首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the processes of development and maintenance of low-level clouds during major synoptic events, the cloudy boundary layer under stormy conditions during the summertime Arctic has been studied using observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment and large-eddy simulations (LES). On 29 July 1998, a stable Arctic cloudy boundary-layer event was observed after the passage of a synoptic low pressure system. The local dynamic and thermodynamic structure of the boundary layer was determined from aircraft measurements including the analysis of turbulence, cloud microphysics and radiative properties. After the upper cloud layer advected over the existing cloud layer, the turbulent kinetic energy (TKE) budget indicated that the cloud layer below 200 m was maintained predominantly by shear production. Observations of longwave radiation showed that cloud-top cooling at the lower cloud top has been suppressed by radiative effects of the upper cloud layer. Our LES results demonstrate the importance of the combination of shear mixing near the surface and radiative cooling at the cloud top in the storm-driven cloudy boundary layer. Once the low-level cloud reaches a certain height, depending on the amount of cloud-top cooling, the two sources of TKE production begin to separate in space under continuous stormy conditions, suggesting one possible mechanism for the cloud layering. The sensitivity tests suggest that the storm-driven cloudy boundary layer is possibly switched to the shear-driven system due to the advection of upper clouds or to the buoyantly driven system due to the lack of wind shear. A comparison is made of this storm-driven boundary layer with the buoyantly driven boundary layer previously described in the literature.  相似文献   

2.
An analysis was performed of the turbulent data obtained from Yucheng experimental station in the Shandong Province in 1984. [t is shown that at variant wind speed, the spectra of streamwise velocity remain similar and the intensity of wind fluctuations is proportional to wind speed in the downwind area of shelter belt. Therefore, we may decide the similarity of wind fluctuations by a speed scale and a length scale which is not correlated with stability, σu /V0 = F(X / H). The -5/3 power range of temperature spectra extends to lower frequency. The variation of ratio σ0 /T. with stability becomes σ0 / T . = C(X / H)( - Z / L)-1/3 . There is not such an extension of -5 / 3 power range in the humidity spectra.  相似文献   

3.
ANALYSISOFMEANWINDCHARACTERISTICSINTHEATMOSPHERICSURFACELAYEROFTHEGRASSLANDAREAINNORTHCHINAXueHeng(薛桁),ZhuRuizhao(朱瑞兆)andWuHo...  相似文献   

4.
In the first half of winter 2020/21,China has experienced an extremely cold period across both northern and southern regions,with record-breaking low temperatures set in many stations of China.Meanwhile,a moderate La Ni?a event which exceeded both oceanic and atmospheric thresholds began in August 2020 and in a few months developed into its mature phase,just prior to the 2020/21 winter.In this report,the mid?high-latitude large-scale atmospheric circulation anomalies in the Northern Hemisphere,which were forced by the negative phase of Arctic Oscillation,a strengthened Siberian High,an intensified Ural High and a deepened East Asian Trough,are considered to be the direct reason for the frequent cold surges in winter 2020/21.At the same time,the synergistic effect of the warm Arctic and the cold tropical Pacific(La Ni?a)provided an indispensable background,at a hemispheric scale,to intensify the atmospheric circulation anomalies in middle-to-high latitudes.In the end,a most recent La Ni?a prediction is provided and the on-coming evolution of climate is discussed for the remaining part of the 2020/21 winter for the purpose of future decision-making and early warning.  相似文献   

5.
The heat budget is analyzed in the surface-layer (0-50 m) Pacific of the equatorial band (10°S-10°N),using the simulation of an ocean general circulation model from 1945 to 1993. The analysis indicates that downward net surface heat flux from the atmosphere and ocean advective heat fluxes play distinct roles in seasonal and interannual variabilities of surface-layer ocean temperature. The surface heat flux dominantly determines the ocean temperature in the seasonal time-scale. But, it has a negative feedback to the ocean temperature in the interannual time-scale. The interannual variability of ocean temperature is largely associated with the cold advection from off-equatorial divergent flow in the central Pacific and from upwelling in the cold tongue. Both the surface heat flux and ocean advective heat fluxes are important to the ocean temperature during an El Nino event. The ocean advective heat fluxes are further associated with local westward trade wind in the central Pacific. These results are largely consistent with some regional observational analyses.  相似文献   

6.
Complex empirical orthogonal function (CEOF) and Fourier analyses are applied to 500 hPa geopotential height anomaly for two selected latitude belts in the Northern Hemisphere from Dec 1978 through Feb 1979 based on the ECMWF FGGE Hl-b data. The positive anomalies in the three leading CEOFs for the high-latitude belt mainly show the preferred locations for blocking activity in the North Atlantic, the North Pacific and to the west of the Ural Mountains. The negative anomalies in the three leading CEOFs for the mid-latitude belt mainly show the preferred locations for cyclogenesis in the east coasts of Asia and North America, and the Mediterranean; weak cyclogenesis is also seen in the western United States and off the coasts of Spain and Morocco. The travelling components of the positive anomalies in the high-latitude belt mainly propagate westward, weakening as approaching the east side of some mountain chains while intensifying to the west side. On the contrary, the travelling components of the negativ  相似文献   

7.
Partial Least Squares Regression (PLSR) is used to study monthly changes in the influence of the Arctic Oscillation (AO) on spring, summer and autumn air temperature over China with the January 500 hPa geopotential height data from 1951 to 2004 and monthly temperature data from January to November at 160 stations in China. Several AO indices have been defined with the 500-hPa geopotential data and the index defined as the first principal component of the normalized geopotential data is best to be used to study the influence of the AO on SAT (surface air temperature) in China. There are three modes through which the AO in winter influences SAT in China. The influence of the AO on SAT in China changes monthly and is stronger in spring and summer than in autumn. The main influenced regions are Northeast China and the Changjiang River drainage area.  相似文献   

8.
A cloud-ocean planetary boundary layer (OPBL) feedback mechanism is presented and tested in this paper. Water vapor, evaporated from the ocean surface or transported by the large-scale air flow, often forms convective clouds under a conditionally unstable lapse rate. The variable cloud cover and rainfall may have positive and negative feedback with the ocean mixed layer temperature and salinity structure. The coupling of the simplified Kuo’s (1965) cumulus cloud model to the Kraus-Turner’s (1967) ocean mixed layer model shows the existence of this feedback mechanism. The theory also predicts the generation of low frequency oscillation in the atmosphere and oceans.  相似文献   

9.
It is shown that the slope of energy spectrum obtained from the velocity solution of Kdv-Burgers equation lies between -5/3 and -2 in the dilogarithmic coordinates paper. The spectrum is very close to one of Kolmogorov’s isotropic turbulence and Frisch’s intermittent turbulence in inertial region. In this paper, the Kdv-Burgers equation to describe atmospheric boundary layer turbulence is obtained. In the equation, the 1 / Re, corresponds to dissipative coefficient v, to dispersive coefficient β, then (v/ 2β)2 corresponds to .We prove that the wave number corresponding to maximum energy spectrum decreases with the decrease of stability (i.e., the increase of in eddy-containing region. And the spectrim amplitude decreases with the increase of (i.e., the decrease of stability). These results are consistent with actual turbulence spectrum of atmospheric surface layer from turbulence data.  相似文献   

10.
This study investigates why the Arctic winter sea ice loss over the Barents–Kara Seas (BKS) is accelerated in the recent decade. We first divide 1979–2013 into two time periods: 1979–2000 (P1) and 2001–13 (P2), with a focus on P2 and the difference between P1 and P2. The results show that during P2, the rapid decline of the sea ice over the BKS is related not only to the high sea surface temperature (SST) over the BKS, but also to the increased frequency, duration, and quasi-stationarity of the Ural blocking (UB) events. Observational analysis reveals that during P2, the UB tends to become quasi stationary and its frequency tends to increase due to the weakening (strengthening) of zonal winds over the Eurasia (North Atlantic) when the surface air temperature (SAT) anomaly over the BKS is positive probably because of the high SST. Strong downward infrared (IR) radiation is seen to occur together with the quasi-stationary and persistent UB because of the accumulation of more water vapor over the BKS. Such downward IR favors the sea ice decline over the BKS, although the high SST over the BKS plays a major role. But for P1, the UB becomes westward traveling due to the opposite distribution of zonal winds relative to P2, resulting in weak downward IR over the BKS. This may lead to a weak decline of the sea ice over the BKS. Thus, it is likely that the rapid decline of the sea ice over the BKS during P2 is attributed to the joint effects of the high SST over the BKS and the quasi-stationary and long-lived UB events.  相似文献   

11.
The Arctic sea-ice cover has decreased in extent, area, and thickness over the last six decades. Most global climate models project that the summer sea-ice extent (SIE) will decline to less than 1 million (mill.) km2 in this century, ranging from 2030 to the end of the century, indicating large uncertainty. However, some models, using the same emission scenarios as required by the Paris Agreement to keep the global temperature below 2°C, indicate that the SIE could be about 2 mill. km2 in 2100 but with a large uncertainty of ±1.5 mill. km2. Here, the authors take another approach by exploring the direct relationship between the SIE and atmospheric CO2 concentration for the summer–fall months. The authors correlate the SIE and ln(CO2/CO2r) during the period 1979–2022, where CO2r is the reference value in 1979. Using these transient regression equations with an R2 between 0.78 and 0.87, the authors calculate the value that the CO2 concentration needs to reach for zero SIE. The results are that, for July, the CO2 concentration needs to reach 691 ± 16.5 ppm, for August 604 ± 16.5 ppm, for September 563 ± 17.5 ppm, and for October 620 ± 21 ppm. These values of CO2 for an ice-free Arctic are much higher than the targets of the Paris Agreement, which are 450 ppm in 2060 and 425 ppm in 2100, under the IPCC SSP1-2.6 scenario. If these targets can be reached or even almost reached, the “no tipping point” hypothesis for the summer SIE may be valid.  相似文献   

12.
A field campaign was conducted to collect high quality vertical wind speed and temperature profiles with simultaneous turbulent momentum and sensible heat fluxes over the flat Gobi surface located at 39°09′N, 100°06′E at an elevation of 1,458 m during the Pilot Intensive Observation Period in 1990. Careful evaluation of the observations in near-neutral conditions supports a value of the von Karman constant close to 0.39, which is in good agreement with the results obtained from many other field experiments conducted in low elevation regions. In near-neutral stratification the turbulent Prandtl number is found to be 1 but with lower confidence due to scarcity and scatter of the data points. For an expanded stability range, exponents of −1/4 and −1/2 are respectively best fitted to the functional relations for the non-dimensional wind and temperature profile functions in unstable stratification but linear relations still hold for stable stratification in this high elevation region.  相似文献   

13.
In scintillometry Monin–Obukhov similarity theory (MOST) is used to calculate the surface sensible heat flux from the structure parameter of temperature (CT2){(C_{T^2})} . In order to prevent saturation a scintillometer can be installed at an elevated level. However, in that case the observation level might be located outside the atmospheric surface layer (ASL) and thus the validity of MOST questioned. Therefore, we examine two concepts to determine the turbulent surface sensible heat flux from the structure parameter at elevated levels with data obtained at 60-m height on the Cabauw tower (the Netherlands). In the first concept (MOSTs) CT2{C_{T^2}} is still scaled with the surface flux, whereas in the second (MOSTl) CT2{C_{T^2}} is scaled with the local sensible heat flux. The CT2{C_{T^2}} obtained from both concepts is compared with direct observations of CT2{C_{T^2}} using a sonic anemometer/thermometer. In the afternoon (when the measurement height is located within the ASL) both concepts give results that are comparable to the directly observed values of CT2{C_{T^2}} . In the morning (data outside the ASL), our data do not unequivocally support either of the two concepts. First, the peak in CT2{C_{T^2}} that occurs when the measurement height is located in the entrainment zone disqualifies the use of MOST. Second, during the morning transition, local scaling shows the correct pattern (zero flux and a minimum in CT2{C_{T^2}}) but underestimates CT2{C_{T^2}} by a factor of ten. Third, from the best linear fit a we found that the slope of MOSTl gave better results, whereas the offset is closer to zero for MOSTs. Further, the correlation between the direct observations and MOST-scaled results is low and similar for the two concepts. In the end, we conclude that MOST is not applicable for the morning hours when the observation level is above the ASL.  相似文献   

14.
A comparative study between the output of the Flexible Global Climate Model Version 1.0 (FGCM- 1.0) and the observations is performed. At 500 hPa, the geopotential height of FGCM is similar to the observations, but in the North Pacific the model gives lower values, and the differences are most significant over the northern boundary of the Pacific. In a net heat flux comparison, the spatial patterns of the two are similar in winter, but more heat loss appears to the east of Japan in FGCM than in COADS. On the interannual timescale, strong (weak) Kuroshio transports to the east of Taiwan lead the increasing (decreasing) net heat flux, which is centered over the Kuroshio Extension region, by 1–2 months, with low (high) pressure anomaly responses appearing at 500 hPa over the North Pacific (north of 25N) in winter. The northward heat transport of the Kuroshio is one of the important heat sources to support the warming of the atmosphere by the ocean and the formation of the low pressure anomaly at 500 hPa over the North Pacific in winter.  相似文献   

15.
Studies dealing with impact of the Arctic warming and related sea ice decline on the Northern Hemisphere atmospheric circulation are considered. The causes of occurrence of extremely cold winters over the mid-latitude continents observed in the recent decades against the warming background are discussed. Several conceptions are outlined which explain potential reasons for occurrence of this phenomenon. The paper discusses impacts of the Arctic sea ice loss on the large-scale atmospheric circulation, oscillations of planetary waves. It also discusses issues related to sea ice changes in the Barents and Kara seas and their link to the frequency of extremely cold winters observed in Eurasia and North America, the contribution of internal atmospheric variability to the increasing frequency of cold weather, and the role of the Atlantic Multidecadal Oscillation in the Arctic sea ice reduction.  相似文献   

16.
The diurnal variations of gaseous pollutants and the dynamical and thermodynamic structures of the atmospheric boundary layer (ABE) in the Beijing area from January to March 2001 are analyzed in this study using data from the Beijing City Air Pollution Observation Field Experiment (BECAPEX). A heavy pollution day (22 February) and a good air quality day (24 February) are selected and individually analyzed and compared to reveal the relationships between gaseous pollutants and the diurnal variations of the ABL. The results show that gaseous pollutant concentrations exhibit a double-peak-double-valley-type diurnal variation and have similar trends but with different magnitudes at different sites in Beijing. The diurnal variation of the gaseous pollutant concentrations is closely related to (with a 1-2 hour delay of) changes in the atmospheric stability and the mean kinetic energy in the ABL.  相似文献   

17.
The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL). RAMS and FLUENT are combined as a multi-scale numerical modeling system, in which the RAMS simulated data are delivered to the computational model for FLUENT simulation in an offline way. Numerical simulations are performed to present and preliminarily validate the capability of the multi-scale modeling system, and the results show that the modeling system can reasonably provide information on the meteorological elements in an urban area from the urban scale to the city-block scale, especially the details of the turbulent flows within the USL.  相似文献   

18.
A non-iterative analytical scheme is developed for unstable stratification that parametrizes the Monin–Obukhov stability parameter \(\zeta \) (\({=}z{/}L\), where z is the height above the ground and L is the Obukhov length) in terms of bulk Richardson number (\(Ri_B\)) within the framework of Businger–Dyer type similarity functions. The proposed scheme is valid for a wide range of roughness lengths of heat and momentum. The absolute relative error in the transfer coefficients of heat and momentum is found to be less than 1.5% as compared to those obtained from an iterative scheme for Businger–Dyer type similarity functions. An attempt has been made to extend this scheme to incorporate the similarity functions having a theoretically consistent free convection limit. Further, the performance of the scheme is evaluated using observational data from two different sites. The proposed scheme is simple, non-iterative and relatively more accurate compared to the schemes reported in the literature and can be used as a potential alternative to iterative schemes used in numerical models of the atmosphere.  相似文献   

19.
The Northern Hemisphere(NH) often experiences frequent cold air outbreaks and heavy snowfalls during La Ni?a winters. In 2022, a third-year La Ni?a event has exceeded both the oceanic and atmospheric thresholds since spring and is predicted to reach its mature phase in December 2022. Under such a significant global climate signal, whether the Eurasian Continent will experience a tough cold winter should not be assumed, despite the direct influence of mid-to high-latitude,large-scale atmospheric ...  相似文献   

20.
Summer and winter campaigns for the chemical compositions and sources of nonmethane hydrocarbons(NMHCs)and oxygenated volatile organic compounds(OVOCs)were conducted in Xi’an.Data from 57 photochemical assessment monitoring stations for NMHCs and 20 OVOC species were analyzed.Significant seasonal differences were noted for total VOC(TVOC,NMHCs and OVOCs)concentrations and compositions.The campaign-average TVOC concentrations in winter(85.3±60.6 ppbv)were almost twice those in summer(47.2±31.6 ppbv).Alkanes and OVOCs were the most abundant category in winter and summer,respectively.NMHCs,but not OVOCs,had significantly higher levels on weekends than on weekdays.Total ozone formation potential was higher in summer than in winter(by 50%)because of the high concentrations of alkenes(particularly isoprene),high temperature,and high solar radiation levels in summer.The Hybrid Environmental Receptor Model(HERM)was used to conduct source apportionment for atmospheric TVOCs in winter and summer,with excellent accuracy.HERM demonstrated its suitability in a situation where only partial source profile data were available.The HERM results indicated significantly different seasonal source contributions to TVOCs in Xi’an.In particular,coal and biomass burning had contributions greater than half in winter(53.4%),whereas traffic sources were prevalent in summer(53.1%).This study’s results highlight the need for targeted and adjustable VOC control measures that account for seasonal differences in Xi’an;such measures should target not only the severe problem with VOC pollution but also the problem of consequent secondary pollution(e.g.,from ozone and secondary organic aerosols).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号