首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of the TROPOZ II large-scale measurement campaign in January 1991 we deployed a Four Laser Airborne Infra Red (FLAIR) tunable diode laser spectrometer on board a Caravelle 116 research aircraft. We report here in situ CO measurements which were obtained with one of the four channels of the FLAIR instrument at a time resolution of either one or two minutes. The flight route of the TROPOZ II campaign followed the Atlantic coasts of North America, the Pacific and Atlantic coasts of South America and the Atlantic coasts of West Africa and Europe. A total of 48 CO vertical profiles extending from the surface to 10.5 km altitude were obtained. In the meridional direction adjacent profiles were separated by less than 10° latitude. Polewards of 30°S the CO distribution was very homogeneous with a mean mixing ratio of 55 ppbv. Between 30°S and the equator, the CO mixing ratio above 8 km altitude ranged up to 130 ppbv and was 20–60 ppbv higher than in the mid free troposhere. Three day backward trajectories for these CO rich airmasses originated over Amazonia. Earlier trace gas measurements as well as circulation studies suggested that these airmasses were of Northern Hemispheric origin and had been rapidly convected to the upper troposphere over central South America. The influence of biomass burning is clearly apparent from the measurements performed at 10°N on the African side of the Atlantic with CO mixing ratios being 100–300% higher than on the Central American side. CO mixing ratios further north ranged from 80 to 130 ppbv in the free troposphere and increased to 130–150 ppbv at lower altitudes.  相似文献   

2.
During the Tropospheric Ozone Production about the Spring Equinox (TOPSE) program, aircraft flights during April 7–11, 2000 revealed a large area air mass capped below ∼500 m altitude over Hudson Bay, Canada in which ozone was reduced from normal levels of 30–40 ppbv to as low as 0.5 ppbv. From some of the in-situ aircraft measurements, back-trajectory calculations, the tropospheric column of BrO derived from GOME satellite measurements, and results from a regional model, we conclude that the event did not originate from triggering of reactive halogen release in the sub-Arctic region of Hudson Bay but resulted from such an event occurring at higher latitudes over the islands of the northern Canada Archipelago and nearby Arctic Ocean with subsequent transport over a distance of 1,000–1,500 km to Hudson Bay. BrO x remained active during this transport despite considerable changes in the conditions of the underlying surface suggesting that chemical recycling during transport dominated any local halogen input from the surface. If all of the tropospheric column density of BrO is distributed uniformly within the surface layer, then the mixing ratio of BrO derived from the satellite measurements is at least a factor of 2–3 larger than derived indirectly from in situ aircraft measurements of the NO/NO2 ratio.  相似文献   

3.
During the cruise ANT VII/1 (September/October 1988) of the German research vessel Polarstern the latitudinal distributions of several nonmethane hydrocarbons were measured over the Atlantic between 45°N and 30°S by in-situ gas chromatography.On the average, the highest mixing ratios of ethane, propane, i- and n-butane, ethene and acetylene were observed in the Northern Hemisphere around 40° N and just north of the intertropical convergence zone, respectively. South of the equator, a bulge in the mixing ratios of ethane and acetylene was observed indicating aged biomass burning emissions. This observation coincided with enhanced tropospheric ozone found in this region at this season. On the average ethane and acetylene mixing ratios were around 500 and 100 ppt, respectively, whereas the levels of the other NMHC were in the range of some ppt up to 100 ppt.compared with the results of the cruise ANT V/5 (March/April, 1987), the ethane mixing ratios in September/October proved to be a factor of 3 lower in the Northern Hemisphere and a factor of 2 higher in the Southern Hemisphere, probably due to seasonal effects. Possible causes are the higher OH radical concentrations in summer, which result in a faster removal of ethane or stronger emission from biomass burning which also peaks in the dry season.The relative pattern of the hydrocarbons just north of the ITCZ was very similar for both measurement series. In this region, the NMHC were advected by long-range transport from the continent, whereas generally the ocean itself acts as a major NMHC source. This is supported by the results of a balance calculation between oceanic emissions and atmospheric removal rates.  相似文献   

4.
A global two-dimensional (altitude-latitude) chemistry transport model is used to follow the changes in the tropospheric distribution of the two major radiatively active trace gases, methane and ozone, following step changes to the sustained emissions of the short-lived trace gases methane, carbon monoxide and non-methane hydrocarbons. The radiative impacts were dependent on the latitude chosen for the applied change in emissions. Step change global warming potentials (GWPs) were derived for a range of short-lived trace gases to describe their time-integrated radiative forcing impacts for unit emissions relative to that of carbon dioxide. The GWPs show that the tropospheric chemistry of the hydrocarbons can produce significant indirect radiative impacts through changing the tropospheric distributions of hydroxyl radicals, methane and ozone. For aircraft, the indirect radiative forcing impact of the NO x emissions appears to be greater than that from their carbon dioxide emissions. Quantitative results from this two-dimensional model study must, however, be viewed against the known inadequacies of zonally-averaged models and their poor representation of many important tropospheric processes.  相似文献   

5.
Quantitative infrared measurements of ethane (C2H6) in the upper troposphere and lower stratosphere are reported. The results have been obtained from the analysis of absorption features of the 9 band at 12.2 m, which have been identified in high-resolution ballon-borne and aircraft solar absorption spectra. The ballon-borne spectral data were recorded at sunset with the 0.02 cm-1 resolution University of Denver interferometer system from a float altitude of 33.5 km near Alamogordo, New Mexico, on 23 March 1981. The aircraft spectra were recorded at sunset in July 1978 with a 0.06 cm-1 resolution interferometer aboard a jet aircraft at 12 km altitude, near 35°N, 96°W. The balloon analysis indicates the C2H6 mixing ratio decreased from 3.5 ppbv near 8.8 km to 0.91 ppbv near 12.1 km. The results are consistent with the colum value obtained from the aircraft data.  相似文献   

6.
Stable carbon isotopic composition of ethane and propane over the western North Pacific and eastern Indian Ocean between 31°N and 26°S was investigated from February through March 2004. The isotopic composition of ethane ranged from −28 to −18‰ and showed a gradual increase from north to south. Conversely, that of propane was between −31 and −24‰; it showed no systematic latitudinal variation. Investigation of the ethane/propane ratio indicates that ethane and propane that originated from northern mid-latitude countries in the eastern part of Eurasia were both transported into the western North Pacific region. However, the results of the isotopic analyses indicate the contribution of oceanic emission to the atmospheric propane during transport, although that contribution can not be discerned for ethane. A ship based stationary observation conducted in the western equatorial North Pacific showed that the isotopic composition of ethane varied from −25 to −19‰ and showed clear systematic diurnal variation: propane ranged between −32 to −26‰ and no such isotopic diurnal signal was observed. The diurnal variation for ethane is explained by entrainment of free tropospheric air, whereas the variation for propane was influenced by oceanic emissions as well as the entrainment. The contribution of oceanic emissions to the atmospheric propane inventory was considered from our isotopic observation. Isotopic composition of dissolved propane is estimated to be less than −38‰, and the contribution up to 79% was calculated when the isotopic composition of dissolved propane is assumed to be −40‰. Our study demonstrates that isotopic analysis can be more useful than ratio-based analysis to improve our present understanding of transport processes, especially for impact of the oceanic emissions on the atmospheric distribution of low level C2–C5 non-methane hydrocarbons such as propane in the remote marine atmosphere.  相似文献   

7.
The vertical observation of volatile organic compounds(VOCs) is an important means to clarify the mechanisms of ozone formation. To explore the vertical evolution of VOCs in summer, a field campaign using a tethered balloon during summer photochemical pollution was conducted in Shijiazhuang from 8 June to 3 July 2019. A total of 192 samples were collected, 23 vertical profiles were obtained, and the concentrations of 87 VOCs were measured. The range of the total VOC concentration was 41–48 ppbv below 600 m. It then slightly increased above 600 m, and rose to 58 ± 52 ppbv at 1000 m.The proportion of alkanes increased with height, while the proportions of alkenes, halohydrocarbons and acetylene decreased. The proportion of aromatics remained almost unchanged. A comparison with the results of a winter field campaign during 8–16 January 2019 showed that the concentrations of all VOCs in winter except for halohydrocarbons were more than twice those in summer. Alkanes accounted for the same proportion in winter and summer. Alkenes,aromatics, and acetylene accounted for higher proportions in winter, while halohydrocarbons accounted for a higher proportion in summer. There were five VOC sources in the vertical direction. The proportions of gasoline vehicular emissions + industrial sources and coal burning were higher in winter. The proportions of biogenic sources + long-range transport, solvent usage, and diesel vehicular emissions were higher in summer. From the surface to 1000 m, the proportion of gasoline vehicular emissions + industrial sources gradually increased.  相似文献   

8.
Meridional cross sections of the concentration of light hydrocarbons are reported. They were obtained from 20. April to 10. May, 1980, during the French research flight STRATOZ II, and cover the latitudes between 60° N and 60° S and the altitudes between 800 mb and 200 mb. The mixing ratios of ethane, ethene, acetylene, propane, propene, n-butane, i-butane, n-pentane, and i-pentane range between 2.0 and 0.02 ppb. Globally, a decrease in concentration with increasing altitude and -in most cases-with decreasing latitude is observed. In addition the 2-dimensional concentration fields show structures of different scales. In particular, isolated maxima of high concentrations are found in the upper troposphere. They point to fast vertical transport between the boundary layer and the upper troposphere. In the present case these maxima seem to be correlated with large scale meteorological systems, such as low pressure regions or the Inter Tropical Convergence Zone. It is argued that the NMHC provide a set of tracers well suited to the detection of fast vertical transport.  相似文献   

9.
Estimates of the Chemical Budget for Ozone at Waliguan Observatory   总被引:6,自引:0,他引:6  
Waliguan Observatory (WO) is an in-land Global Atmosphere Watch (GAW) baseline station on the Tibetan plateau. In addition to the routine GAW measurement program at WO, measurements of trace gases, especially ozone precursors, were made for some periods from 1994 to 1996. The ozone chemical budget at WO was estimated using a box model constrained by these measured trace gas concentrations and meteorological variables. Air masses at WO are usually affected by the boundary layer (BL) in the daytime associated with an upslope flow, while it is affected by the free troposphere (FT) at night associated with a downslope flow. An anti-relationship between ozone and water vapor concentrations at WO is found by investigating the average diurnal cycle pattern of ozone and water vapor under clear sky conditions. This relationship implies that air masses at WO have both the FT and BL characteristics. Model simulations were carried out for clear sky conditions in January and July of 1996, respectively. The chemical characteristics of mixed air masses (MC) and of free tropospheric air masses (FT) at WO were investigated. The effects of the variation in NOx and water vapor concentrations on the chemical budget of ozone at WO were evaluated for the considered periods of time. It was shown that ozone was net produced in January and net destroyed in July for both FT and MC conditions at WO. The estimated net ozone production rate at WO was –0.1 to 0.4 ppbv day–1 in FT air of January, 0.0 to 1.0 ppbv day–1 in MC air of January, –4.9 to –0.2 ppbv day–1 in FT air of July, and –5.1 to 2.1 ppbv day–1 in MC air of July.  相似文献   

10.
The manual harvest of sugar cane requires the burning of its foliage. This burning has strongly increased in Brazil after the National Alcohol Program was started which substituted automobile gasoline engines for alcohol engines. Presently, the source strength per unit area of this rural pollution is comparable to the well-known biomass burning source in Amazonia. The observed concentrations of CO and O3 in the rural area of the state of São Paulo during the 1988 burning season were twice as large as those reported from an aircraft experiment of 1985 for biomass burnings of the tropical rain forest. Results are reported from airplane measurements and from three fixed ground stations. Mixing ratios of ozone and carbon monoxide in the height range below 6 km are normally less than 40 and 100 ppbv, (parts per billion by volume), respectively, in the absence of burnings. A strong O3 and CO layer was observed during the burning period with peak concentrations of 80 ppbv of ozone and 580 ppbv of CO at about 2 km. The concentrations of CH4 and CO2 were also large, 1756 ppbv and 409 ppmv, respectively, at 1500 m. During the dry season period of the experiment, the ground based O3 average diurnal variations obtained at the rural sites were practically identical to the typical urban variation observed at São José dos Campos, with daytime ozone values between 45 and 60 ppbv. A second three-day airplane excursion to the surgar cane fields in the wet season of 1989 has produces results to be contrasted with the dry (burning) season of 1988 and 1989. Carbon monoxide concentrations were below 100 ppbv at all heights and ozone concentrations were around 30–40 ppbv. The maximum daytime concentrations at the ground station Bauru was 25 ppbv of O3, and at Jaboticabal it was 35 ppbv of O3, only one half of what was observed in the dry season.Universidade Estadual de São Paulo.  相似文献   

11.
C2–C6 Nonmethane hydrocarbons (NMHC) and radioactive continental tracers were measured during two oceanographic cruises, in June 1982 in the Mediterranean and Red Sea, and in November 1982 across the North Atlantic and South Pacific oceans. Typical concentrations in marine atmosphere are between 0.05 and 0.2 ppbv. Owing to their similar lifetimes, propane and radon-222 are found to be well correlated. This relationship establishes that propane is mainly produced over lands and enables us to estimate its continental source strength at about 60×106 tons of carbon per year.Also at Université de Picardie  相似文献   

12.
This study estimated the largely unstudied downward transport and modification of tropospheric ozone associated with tropical moist convection using a coupled meteorology-chemistry model. High-resolution cloud resolving model simulations were conducted for deep moist convection events over West Africa during August 2006 to estimate vertical transport of ozone due to convection. Model simulations realistically reproduced the characteristics of deep convection as revealed by the estimated spatial distribution of temperature, moisture, cloud reflectivity, and vertical profiles of temperature and moisture. Also, results indicated that vertical transport reduced ozone by 50% (50 parts per billion by volume, ppbv) in the upper atmosphere (12–15 km) and enhanced ozone by 39% (10 ppbv) in the lower atmosphere (<2 km). Field observations confirmed model results and indicated that surface ozone levels abruptly increased by 10–30 ppbv in the area impacted by convection due to transport by downdrafts from the upper troposphere. Once in the lower troposphere, the lifetime of ozone decreased due to enhanced dry deposition and chemical sinks. Ozone removal via dry deposition increased by 100% compared to non-convective conditions. The redistribution of tropospheric ozone substantially changed hydroxyl radical formation in the continental tropical boundary layer. Therefore, an important conclusion of this study is that the redistribution of tropospheric ozone, due to deep convection in non-polluted tropical regions, can simultaneously reduce the atmospheric loading of ozone and substantially impact the oxidation capacity of the lower atmosphere via the enhanced formation of hydroxyl radicals.  相似文献   

13.
Geologic seepage of methane and light (C2-C5) alkanes was measured at the La Brea Tar Pits in Los Angeles. Samples were collected using flux chambers with stainless steel canisters and analyzed using gas chromatography. Average seepage rates from individual seepage sites were 970 ± 330 mg/h of methane, 14.0 ± 5.5 mg/h of ethane, 9.1 ± 3.7 mg/h of propane, 3.7 ± 1.6 mg/h of i-butane, 0.33 ± 0.16 mg/h of n-butane, 260 ± 120 μg/h of i-pentane, and 5.3 ± 1.9 μg/h of n-pentane, while maximum seepage rates exceeded 17 g/h of methane, 270 mg/h of ethane, 190 mg/h of propane, 95 mg/h of i-butane, 10 mg/h of n-butane, 7 mg/h of i-pentane, and 0.1 mg/h of n-pentane. These absolute fluxes have an additional unknown amount of error associated with them due to sampling methodology, and should be taken as the lower limit of emissions. Samples collected revealed generally dry gas, with high methane emissions relative to the light alkanes. Overall emissions from the tar pits were found to come not only from the active geologic seepage, but also from the outgassing of the standing asphalt at the site. Using the gas ratios, which are negligibly affected by errors introduced by sampling methodology, observed in this study, daily emissions of C2 – C5 alkanes from the La Brea area were estimated to be 4.7 ± 1.6 Mg, which represents 2–3 % of total emissions in the entire Los Angeles region.  相似文献   

14.
Results of more than 800 new measurements of methane (CH4) concentrations in the Southern Hemisphere troposphere (34–41° S, 130–150° E) are reported. These were obtained between September 1980 and March 1983 from the surface at Cape Grim, Tasmania, through the middle (3.5–5.5 km) to the upper troposphere (7–10 km). The concentration of CH4 increased throughout the entire troposphere over the measurement period, adding further support to the view that CH4 concentrations are currently increasing on a global scale. For data averaged vertically through the troposphere the rate of increase found was 20 ppbv/yr or 1.3%/yr at December 1981. In the surface CH4 data a seasonal cycle with a peak to peak amplitude of approximately 28 ppbv is seen, with the minimum concentration occurring in March and the maximum in September–October. A cycle with the same phase as that seen at the surface, but with a significantly decreased amplitude, is apparent in the mid troposphere but no cycle is detected in the upper tropospheric data. The phase and amplitude of the cycle are qualitatively in agreement with the concept that the major sink for methane is oxidation by hydroxyl radicals. Also presented is evidence of a positive vertical gradient in methane, with a suggestion that the magnitude of this gradient has changed over the period of measurements.  相似文献   

15.
A series of 149 measurements of the HCHO mixing ratio were made between 0 and 10 km altitude and 70° N to 60° S latitude during TROPOZ II. The data show a vertical decrease of the HCHO mixing ratio with altitude at all latitudes and a broad latitudinal maximum in the HCHO mixing ratio between 30° N and 30° S at all altitudes. The measured mixing ratios of HCHO are considerably higher than those expected from CH4 oxidation alone, but agree broadly with the average latitude by altitude distribution of HCHO derived by a 2D model including emissions of C1–C7 hydrocarbons. A number of the regional scale deviations of the measured HCHO distribution from the average modelled one can be explained in terms of the local wind field.  相似文献   

16.
Two years of individual nonmethane hydrocarbon (NMHC) measurements at a rural site close to the south coast of Norway show that there was a distinct annual cycle with a late winter maximum and late summer minimum in the slowly reacting NMHCs acetylene, ethane, propane and i- and n-butane. The average January—March concentrations were a factor 2–4 higher than the July-September concentrations. Also ethene, propene and the pentanes show a similar annual cycle, but the individual scatter in the measurements in particular of propene, is large. The highest concentrations of NMHC were found in winter for easterly transport on a regional scale (out to 1500 km from the site), and for southeasterly transport in the summer.  相似文献   

17.
Aircraft observations of oxides of nitrogen (NO y ), measured with a ferrous sulfate converter, over the sea surrounding the Japanese islands (30–43° N, 131–141° E) were carried out in the winter of 1983 and 1984 at altitudes mostly between 3 and 8 km. NO y defined here is the sum of NO, NO2, and other unstable oxides of nitrogen that are converted to NO by ferrous sulfate. The main observations were:
  1. Over the Pacific Ocean between the latitudes of 30–35° N, the observed NO y mixing ratio between 3 and 8 km was a fairly constant 200 pptv. The NO mixing ratio increased with altitude from 15 pptv at 3 km to 35 pptv at 7 km.
  2. Over the Sea of Japan, tropospheric NO y mesured between 1 and 6 km started increasing with latitude North of 35° N and reached about 1000 pptv at 40° N.
  3. NO y was measured in an air mass transported from the stratosphere near a tropopause fold region. When the ozone mixing ratio was between 80 and 140 ppbv, the NO y mixing ratio was about 200 pptv.
  相似文献   

18.
Air samples were collected covering a full diurnal cycle during each month of the year 2002 at a mountaintop of Mt. Abu (24.6^∘ N, 72.7^∘ E, 1680 amsl). These samples were analyzed for C2−C4 NMHCs using a gas chromatograph (GC) equipped with flame ionization detector (FID). The seasonally averaged diurnal distributions of these NMHCs do not show significant variations in the summer season. While sharp peaks in the diurnal variation of some species during evening hours are additional features apart from higher levels in all NMHCs in the winter season. The seasonal variations in relatively long lived species (e.g. ethane, propane and acetylene) are observed to be more pronounced compared to those in reactive species (e.g. ethene, propene and butanes). The seasonal changes in transport patterns seem to be more dominant factor at this site for the observed variations in NMHCs than changes in OH radical concentration. The annual mean mixing ratios of ethane, ethene, propane, propene, i-butane, acetylene, and n-butane are 1.22 ± 0.58, 0.34 ± 0.24, 0.46 ± 0.20, 0.17 ± 0.14, 0.21 ± 0.18, 0.41 ± 0.43, and 0.31 ± 0.35 ppbv, respectively. Only few pairs of NMHCs are observed to show good correlations, mainly due to transport of air masses with different degree of photochemical processing. A comparison of this measurement with data reported for other remote sites of the globe indicates lower levels of light NMHCs in the tropical sites. The annual mean mixing ratios of various C2−C4 NMHCs at Mt. Abu are lower by factors ranging between 3 to 9 compared to a nearest urban site of Ahmedabad. The annual mean propylene (propene) equivalent concentrations of about 1.12 and 8.62 ppbC were calculated for Mt. Abu and Ahmedabad, respectively.  相似文献   

19.
Atmospheric samples from savanna burnings were collected in the Ivory Coast during two campaigns in January 1989 and January 1991. About 30 nonmethane hydrocarbons from C2 to C6, carbon monoxide, carbon dioxide and methane were measured from the background and also at various distances from the burning. Concentrations in the fire plume reached ppmv levels for C2-C4 hydrocarbons, and 5300, 500 and 93 ppmv for CO2, CO and CH4 respectively. The excess in the mixing ratios of these gases above their background level is used to derive emission factors relative to CO and CO2. For the samples collected immediately in the fire plume, a differentiation between high and low combustion efficiency conditions is made by considering the CO/CO2 ratio. Ethene (C2H4), acetylene (C2H2), ethane (C2H6) and propene (C3H6) are the major NMHC produced in the flaming stage, whereas a different pattern with an increasing contribution of alkanes is observed in samples typical of post flaming processes. A strong correlation between methane and carbon monoxide suggests that these compounds are produced during the same stage of the combustion. In samples collected at a distance from the fire and integrated over a period of 30 minutes, the composition is very similar to that of flaming. NMHC/CO2 is of the order of 0.7%, CH4/CO2 of the order of 0.4% and CO/CO2 of the order of 6.3%. From this study, a global production by African savanna fires is derived: 65 Tg of CO-C, 4.2 Tg of CH4-C and 6.7 Tg of NMHC-C. Whereas acetylene can be used as a conservative tracer of the fire plumes, only ethene, propene and butenes can be considered in terms of their direct photochemical impact.  相似文献   

20.
During the Berlin Ozone Experiment BERLIOZ in July–August 1998 quasi-continuous measurements ofC2–C12 nonmethane hydrocarbons (NMHCs) were carried out at 10 sites in and around the city of Berlin using on-line gas-chromatographic systems (GCs) with a temporal resolution of 20–120 minutes. Additional airborne NMHCmeasurements were made using canister sampling on three aircraft and an on-line GC system on a fourth aircraft. The ground based data are analyzed to characterize the different sites and to identify the influence of emissions from Berlin on its surroundings. Benzene mixing ratios at the 4 rural sites were rather low (<0.5 ppbv). Berlin (and the surrounding highway ring) was identified as the main source of anthropogenic NMHCs at Eichstädt and Blossin, whilst other sources were important at the furthermost site Menz. The median toluene/benzene concentration ratio in Berlin was 2.3 ppbv/ppbv, agreeing well with measurements in other German cities. As expected, the ratios at the background sites decreased with increasing distance to Berlin and were usually around one or below. On 20 and 21 July, the three northwesterly sites were situated downwind of Berlin and thus were influenced by its emissions. Considering the distance between the sites and the windspeed, the city plume was observed at reasonable time scales, showing decreasing toluene/benzene ratios of 2.3, 1.6 and 1.3 with increasing distance from Berlin. Isoprene was the only biogenic NMHC measured at BERLIOZ. It was themost abundant compound at the background sites on the hotter days, dominating the local NMHC reactivity with averaged contributions to the total OH loss rate of 51% and 70% at Pabstthum and Blossin, respectively. Emissionratios (relative to CO and to the sum of analysed NMHCs) were derived from airborne measurements. The comparison with an emission inventory suggests traffic-related emissions to be the predominating source of the considered hydrocarbon species. Problems were identified with the emission inventory for propane, ethene and pentanes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号