首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geoarchaeological investigations in an area surrounding the confluence of the upper Colorado and Concho Rivers, Edwards Plateau of West Texas, have produced a detailed landscape evolution model which provides a framework for discussion of the influences of geomorphic processes on the development, preservation, and visibility of the archaeological record. Field mapping within the study area has differentiated six allostrati-graphic units of fluvial origin in both valleys, as well as extensive eolian sand sheets along the Colorado River. Early to middle Pleistocene terrace remnants cap many upland areas, whereas two distinct late Pleistocene terrace surfaces are widespread within the study area at somewhat lower elevations. Fluvial activity during the time period of human occupation is represented by an extensive Holocene terrace and underlying valley fill, which is up to 11 m in thickness. Valley fill sediments can be subdivided into allostratigraphic units of early to middle Holocene (ca. 10,000–5000 yr B.P.) and late Holocene age (ca. 4600–1000 yr B.P.), which are separated by a buried soil profile. The modern incised channels and very narrow floodplains represent the last millennium. Eolian sand sheets of early to middle Holocene age overlie limestone- and shale-dominated uplands, Pleistocene terraces, and in some cases the Holocene valley fill along the Colorado River. Pleistocene terraces have been stable features in the landscape and available for settlement through the time period of human occupation. Archaeological materials of all ages occur at the surface, and the record preserved in individual sites range from that associated with discrete periods of activity to longer-term palimpsests that represent repeated use over millennia. Sites within early to middle Holocene and late Holocene fills represent short-term utilization of constructional floodplains during the Paleoindian through early Archaic and middle to late Archaic time periods respectively. By contrast, those that occur along the buried soil profile developed in the early to middle Holocene fill record middle to late Archaic cultural activity on stable terrace surfaces, and represent relatively discrete periods of activity to longer-term palimpsests that represent repeated use over the 3000–4000 years of subaerial exposure. Late Prehistoric sites occur as palimpsests on soils developed in late Holocene alluvium or stratified within modern floodplain facies. Paleoindian through Late Prehistoric sites occur stratified within eolian sand sheets or along the unconformity with subjacent fluvial deposits. The landscape evolution model from the upper Colorado and Concho Rivers is similar to that developed for other major valley axes of the Edwards Plateau. This model may be regionally applicable, and can be used to interpret the geomorphic setting and natural formation processes for already known sites, as well as provide an organizational framework for systematic surface and subsurface survey for new archaeological records. 0 1992 John Wiley & Sons, Inc.  相似文献   

2.
《Quaternary Research》1986,25(2):177-188
The recent discovery of a post-Roman-aged marine calcarenite terrace, at an altitude of 7 to 8 m at the ancient harbor of Akhziv, supports the hypothesis of oscillatory tectonic movements along the coastline of Israel during the late Holocene. The marine to estuarine origin of this terrace is indicated by the presence within it of a biocoenosic, sea-marginal to estuarine, assemblage of well-preserved molluscs consisting of taxa tolerating brackish-water, together with a few fresh-water specimens. The transgressive marine sediments onlap and overlie a 2700-yr-old middle Iron Age (Phoenician) tomb, which was built on a dark clay layer, containing a middle Bronze HB (3750 yr B.P.) settlement. In post-Roman times the coastal zone at this site, both east and west of the present coastline, was first subjected to tectonic subsidence of a few meters, and was then tectonically uplifted to its present altitude.  相似文献   

3.
This paper provides the first detailed, multi-proxy environmental record for the character of Lateglacial conditions in the lowest Pleistocene terrace of the main valley floor of the River Trent at Holme Pierrepont near Nottingham. The analysis of pollen, plant, insect and mollusc remains preserved within organic channels near the base of the terrace, named the Holme Pierrepont Sand and Gravel by the British Geological Survey (historically known as the Floodplain Terrace), provided evidence of cool, though not fully arctic climatic conditions and a largely treeless landscape, roamed by large herbivores. Radiocarbon dating indicates that these sediments were deposited during the Loch Lomond Stadial (Younger Dryas GS-1). Comparison of these dates from Holme Pierrepont with those from morphostratigraphically similar deposits in the wider Trent catchment suggests that the Holme Pierrepont Sand and Gravel may have been laid down in two separate pulses of braidplain aggradation either side of the ‘Last Glacial Maximum’. It has been demonstrated from historical documentation and riverine archaeological evidence that the middle Trent has been particularly sensitive to changing flood frequency and magnitude associated with climatic oscillations during the late Holocene; this study demonstrates that such sensitivity appears to extend back into the late Pleistocene. The timing of fluvial aggradation recorded at Holme Pierrepont agrees broadly with that recorded from other sites across England and north-west Europe.  相似文献   

4.
Investigations were conducted along the middle South Platte River to better define the geomorphic contexts of Paleoindian sites and to reconstruct the alluvial and eolian geochronology. Paleoindian sites are associated with the Kersey terrace (the downstream equivalent of the Broadway terrace). The Kersey alluvium was deposited during Clovis occupation and the surface stabilized by 10,000 B.P. Post-Clovis sites post-date aggradation and stream downcutting may have started as early as 10,500 B.P. Subsequent floodplain development and downcutting formed the Kuner terrace (the possible downstream equivalent of the Piney Creek terrace) no later than 3000 B.P. and the Hardin terrace probably within the last 1000 years. Soils on the Kersey terrace are Ustochrepts (gravelly alluvium) or Haplustalfs (sandy and clayey alluvium). Soils on the Kuner terrace are cumulic Ustorthents and Ustochrepts. Soils on the Hardin terrace are Ustorthents with no obvious horizonation. Eolian sands began accumulating in the region by 10,000 B.P., but most are probably late Holocene deposits and are indicative of drier post-Pleistocene climate. Correlations with deposits in low order tributaries and other drainages can be difficult to make a) using soils because soil development varies as a function of parent material texture and b) because aggradation and degradation may be out-of-phase.  相似文献   

5.
A previous assessment of radiocarbon (14C) dates from alluvial units in southeastern Australia revealed a gap in the geochronological record that coincides with the Holocene climatic optimum. This gap in the alluvial record can be further refined using optically stimulated luminescence (OSL). The chronology of Holocene river terraces on Widden Brook, a sandy alluvial stream in southeastern Australia, was established using 14C and OSL techniques. Combined use of these independent techniques allows for a more rigorous assessment of the alluvial record. The robust chronology, consisting of 38 14C and 11 OSL samples, permitted identification of significant depositional variation within the catchment, resulting from localised geomorphic processes. The three terrace sequences identified yielded distinct chronologies, suggesting alluvial deposition at different times. The sequences exhibited a continuous chronology, which indicated continuous deposition throughout the Holocene. The chronology of terrace sequences within this catchment suggests that terrace formation can be attributed to localised geomorphic processes rather than climatic forcing. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Four late-Quaternary alluvial fills and terraces are recognized in Wolf Creek basin, a small (163 km2) drainage in the Kansas River system of the central Great Plains. Two terraces were created during the late Pleistocene: the T-4 is a fill-top terrace underlain by sand and gravel fill (Fill I), and the T-3 is a strath terrace cut on the Cretaceous Dakota Sandstone. Both Fill II (early Holocene) and Fill III (late Holocene) are exposed beneath the T-2, a Holocene fill-top terrace. The T-1 complex, consisting of one cut and three fill-top terraces, is underlain by Fills III and IV. A poorly developed floodplain (T-0) has formed within the past 1000 yr. As valleys in Wolf Creek basin filled during the early Holocene, an interval of soil formation occurred about 6800 yr B.P. Early Holocene fill has been found only in the basin's upper reaches, indicating that extensive erosion during the middle Holocene removed most early-Holocene fill from the middle and lower reaches of the basin. Valley filling between 5000 and 1000 yr B.P. was interrupted by soil formation about 1800, 1500, and 1200 yr B.P. As much as 6 m of entrenchment has occurred in the past 1000 yr. Holocene events in Wolf Creek basin correlate well with those in other localities in the central Great Plains, indicating that widespread changes in climate, along with adjustments driven by complex response, influenced fluvial activity.  相似文献   

7.
A complex late Quaternary alluvial history was documented along Henson Creek, a low order tributary on the Fort Hood Military Reservation in central Texas. Three Quaternary alluvial landforms were recognized: terrace 2 (T2), terrace 1 (T1), and the modern floodplain (T0). The late Pleistocene T2 terrace may contain an array of sites spanning the entire known cultural record, while T1 may have sites spanning the last 5000 years only. Five fluvial units, three colluvial facies, two alluvial fan facies, and two buried paleosols were also recognized. Fluvial deposition was occurring approximately 15,000 yr B.P., 10,000-8000 yr B.P., 7000–4800 yr B.P., 1650-600 yr B.P., and during the last 400 years. Colluvial deposition was ongoing mainly in the early and middle Holocene, while alluvial fan aggradation was proceeding primarily in the middle Holocene. Because of erosional unconformities, there is minimal potential for recovering buried sites dating to intervals between depositional eposides for most of the drainage basin. Preservation potentials for buried sites are greatest in fine-grained fluvial deposits dating to the late Pleistocene, early Holocene, and parts of the late Holocene, and in fine-grained colluvial deposits dating to the early and middle Holocene. This investigation demonstrates that within the study area, and perhaps throughout much of central Texas, a greater continuum of sediments and preservation potentials exists in late Quaternary alluvial deposits of rivers than in low-order tributaries.  相似文献   

8.
The Weichselian Late Pleniglacial, Lateglacial and Holocene fluvial history of the middle Tisza valley in Hungary has been compared with other river systems in West and Central Europe, enabling us to define local and regional forcing factors in fluvial system change. Four Weichselian to Holocene floodplain generations, differing in palaeochannel characteristics and elevation, were defined by geomorphological analysis. Coring transects enabled the construction of the channel geometry and fluvial architecture. Pollen analysis of the fine-grained deposits has determined the vegetation development over time and, for the first time, a bio(chrono)stratigraphic framework for the changes in the fluvial system. Radiocarbon dating has provided an absolute chronology; however, the results are problematic due to the partly reworked character of the organic material in the loamy sediments. During the Late Pleniglacial, aggradation by a braided precursor system of the Tisza and local deflation and dune formation took place in a steppe or open coniferous forest landscape. A channel pattern change from braided to large-scale meandering and gradual incision occurred during the Late Pleniglacial or start of the Lateglacial, due to climate warming and climate-related boreal forest development, leading to lower stream power and lower sediment supply, although bank-full discharges were still high. Alternatively, this fluvial change might reflect the tectonically induced avulsion of the River Tisza into the area. The climatic deterioration of the Younger Dryas Stadial, frequently registered by fluvial system changes along the North Atlantic margin, is not reflected in the middle Tisza valley and meandering persisted. The Lateglacial to Holocene climatic warming resulted in the growth of deciduous forest and channel incision and a prominent terrace scarp developed. The Holocene floodplain was formed by laterally migrating smaller meandering channels reflecting lower bank-full discharges. Intra-Holocene river changes have not been observed.  相似文献   

9.
人地关系是现代地理学重要的研究课题,其中地貌是影响古人类文化进程的重要因素。基于研究区野外地貌考察和沉积物的光释光年代测定,并利用地理信息系统分析技术,探讨山西省太原盆地全新世地貌演化过程、人类聚落分布变化规律及两者之间的关系。研究结果表明: 从仰韶到夏商时期,太原盆地平原区一直是不适宜人类居住的河流和湖泊环境,而在盆地边缘有一圈环绕盆地的黄土台地,所以人类文化遗址一直呈环状分布于太原盆地边缘。晚更新世,盆地边缘以洪积过程为主,盆地中部以河流过程为主,形成了盆地边缘高、中间低的地势;晚更新世末期到全新世早期,由于盆地中部构造下陷与气候转变为暖湿的共同影响,盆地边缘地带下切形成黄土丘陵或台地。此时,太原盆地的仰韶文化遗址就分布在环盆地边缘的黄土台地和黄土丘陵上。到了龙山早期,盆地东侧中部陷落平原边缘地势稍高的地区,由于河流进一步下切而高出洪水水位,龙山早期先民开始进入这些地势稍高的平原地区活动;盆地西侧清徐—文水一带也转为下切,形成低台地,开始有人类在此台地上活动。到了龙山晚期,盆地平原区及各河流均发生向上加积,导致盆地平原区水位上升,洪水影响扩大到平原边缘地区,太谷—介休一带,龙山晚期先民开始退出平原地区。夏商时期,先民也从清徐—文水一带低台地上退出。约距今3,ka之后,随着灵石隆起段汾河干流的下切,太原盆地边缘地带及中部平原区河流均有不同程度的下切,人类聚落才又开始向平原地区扩展。全新世太原盆地的地貌演化是影响古人类聚落分布的主要因素。  相似文献   

10.
Analysis of a flight of alluvial terraces in the Sierra Nevada National Park near Pico Mucuñuque in the Eastern Mérida Andes has yielded information on geomorphic, pedogenic, and vegetational changes from Late Glacial time to the present. The terraces formed in large part due to stream incision/migration triggered by neotectonic uplift (>7000 yr BP) of a Late Glacial/Early Holocene glaciolacustrine lithosequence and, with the exception of the oldest/highest terrace, exhibit near-uniform lithology/parent materials. Soils developed in the terrace materials range from thin, weakly developed profiles (O/C/Cu horizons) to Entisols with O/Ah/Cox/Cu horizons and similar buried counterparts representing former short periods of floodplain stability or slow aggradation. The buried soils provide organic-rich material that yields radiocarbon ages, which provide time constraints on individual pedons and the geomorphic development of the site. Iron and aluminum extracts of soil matrix material provide information on the formation and accumulation of goethite and hematite, the relative accumulation of ferrihydrite (gain/loss), and the downward translocation of organically complexed Al as a function of soil development and age. SEM analysis of heavy mineral grains indicates varying material sources and degrees of weathering in the soil chronosequence. A qualitative study of plant functional types across the terrace sequence shows that older surfaces support greater plant diversity. The study also suggests ways in which the plant communities influence soil development at the site through varying organic matter inputs and varying soil moisture use by specific species (e.g., ferns on the oldest terrace), which may explain the absence of B horizons in the Late Pleistocene/Early Holocene soils.  相似文献   

11.
The conditions of formation of massive ice near the South Tambey gas-condensate field in northern Yamal Peninsula are studied. It is shown that massive ice bodies up to 4.5 m thick occur in the Holocene deposits of the high laida and the first terrace. Therefore, they cannot be the remains of glaciers; they are ground ice formations. All three types of massive ice have quite various isotopic compositions: the values of δD range from–107 to–199.7, and δ18O from–15.7 to–26.48‰. Such a significant differentiation in isotopic composition is a result of cryogenic fractionation in a freezing water-saturated sediment. The most negative isotope values are even lower in this Holocene massive ice than in the Late Pleistocene ice-wedge ice of Yamal Peninsula.  相似文献   

12.
This paper reviews recent studies of Holocene coastal uplift in tectonically active areas near the plate boundaries of the western Pacific Rim. Emergent Holocene terraces exist along the coast of North Island of New Zealand, the Huon Peninsula of Papua New Guinea, the Japanese Islands, and Taiwan. These terraces have several features in common. All comprise series of subdivided terraces. The highest terrace is a constructional terrace, underlain by estuarine or marine deposits, and the lower terraces are erosional, cutting into transgressive deposits or bedrock. The highest terrace records the culmination of Holocene sea-level rise at ca. 6–6.5 ka BP. Lower terraces were coseismically uplifted. Repeated major earthquakes have usually occurred at ka intervals and meter-scale uplift. The maximum uplift rate and number of terraces are surprisingly similar, about 4 m/ka and seven to four major steps in North Island, Huon Peninsula, and Japan. Taiwan, especially along the east coast of the Coastal Range, is different, reaching a maximum uplift rate of 15 m/ka with 10 subdivided steps. They record a very rapid uplift. Comparison between short-term (Holocene) and long-term since the last interglacial maximum (sub-stage 5e) uplift rates demonstrates that a steady uplift rate (Huon Peninsula) or accelerated uplift toward the present (several areas of Japan and North Island) has continued at least since isotope sub-stage 5e. Rapid uplift in eastern Taiwan probably started only in the early Holocene, judging from the absence of any older marine terraces. Most of the causative faults for the coastal uplift may be offshore reverse faults, branched from the main plate boundary fault, but some of them are onshore faults, which deformed progressively with time.  相似文献   

13.
The climate of the Great Plains during the middle Holocene varied considerably, but overall it was marked by a north–south gradient of increasingly warmer and drier conditions, with a reduction in effective moisture, surface water, and resource abundance, and an increase in resource patchiness, sediment weathering, erosion, and aeolian activity. Pronounced drought conditions were most evident on the Southern High Plains. Understanding the human responses to middle Holocene climates is complicated by a lack of archaeological data, which is partly a result of geomorphic processes that removed or deeply buried sites of this age, and by the varying adaptive responses of hunter-gatherers during this period. On the Southern High Plains, where drought was most severe, surface and groundwater sources dried and bison populations were diminished, prompting substantial adaptive changes, including local abandonment, well-digging to tap underground water, and a widening of the diet breadth to incorporate higher-cost, lower-return seed and plant resources. Sites of this age on the Central and Northern Plains also show a possible increase in diet breadth (with the incorporation of plant foods in the diet), and perhaps changes in settlement mobility (including possible shift into higher elevation areas, or mapping-on to extant rivers and springs). But linking those changes to middle Holocene drought is less straightforward.  相似文献   

14.
A soil survey around the archaeological site of Harappa, Pakistan revealed alluvial deposits of five distinct ages based on relative position in the landscape and degree of soil profile development. the youngest deposit (age 1) is in the lowest landscape position and has received flood waters as recently as 1988. Soils there are in an incipient stage of development: only organic carbon and soluble salts have accumulated at the surface of the profile. the age 2 deposit has not undergone significant pedogenic change, but is in a slightly higher landscape position than the youngest deposit. Elevated concentrations of P, and the presence of sand-sized pottery and brick fragments, indicate that this deposit was derived at least partially from archaeological material. the presence of small, soft calcite nodules (Stage II) and some soluble salt translocation are the primary pedogenic changes observed in the age 3 deposit. the age 4 deposit shows evidence of both carbonate and gypsum accumulation. Presence of large gypsum nodules in deep By horizons suggests that a high groundwater table has altered these soils. the oldest deposit, age 5, forms a late Pleistocene stream terrace of the Ravi River. the soil formed in this deposit exhibits considerable carbonate accumulation, with large, dense nodules (Stage II + ) and an argillic horizon. A 14C date from pedogenic calcite gives an age of 7080 ± 90 years B.P., indicating a minimum age of early Holocene. the soil survey suggests that the ancient city of Harappa was built on an age 5 stream terrace remnant, surrounded by Holocene floodplains and a meandering channel of the Ravi River.  相似文献   

15.
Controlled by a local base level of downfaulted Edwards and Comanche Peak limestone, and aided by landsliding in Glen Rose marl, the Sabinal River and its tributaries have developed a large valley in the Edwards Plateau. Extensive soil-covered pediments that cut Glen Rose bedrock and Pleistocene terrace gravels are present along each side of the valley. Six alluvial deposits of late Pleistocene and Holocene age were recognized in the upper Sabinal River valley. The Holocene series is represented by three deposits. The oldest of these exhibits a Stage II calcic horizon and appears to have been deposited before ca. 5000 yr B.P. The Pleistocene deposits have a calcrete zone (calcic Stage IV and III horizon) in the upper 3-4 m. The Holocene alluviums, locally beveled by stream action, parallel the river's course and contain Archaic and younger artifacts, which in central Texas range in age from about 8000-350 yr B.P. One of the Holocene deposits (Q2) is correlated with the Georgetown and Fort Hood alluviums of the Cowhouse Creek at Fort Hood, which range in age from 11,000 yr B.P. to 5200 yr B.P., with the Wilson-Leonard terrace site in the Lampasas Cut Plain that ranges from about 11,000 to 5000 yr B.P., and with Unit E of Blum and Valastro (1989) in the Pedernales River valley, ranging from 10,550 to 7150 yr B.P. Modern climate in the valley is drought-prone, and fluctuates from semiarid to dry subhumid. Paleoclimate has ranged from much drier during the Middle Holocene to much cooler and wetter during the Late Pleistocene.  相似文献   

16.
河流沉积与地貌对构造与气候的变化极为敏感,可记录区域构造活动、气候变化和环境演变等多方面的丰富信息。由于独特的构造背景与气候条件,帕隆藏布不仅成为雅鲁藏布水系水量最大的支流,而且其流域在藏东南地区占有重要的地位。帕隆藏布流域内地表过程活跃且河流地貌演化过程快速,是揭示青藏高原东南部构造地貌演化的重要载体。通过对该河流地貌的形态学和沉积学分析发现,帕隆藏布河流形态具有明显的线状特征,其干流近似直线展布,而主要支流呈羽状分布,两者多呈直角交汇,表明河流形态明显受到嘉黎断裂带的构造形迹控制。进一步利用光释光和14C定年方法,对帕隆藏布的晚第四纪河流地貌演化,尤其是干流和东久河支流的晚第四纪河流阶地进行研究后发现,末次冰期以来的气候变化导致帕隆藏布的晚第四纪河流地貌呈现出典型的分段式特征,根据海拔高度主要可划分为3段:1)海拔2 600 m以下的河谷地貌呈V形峡谷,河谷比降大,阶地沉积年龄均在9.0~2.0 kaBP间,沉积属性以河流相和坡积相为主,表明是全新世以来气候变暖条件下形成的;2)海拔2 600~3 300 m的中游段河谷呈冰蚀围谷盆地、U形槽谷等,河谷比降小,河岸谷坡坡度小,主谷两岸冰碛垄发育,存留了古冰缘地貌遗迹,阶地沉积属性以古湖相、冰水相及河流相为主,测年结果在29.8~10.9 kaBP和50.9~39.8 kaBP间,显示其曾经为末次冰期和冰消期冰缘湖泊体系,后被现今的帕隆藏布所贯通;3)海拔3 300 m以上河流地貌为典型的冰川U形槽谷,谷底平坦,发育现代冰湖,仅发育Ⅰ级阶地并上面覆有冰碛物堆积体,有末次冰期的冰缘地貌遗迹,但主要受周围海洋性冰川作用,呈现现代冰缘地貌特征。整体上看,帕隆藏布的现今河流地貌上、下游两端年轻,主要形成于全新世期间;中游的河流地貌出现较早,残留了末次冰期和冰消期的冰缘地貌特征,并保留了广泛的古冰湖相沉积物。因此,帕隆藏布现今的河流形态主要出现在末次冰期以来。  相似文献   

17.
Well-preserved Holocene terraces along the South Fork Payette River in central Idaho provide a record of fluvial system behavior in a steep mountain watershed characterized by weathered and erodible Idaho Batholith granitic rocks. Terrace deposit ages were provided by 14C dating of charcoal fragments and optically stimulated luminescence (OSL) dating of sandy sediments. Along with pairing of many terrace tread heights, these data indicate episodic downcutting during the Holocene, with a mean incision rate of ~0.9 m/ka from ~7 ka to present. Prior to 7 ka, the river incised to within~3 m of current bankfull, but then aggraded by ~5 m over at least a ~10 km-long reach in an episode centered ~7–6 ka. Aggradation may relate to (1) increased hillslope sediment input from landslides and debris flows in steep tributary basins with abundant grussified granitic bedrock, (2) possible local landslide-damming of the channel, (3) decreased peak discharge, or (4) a combination of these factors. Middle Holocene channel aggradation ca. 7–6 ka corresponds with a period of prolonged and widespread aridity in the northern Rocky Mountains. Between ~5 and 1.3 ka, the river aggraded slightly and then remained stable, forming a prominent terrace tread at ~3 m above current bankfull. Modest aggradation to vertical stability of the South Fork Payette River at the 1.5 m terrace level ~1.0–0.7 ka corresponds with large fire-related debris flows in tributaries during Medieval droughts. Three intervals of incision (~5.5–5 ka, 1.3–1.0 ka and 0.5 ka) correspond with frequent but small fire-related sedimentation events and generally cooler, wetter conditions suggesting increased snowmelt runoff discharges. Other possible drivers of channel incision include an increase in stochastic or climate-modulated large storms and floods and a reduction in delivery of hillslope sediment to the channel. Aggradation is more confidently tied to climate through increases in hillslope sediment delivery and (or) decreased stream power, both likely related to warmer, drier conditions (including high-severity fires) that reduce snowmelt and decrease vegetation cover on steep slopes. Thus, the Holocene terraces of the South Fork Payette River do not reflect simple stepwise incision with periods of vertical stability and lateral migration, but record substantial episodes of aggradation as well. We infer that increases in hillslope erosion and mass movements combined with reduced discharges during prolonged droughts episodically reverse the post-glacial trend of downcutting, in particular during the middle Holocene. The present bedrock-dominated channel implies a strong tendency toward incision in the late Holocene.  相似文献   

18.
The geomorphology of the river terraces in the lower Vistula River valley of North PÖland is briefly described. They were earlier regarded as Late Wiirmian (terraces IX-IV) and Holocene (terraces III–I). Litho- and biostratigraphical studies of terrace depressions together with radiocarbon datings of their bottom layers indicate that even terrace II was formed during the Allerød Chronozone (11,800 to 11,000 B.P.) or earlier. In addition, radiocarbon datings have shown that the surface sediments of the flood plain were deposited in middle Holocene. These datings are of importance to the chronology of other large river valleys in the southern Baltic region. The interrelationship between erosion/accumulation in the Vistula valley and the shore level of the Baltic is also discussed.  相似文献   

19.
A.S.Meriaux    P.Tapponnier    F.J.Ryerson    Xu Xiwei    Wang Feng    J.Vanderwoerd   《地学前缘》2000,(Z1)
LARGE-SCALE STRAIN PATTERNS,GREAT EARTHQUAKE BREAKS,AND LATE PLEISTOCENE SLIP-RATE ALONG THE ALTYN TAGH FAULT (CHINA)  相似文献   

20.
在前人工作的基础上,借助实地调查、勘查等手段,分析研究了陕西省宝鸡常兴段黄土塬边滑坡分布规律与发育背景。通过分析、研究认为:(1)宝鸡常兴段黄土塬边自西向东滑坡规模由特大型向大型、中型甚至小型渐变;(2)三级阶地缺失或三级、二级阶地同时缺失地段均有滑坡发育;(3)宝鸡常兴段黄土塬边滑坡集中发育在3个时期:晚更新世初期、全新世初期与全新世漫滩期;(4)渭河盆地西部地壳差异性向东掀斜运动形成了不同高差级别台塬的地貌格局,决定了滑坡发育规模的规律性变化;渭河北迁与侵蚀加剧造成了宝鸡常兴段黄土塬边滑坡不同时期的集中出现;(5)人类工程活动的加剧是漫滩侵蚀期新滑坡或古老滑坡复活的主要诱发因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号