposed part, or vice versa.
  相似文献   

3.
Many estuaries contain sandy beaches that provide habitats and offer protective buffers for wetlands and infrastructure, alongside cultural and recreational resources. Research underpinning coastal management tends to focus on tide- and swell-dominated sandy beaches, but little attention is given to beaches in estuaries and bays (BEBs) that exist along a continuum of wind/swell wave, tide and riverine influence. BEBs are subject to less wave energy than open coast locations because of the generally narrow window of directions for which ocean waves can propagate through the entrance. However, when storm wave direction coincides with the orientation of the estuary or bay entrance, waves can penetrate several kilometres inside. Here we focus on eight BEBs in two major bays/estuaries in Sydney, Australia and present observations from before and after a major extratropical storm with waves from an atypical direction in June 2016. We quantify magnitudes of beach erosion and recovery rates for 3 years post-storm. We show that when high-energy storm waves penetrate bays and estuaries, BEBs can undergo up to 100% of subaerial beach erosion. Three years after the storm, only 5 of the 29 (17%) eroded subaerial beach profiles had recovered to their pre-storm volume. This is likely due to the lack of low-frequency, beach-building waves at BEBs under modal weather conditions in between storms, in contrast to open coast beaches. We also show that the recovery of BEBs may be limited by the absence of adjacent sediment reservoirs due to the dominance of tidal processes mid-channel. Our study highlights the unique behaviour of BEBs relative to beaches on the open coast, and that shifting wave direction needs to be considered in long-term beach resilience under climate change. © 2020 John Wiley & Sons, Ltd.  相似文献   

4.
The formation of beach rocks has a close relationship to storm deposits, denoted by beach and storm processes in association with depositional characteristics of the beach rocks found in Pui O and Lower Cheung Sha bays on the southern coast of Lantau Island, Hong Kong. Although not all beach rocks have an origin of storm deposits, it is certain that some of them with very coarse shells and shell fragments developing on sandy beaches originate from storm deposits. The cementation of beach rocks on a beach was affected directly by the texture and structure of the beach rocks and wave energy varying along the beach.  相似文献   

5.
Tidal inlets interrupt longshore sediment transport, thereby exerting an influence on adjacent beach morphology. To investigate the details and spatial extent of an inlet's influence, we examine beach topographic change along a 1.5 km coastal reach adjacent to Matanzas Inlet, on the Florida Atlantic coast. Analyses of beach morphology reveal a behavioral change between 0.64 and 0.86 km from the inlet channel centerline, interpreted to represent the spatial extent of inlet influence. Beyond this boundary, the beach is narrow, exhibits a statistically significant inverse correlation of shoreline position with offshore wave conditions, and has a uniform alongshore pattern in temporal behavior, as determined from empirical orthogonal function (EOF) analysis. On the inlet side of the boundary, the beach experiences monotonic widening (with proximity to the inlet), lacks spatial consistency in correlation between shoreline position and wave conditions, and exhibits an irregular pattern in spatial EOF modes. We augment the field observations with numerical modeling that provides calculations of wave setup and nearshore current patterns near the inlet, highlighting the effects of the ebb‐tidal delta on the assailing waves. The modeling results are verified by a natural experiment that occurred during May 2009, when a storm‐produced sedimentary mass accreted to the lower beach, then subsequently split into two oppositely directed waves of sediment that migrated away from the initial accretion site in the subsequent months. Our results suggest that the ebb‐tidal delta produces a pattern of wave setup that creates a pressure gradient driving an alongshore flow that opposes the longshore currents derived from breaking of obliquely oriented incident waves. The resulting recirculation pattern on the margin of the ebb‐tidal delta provides a mechanism through which the inlet influences adjacent barrier island beach morphology. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A sample ord, a low section of beach characteristic of the Holderness coast, is examined as it moved southwards between 1977 and 1983 and its significant role in coast erosion is demonstrated. The reduction in beach level at the cliff foot by up to 3.9 m enabled most HWN tides to reach it, as compared with only some HWS tides along the inter-ord beach, and the volume of till eroded from the cliffs increased by eight times to an annual mean of 72m3m?1. The Holderness tills are shown to be composed of 31 per cent sand and coarser sediment which is the sediment range of the beaches. Where an ord is sited the massive injection of beach sediment goes to form the ord's most prominent constructional feature, the lower beach ridge which extends southwards from the centre of the ord. Analysis of 12 months' observer wave data collected at Withernsea in 1969/70 indicates that a net southward sand movement of 144 000 m3 occurred. Comparison of this rate with beach sediment input rates along the whole coast backed by till cliffs suggests a sediment deficit at the northern end and a surplus towards the southern end. This conclusion is supported by an overall increase in beach sediment volume southwards from Barmston. Within this longshore sediment transport system, the ords migrate southwards from their point of origin in the Barmston-Skipsea area, without losing their identity until reaching the tip of Spurn Head.  相似文献   

7.
Spatio-temporal cross-shore profiles and textural characteristics are the key parameters for understanding dynamics of the inter-tidal sedimentary environment.This study describes short-term dynamics of the inter-tidal sedimentary environment at beaches along the micro-tidal coast.Further a correlation is estimated in cross-shore morphodynamics and textural characteristics of surface sediments.The sedimentary environment is examined for a complete annual cycle using monthly collected cross-shore profiles and sediment samples.The Devbag beach(northern side) and Ravindranath Tagore beach(southern side) at the Kali river mouth,Karwar,west coast of India are characterized from extremely gentle to average slope,and broadly composed of unimodal sands.The sedimentary environment is significantly composed of textures having fine to medium sand,well to moderately sorted,fine to coarse skewed,and platykurtic to leptokurtic in nature.During the annual cycle a reversal pattern is observed between the two adjacent beaches,where a slower rate of sediment accretion is observed at Devbag beach while Ravindranath Tagore beach exhibited erosion.The beach dynamics along with the propagation of south-west(SW) and south-west-west(SWW) waves towards the coast significantly exhibit a dominance of northward sediment transport with the existence of a northerly alongshore current.In addition,the study reveals that an eroded beach may not be significantly identified composed of coarse grains.The poor correlation in morpho-sedimentary characteristics reveals the prediction of grain characteristics based on beach profile and vice-versa is unrealistic.  相似文献   

8.
Montjoly is a headland‐bound embayed sandy beach in Cayenne, French Guiana, that shows long‐term plan shape equilibrium in spite of periodic changes in accretion and erosion that alternately affect either end of the beach. These changes are caused by mud banks that move alongshore from the Amazon. The mechanisms involved in changes in the plan shape of the beach in response to the passage of one of these mud banks were monitored between 1997 and 2000 from airborne video imagery and field work. The beach longshore drift to the northwest, driven by the incident easterly to northeasterly swell usually affecting this coast, became temporarily reversed as the mud bank, migrating from east to west, initially sheltered the southeastern end of the beach. The difference in exposure to waves engendered a negative wave height gradient alongshore towards the southeast, resulting in the setting up of a cell circulation and counter‐active longshore drift from the exposed northwestern sector to the southeast. Sand eroded from the exposed sector accumulated first in the southeastern, and then the central sectors of the beach. The effect of increasing beach sheltering by the mudbank moving west is highlighted on the videographs by an ‘arrested’ pattern of beach shoreline development. The videographs show hardly any changes in beach plan shape since January 1999, due to sheltering of the beach from wave attack by the mud bank. It is expected that the eroded sector will recover in the future as the mud bank passes, leading to re‐establishment of the northwesterly sand drift. This temporally phased bi‐directional drift within the confines of the bounding headlands results in a rare example of mud‐bank‐induced beach rotation, and probably explains the long‐term equilibrium plan shape of Montjoly beach. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
This paper examines the daily morphological responses of Sununga Beach, an embayed beach located on the south‐eastern Brazilian coast, to storms in the South Atlantic Ocean. The main mechanisms and timing of beach erosion and accretion, the relationship between wave height and direction, and beach volume changes are considered, to establish a qualitative model for short‐term embayed beach morphological changes. The methodology consisted of daily topographic surveys during the month of May in 2001, 2002, and 2003, using an RTK‐GPS (real‐time kinematics – global positioning system). Weather and wave model results were used to correlate hydrodynamics and beach morphology. The results indicate that the morphodynamics of Sununga Beach are characterized by a process of beach rotation, which occurred more or less clearly during all three surveys. Unlike what has been commonly described in the literature for longer time intervals and alternations of fair and stormy weather, the beach rotation processes on Sununga Beach occurred under conditions of moderate‐to‐high wave energy change (wave heights greater than 2 m). An integrated evaluation of the behaviour of the meteorological aspects, together with beach morphology, enabled us to recognize that extra‐tropical cyclones were the most important agent in remobilizing the beach planform, whether in beach rotation or in cross‐shore erosion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
《国际泥沙研究》2020,35(5):484-503
The current study aimed to describe textural characteristics, heavy mineral composition, and grain microtextures of the sediment from three micro-environments (foreshore, berm, and dune). A total of forty-one (41) representative surficial sediment samples have been collected from fifteen (15) locations along the beach area between the Sarada and Gosthani rivers on the east coast of India, where the length of the stretch is more than 100 km. The study reveals that most of the coastal sediment is medium to fine sand with relatively high ratios of coarse sand at Yarada beach, and the nature of the sediment is moderately to well sorted. These characteristics indicate a high energy environment. The heavy mineral analysis of the sediment in the current study was done for coarse (+60#) and fine (+230#) size fractions. Studying the weight percentage (WT%) reveals that a high percentage of heavy minerals is associated with fine fractions. Ilmenite, sillimanite, garnet, zircon, and rutile are the major heavy minerals identified in the current investigation. The concentrations of these heavy minerals show great variations from south to north of the study area. From an economic point of view, a considerable amount of heavy minerals (average 48.41%) are present on both sides (north and south) of the Gosthani River mouth. In the Sarada Estuary, the concentration of the economic heavy minerals was found under the minimum economic range. The grain microtextures of the major heavy minerals from the different locations along the study area demonstrate the variation in grain microtextures, which is controlled by the chemical and mechanical processes. These microtextures reflect moderate to high wave energy on the beach area, in addition to high mechanical impact on the grains from the estuary point.  相似文献   

11.
The dynamics of the dunefoot along a 160 km portion of the Dutch coast has been investigated based on a data set of annual surveys dating back to as early as 1850. The linearly detrended (or residual) dunefoot positions comprise an alongshore uniform and an alongshore non‐uniform component. The former is expressed as 10 to 15 m of landward retreat along extensive (>10 km) stretches of coast during years with severe storm surges and as up to 5 m of seaward advance during years without significant storm activity. The latter, alongshore non‐uniform component is organized in sandwave‐like patterns, which may have a longevity of decades to up to the duration of the entire data set (150 years). Their wavelengths vary along the coast, from 3·5 to 10 km; migration rates are 0–200 m a?1. Dunefoot sandwaves are shown to be the shoreward extensions of similar sandwave patterns in the beach position. The non‐uniform dunefoot behaviour constitutes at least 80 per cent of the total residual dunefoot dynamics, implying that along the Dutch coast residual dunefoot variability is controlled by temporal and spatial variability in beach characteristics, and not by storm‐induced uniform erosion. Various potential mechanisms causing beach sandwaves are discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Digital elevation models and topographic pro?les of a beach with intertidal bar and trough (ridge‐and‐runnel) morphology in Merlimont, northern France, were analysed in order to assess patterns of cross‐shore and longshore intertidal bar mobility. The beach exhibited a pronounced dual bar–trough system that showed cross‐shore stationarity. The bars and troughs were, however, characterized by signi?cant longshore advection of sand under the in?uence of suspension by waves and transport by strong tide‐ and wind‐driven longshore currents. Pro?le changes were due in part to the longshore migration of medium‐sized bedforms. The potential for cross‐shore bar migration appears to be mitigated by the large size of the two bars relative to incident wave energy, which is modulated by high vertical tidal excursion rates on this beach due to the large tidal range (mean spring tidal range = 8·3 m). Cross‐shore bar migration is also probably hindered by the well‐entrenched troughs which are maintained by channelled high‐energy intertidal ?ows generated by swash bores and by tidal discharge and drainage. The longshore migration of intertidal bars affecting Merlimont beach is embedded in a regional coastal sand transport pathway involving tidal and wind‐forced northward residual ?ows affecting the rectilinear northern French coast in the eastern English Channel. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
A flight of Holocene marine terraces on the southwestern coast of Cape Omaezaki of central Japan provides evidence of recurrent millennium‐scale uplift events. We reconstructed the uplift history of these terraces by using facies analysis of drill core and geoslicer samples, environmental analysis of trace fossils, and 14C age determinations. Coastal uplift can be identified by the displacement of beach deposits such as foreshore deposits, which represent the intertidal swash zone of a wave‐dominated sandy coast. Three levels of former beach deposits facing the Nankai Trough were identified near the coast in the Omaezaki area. The highest of these, dated at about 3020–2880 BC, records a maximum of 2.2–2.7 m of emergence. The middle beach surface, of minimum age 370–190 BC, shows 1.6–2.8 m of emergence. The lowest beach surface, which is older than 1300–1370 AD, records 0.4–1.6 m of emergence. Our analysis of vertical crustal deformation data during the Holocene in this region suggests that rapid and strong uplift was restricted to the southwestern coast of the Omaezaki area and was probably caused by high‐angle thrusting on subsidiary faults branching from the underlying plate boundary megathrust.  相似文献   

14.
Uplift of the shoreline in tectonically‐active areas can have a profound influence on geomorphology changing the entire process dynamics of the coast as the landforms are removed from the influence of the sea. Over decadal timescales it is possible for the landforms to return to their pre‐earthquake condition and this paper examines the re‐establishment of mixed sand and gravel beaches on the coast of Wellington, New Zealand, subsequent to an uplift event in 1855. Over 60 topographic profiles were surveyed, seven sets of aerial photographs from a 67 year period were mapped and sediment size analyses conducted in order to quantify the nature of beach change following uplift, and associated relative sea level fall. These data were supported by surveys using ground penetrating radar. It is found that uplift raised the gravel beaches out of the swash zone thereby removing them from the littoral zone. Intertidal rocky reefs which occur between each embayment were also uplifted during the same event and completely interrupted the longshore transport system. Continued input of gravel material to the littoral zone allowed beaches to re‐establish sequentially along the coast as each embayment was infilled with sediment. This reconnection of the embayments with the longshore drift system is associated with the beach planform being initially drift dominated during infill but then switching to swash alignment once the embayment becomes infilled. This has resulted in shoreline accretion of over 100 m in some places, at rates of up to 4 m/yr, covering shore protection works built in the past few decades. The ability of the shore to adjust back to its pre‐uplift condition appears to be a function of the accommodation space created during uplift and the rate of sediment supply. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Characteristics of drift and beaching of floating marine litter in the Japan Sea are examined numerically using the reanalysis data of the Japan Sea Forecasting System of Kyushu University. The residence time of model marine litter deployed uniformly over the surface of the Japan Sea strongly depends on the buoyancy ratio. However, almost all litter beaches or flows out through straits within 3 years. Experiments with inputs of litter imposed at large cities and the Tsushima Straits as well as river basins of the Japan Sea exhibit a good agreement with beach surveys with regard to country ratios of beached litter along the Japanese coast in cases of lighters. In a case of lighter, almost all lighters originating from Japan beach along the Japanese coast, while almost all lighters originating from a country surrounding the Japan Sea except Japan beach along the coast of that country and the Japanese coast.  相似文献   

16.
A shore platform on the western coast of Galicia in northwestern Spain has been inherited from interglacial stages when sea level was similar to today. The wide, gently sloping intertidal platform is backed in places by supratidal rock ledges, and in other places by a steeper and narrower supratidal ramp. The gradient of the intertidal platform is consistent with the relationship between platform gradient and tidal range, but the slope of the ramp is much too high. The abandoned and degraded sea cliff is grass-covered along most of this coast, and the ledges and the ramp, which extend up to several metres above the highest tides, are covered by lichen and, in places, by salt-tolerant plants. Radiocarbon-dated sediments in the cliff, which range up to 36 000 years in age, lie on top of an ancient beach deposit. The former beach, remnants of which are found in situ on the ramp and rock ledges, as well as two caves that are filled with the dated sediments, are probably last interglacial in age. The morphological and sedimentary evidence suggests that the supratidal ramp and ledges were also formed during the last interglacial stage, whereas the wider intertidal platform is probably the product of several older interglacials, when sea level was generally similar to today. A general model is proposed for the inheritance of shore platforms in macro- and microtidal environments. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
Beach ridge stratigraphy can provide an important record of both sustained coastal progradation and responses to events such as extreme storms, as well as evidence of earthquake induced sediment pulses. This study is a stratigraphic investigation of the late Holocene mixed sand gravel (MSG) beach ridge plain on the Canterbury coast, New Zealand. The subsurface was imaged along a 370 m shore-normal transect using 100 and 200 MHz ground penetrating radar (GPR) antennae, and cored to sample sediment textures. Results show that, seaward of a back-barrier lagoon, the Pegasus Bay beach ridge plain prograded almost uniformly, under conditions of relatively stable sea level. Nearshore sediment supply appears to have created a sustained sediment surplus, perhaps as a result of post-seismic sediment pulses, resulting in a flat, morphologically featureless beach ridge plain. Evidence of a high magnitude storm provides an exception, with an estimated event return period in excess of 100 years. Evidence from the GPR sequence combined with modern process observations from MSG beaches indicates that a palaeo-storm initially created a washover fan into the back-barrier lagoon, with a large amount of sediment simultaneously moved off the beach face into the nearshore. This erosion event resulted in a topographic depression still evident today. In the subsequent recovery period, sediment was reworked by swash onto the beach as a sequence of berm deposit laminations, creating an elevated beach ridge that also has a modern-day topographic signature. As sediment supply returned to normal, and under conditions of falling sea level, a beach ridge progradation sequence accumulated seaward of the storm feature out to the modern-day beach as a large flat, uniform progradation plain. This study highlights the importance of extreme storm events and earthquake pulses on MSG coastlines in triggering high volume beach ridge formation during the subsequent recovery period. © 2019 John Wiley & Sons, Ltd.  相似文献   

18.
Markov models offer an objective and quantitative method of assessing beach changes. For a stretch of the Holderness coast a beach classification scheme was devised and a probabilistic first order matrix model based on surveyed profile data was produced. This could describe and predict transitions between beach types and between different time periods. Different profile types dominated different coastal locations and seasonal variations were seen. In order to improve the accuracy of prediction throughout the year a second, ‘winter’, model was added to the original ‘summer’ one. Although the models had been prepared independently of wave conditions, a comparison of the wave record and beach transitions revealed that waves under 0·3–0·5 m high produced fairly static beaches; when waves were between 0·5 and 1·0 m the beach was more dynamic and variable, while waves over 1·0 m led to the depletion of the upper beach. This was broadly in accordance with published theory. Markov models have the advantage that they can be adjusted periodically if conditions change, and are thus useful for prediction on coasts for which no wave records exist.  相似文献   

19.
Assawoman Inlet, Virginia, U.S.A., representative of small mesotidal barrier island tidal inlets exhibits systematic variations of sediment volume among certain of its morphologic elements. Sediment volume variations were calculated from topographic-bathymetric maps of the inlet system, as surveyed on 11 occasions at approximately monthly intervals by a fathometer, and plane table and alidade. Of 36 pairings among nine morphologic elements, seven show statistically significant Pearson Product Moment Correlation Coefficients. The southern ramp margin shoals are negatively correlated with the southern beach face and the northern ramp margin shoals are negatively correlated with the northern beach face on the northern spit. The southern and northern ramp margin shoals themselves are negatively correlated. The southern ramp margin shoals are negatively correlated with the fore flood tidal delta which is negatively correlated with a tidal channel on its landward side. The back flood tidal delta is positively correlated with the northern ramp margin shoals and negatively correlated with the back side of Wallops spit. These associations may be qualitatively explained using wave and tidal climate data during the sampling year plus megaripple and bedding orientations. Constructive waves tend to transfer sediment from the ramp margin shoals landward, building up the adjacent beach faces. Destructive waves tend to move sediment back to the ramp margin shoals. Waves striking the coast obliquely promote asymmetric growth of the shoals, causing the ebb jet to erode into whichever is the smaller shoal.  相似文献   

20.
Several previous attempts have been made to explain the apparent poor development of coastal dunes in the humid tropics in terms of lack of wind energy, failure of sand supply to the shoreline, excessive climatic wetness, salt crust formation on beaches, and the character of tropical back-beach vegetation. However, recent published reports indicate that coastal dune occurrences are more common in the humid tropics than was formerly thought, throwing suspicion on the idea that environmental conditions militate against dune formation in these areas as a whole. Evidence from the humid tropical sector of the North Queensland coast suggests that the poor development of dunes in this area primarily reflects poor sediment sorting in the beach and nearshore zone and low wind energy at the shoreline due to the nature of the coastal orientation and physiography in relation to the prevailing southeasterly winds. These limiting factors are not unique to humid tropical climates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号