首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Raised marine terraces and submerged insular shelves are used through an integrated approach as markers of relative sea level changes along the flanks of the Salina volcanic island (Aeolian Arc, southern Italy) for the purpose of evaluating its crustal vertical deformation pattern through time. Paleo sea level positions are estimated for the terrace inner margins exposed subaerially at different elevations and the erosive shelf edges recognized offshore at different depths. Compared with the eustatic sea levels at the main highstands (for the terraces) and lowstands (for the shelf edges) derived from the literature, these paleo sea level markers allowed us to reconstruct the interplay among different processes shaping the flanks of the island and, in particular, to quantify the pattern, magnitudes and rates of vertical movements affecting the different sectors of Salina since the time of their formation. A uniform uplift process at rates of 0.35 m ka−1 during the Last Interglacial is estimated for Salina (extended to most of the Aeolian Arc) as evidence of a regional (tectonic) vertical deformation affecting the sub-volcanic basement in a subduction-related geodynamic context. Before that, a dominant subsidence at rates of 0.39–0.56 m ka−1 is instead suggested for the time interval between 465 ka (MIS 12) and the onset of the Last Interglacial (MIS 5.5, 124 ka). By matching the insular shelf edges with the main lowstands of the sea level curve, a relative age attribution is provided for the (mostly) submerged volcanic centres on which the deepest (and oldest) insular shelves were carved, with insights on the chronological development of the older stages of Salina and the early emergence of the island. The shift from subsidence to uplift at the Last Interglacial suggests a major geodynamic change and variation of the stress regime acting on the Aeolian sub-volcanic basement. © 2019 John Wiley & Sons, Ltd.  相似文献   

2.
Stratigraphic and morphostructural analyses have been carried out in the Mt. Etna volcanic region (eastern Sicily) to investigate in detail the deformation events that have affected the sedimentary successions forming the substratum of the volcano. In the foredeep, Quaternary submarine sedimentation ended 600 ka ago when the whole area emerged in response to homogeneous regional uplift. The irregular distribution of a stratigraphic marker, recognized through the analysis of more than 250 borehole logs, suggests that local dynamics also affected the area. We identify both compressional tectonic dynamics and volcano-related tectonic activity, and discriminate among their associated deformations. In particular, we quantify the vertical deformation component of the compressional structures (thrusts and related folds) and recognize for the first time a vertical component of deformation whose pattern clearly indicates a doming process acting at Mt. Etna. The comparison between long-term and short-term rates suggests that the doming has acted consistently over space and time through the last 600 ka and provides clues to the source of uplift. This component, defined by a specific Quaternary sedimentary horizon, has been compared with vertical deformation obtained by analytical inversion of morphological substratum data, and localizes the source at a depth of ~16 km, at the mantle-crust transition. This uplift may be the consequence of hydration occurring in the altered ocean-like crust.  相似文献   

3.
Understanding deformation of active calderas allows their dynamics to be defined and their hazard mitigated. The Campi Flegrei resurgent caldera (Italy) is one of the most active and hazardous volcanoes in the world, characterized by post-collapse resurgence, eruptions, ground deformation, and seismicity. An original structural analysis provides an overview of the main fracture zones. NW-SE and NE-SW fractures (normal or transtensive faults and extensional fractures) predominate along the rim and within the caldera, suggesting a regional control, both during and after the collapses. While the NE-SW fractures are ubiquitous in the deposits of the last ∼37 ka, NW-SE fractures predominate in the last 4.5 ka, during resurgence. The most recently (<4.5 ka) strained area lies in the caldera center (Solfatara area), where the faults, with an overall ∼ENE-WSW extension direction, appear to be associated with the bending due to resurgence. Solfatara lies immediately to the east of the most uplifted part of the caldera (Pozzuoli area), where domes form and culminate both on the long-term (resurgence, accompanied by volcanic activity) and short-term deformation (1982–1984 bradyseism, accompanied by seismic and hydrothermal activity). Similar volcano-tectonic behavior characterizes the short- and long-term uplifts, and only the intensity of the tectonic and volcanic activity varies, being related to varying amounts of uplift. Seismicity and hydrothermal manifestations occur during the bradyseisms, with moderate uplift, while surface faulting and eruptions occur during resurgence, with higher uplift. The features observed at Campi Flegrei are found at other major calderas, suggesting consistent behavior of large magmatic systems.  相似文献   

4.
Panarea, characterized by gas unrest in 2002–2003, is the volcanic island with the least constrained structure in the eastern-central Aeolian Arc (Italy). Based on structural measurements, we define here its deformation pattern relative to the Arc. The main deformations are subvertical extension fractures (63% of data), normal faults (25%) and dikes (12%). The mean orientation of the extension fractures and faults is N38°E, with a mean opening direction of N135° ± 8°, implying extension with a moderate component of dextral shear. These data, matched with those available for Stromboli volcano (pure opening) and Vulcano, Lipari and Salina volcanoes (predominant dextral motions) along the eastern-central Arc, suggest a progressive westward rotation of the extension direction and an increase in the dextral shear. The dextral shear turns into compression in the western arc. The recent unrest at Panarea, coeval to that of nearby Stromboli, may also be explained by the structural context, as both volcanoes lie along the portion of the Arc subject to extension.  相似文献   

5.
 In volcanoes that store a significant quantity of magma within a subsurface summit reservoir, such as Kīlauea, bulk compression of stored magma is an important mode of deformation. Accumulation of magma is also accompanied by crustal deformation, usually manifested at the surface as uplift. These two modes of deformation – bulk compression of resident magma and deformation of the volcanic edifice – act in concert to accommodate the volume of newly added magma. During deflation, the processes reverse and reservoir magma undergoes bulk decompression, the chamber contracts, and the ground surface subsides. Because magma compression plays a role in creating subsurface volume to accommodate magma, magma budget estimates that are derived from surface uplift observations without consideration of magma compression will underestimate actual magma volume changes. Received: 30 September 1998 / Accepted: 27 July 1999  相似文献   

6.
On December 30, 2002, following an intense period of activity of Stromboli volcano (south Tyrrhenian Sea, Italy), complex mass failures occurred on the northwest slope of the mountain which also involved the underwater portion of the volcanic edifice for a total volume of about 2–3×107 m3. Two main landslides occurred within a time separation of 7 min, and both set tsunami waves in motion that hit the coasts of Stromboli causing injuries to three people and severe damage to buildings and structures. The tsunamis also caused damage on the island of Panarea, some 20 km to the SSE from the source. They were observed all over the Aeolian archipelago, at the island of Ustica to the west, along the northern Sicily coasts to the south as well as along the Tyrrhenian coasts of Calabria to the east and in Campania to the north. This paper presents field observations that were made in the days and weeks immediately following the events. The results of the quantitative investigations undertaken in the most affected places, namely along the coasts of Stromboli and on the island of Panarea, are reported in order to highlight the dynamics of the attacking waves and their impact on the physical environment, on the coastal structures and on the coastal residential zone. In Stromboli, the tsunami waves were most violent along the northern and northeastern coastal belt between Punta Frontone and the village of Scari, with maximum runup heights of about 11 m measured on the beach of Spiaggia Longa. Measured runups were observed to decay rapidly with distance from the source, typical of tsunami waves generated by limited-area sources such as landslides.  相似文献   

7.
 The Alban Hills, a Quaternary volcanic center lying west of the central Apennines, 15–25 km southeast of Rome, last erupted 19 ka and has produced approximately 290 km3 of eruptive deposits since the inception of volcanism at 580 ka. Earthquakes of moderate intensity have been generated there at least since the Roman age. Modern observations show that intermittent periods of swarm activity originate primarily beneath the youngest features, the phreatomagmatic craters on the west side of the volcano. Results from seismic tomography allow identification of a low-velocity region, perhaps still hot or partially molten, more than 6 km beneath the youngest craters and a high-velocity region, probably a solidified magma body, beneath the older central volcanic construct. Thirty centimeters of uplift measured by releveling supports the contention that high levels of seismicity during the 1980s and 1990s resulted from accumulation of magma beneath these craters. The volume of magma accumulation and the amount of maximum uplift was probably at least 40×106 m3 and 40 cm, respectively. Comparison of newer levelings with those completed in 1891 and 1927 suggests earlier episodes of uplift. The magma chamber beneath the western Alban Hills is probably responsible for much of the past 200 ka of eruptive activity, is still receiving intermittent batches of magma, and is, therefore, continuing to generate modest levels of volcanic unrest. Bending of overburden is the most likely cause of the persistent earthquakes, which generally have hypocenters above the 6-km-deep top of the magma reservoir. In this view, the most recent uplift and seismicity are probably characteristic and not precursors of more intense activity. Received: 15 April 1997 / Accepted: 9 August 1997  相似文献   

8.
Panarea volcano (Aeolian Islands, Italy) was considered extinct until November 3, 2002, when a submarine gas eruption began in the area of the islets of Lisca Bianca, Bottaro, Lisca Nera, Dattilo, and Panarelli, about 2.5 km east of Panarea Island. The gas eruption decreased to a state of low degassing by July 2003. Before 2002, the activity of Panarea volcano was characterized by mild degassing of hydrothermal fluid. The compositions of the 2002 gases and their isotopic signatures suggested that the emissions originated from a hydrothermal/geothermal reservoir fed by magmatic fluids. We investigate crustal deformation of Panarea volcano using the global positioning system (GPS) velocity field obtained by the combination of continuous and episodic site observations of the Panarea GPS network in the time span 1995–2007. We present a combined model of Okada sources, which explains the GPS results acquired in the area from December 2002. The kinematics of Panarea volcano show two distinct active crustal domains characterized by different styles of horizontal deformation, supported also by volcanological and structural evidence. Subsidence on order of several millimeters/year is affecting the entire Panarea volcano, and a shortening of 10−6 year−1 has been estimated in the Islets area. Our model reveals that the degassing intensity and distribution are strongly influenced by geophysical-geochemical changes within the hydrothermal/geothermal system. These variations may be triggered by changes in the regional stress field as suggested by the geophysical and volcanological events which occurred in 2002 in the Southern Tyrrhenian area.  相似文献   

9.
Ash-rich tephra layers interbedded in the pyroclastic successions of Panarea island (Aeolian archipelago, Southern Italy) have been analyzed and related to their original volcanic sources. One of these tephra layers is particularly important as it can be correlated by its chemical and morphoscopic characteristics to the explosive activity of Somma-Vesuvio. Correlation with the Pomici di Base eruption, that is considered one of the largest explosive events causing the demolition of the Somma stratovolcano, seems the most probable. The occurrence on Panarea island of fine ashes related to this eruption is of great importance for several reasons: 1) it allows to better constrain the time stratigraphy of the Panarea volcano; 2) it provides a useful tool for tephrochronological studies in southern Italy and finally 3) it allows to improve our knowledge on the distribution of the products of the Pomici di Base eruption giving new insights on the dispersion trajectories of fine ashes from plinian plumes. Other exotic tephra layers interbedded in the Panarea pyroclastic successions have also been found. Chemical and sedimentological characteristics of these layers allow their correlation with local vents from the Aeolian Islands thus constraining the late explosive activity of Panarea dome.  相似文献   

10.
Ischia is an active volcanic island in the Gulf of Naples whose history has been dominated by a caldera-forming eruption (ca. 55 ka) and resurgence phenomena that have affected the caldera floor and generated a net uplift of about 900 m since 33 ka. The results of new geomorphological, stratigraphical and textural investigations of the products of gravitational movements triggered by volcano-tectonic events have been combined with the information arising from a reinterpretation of historical chronicles on natural phenomena such as earthquakes, ground deformation, gravitational movements and volcanic eruptions. The combined interpretation of all these data shows that gravitational movements, coeval to volcanic activity and uplift events related to the long-lasting resurgence, have affected the highly fractured marginal portions of the most uplifted Mt. Epomeo blocks. Such movements, mostly occurring since 3 ka, include debris avalanches; large debris flows (lahars); smaller mass movements (rock falls, slumps, debris and rock slides, and small debris flows); and deep-seated gravitational slope deformation. The occurrence of submarine deposits linked with subaerial deposits of the most voluminous mass movements clearly shows that the debris avalanches impacted on the sea. The obtained results corroborate the hypothesis that the behaviour of the Ischia volcano is based on an intimate interplay among magmatism, resurgence dynamics, fault generation, seismicity, slope oversteepening and instability, and eruptions. They also highlight that volcano-tectonically triggered mass movements are a potentially hazardous phenomena that have to be taken into account in any attempt to assess volcanic and related hazards at Ischia. Furthermore, the largest mass movements could also flow into the sea, generating tsunami waves that could impact on the island’s coast as well as on the neighbouring and densely inhabited coast of the Neapolitan area.  相似文献   

11.
Brown Tuffs (BT) are volcaniclastic ash deposits prominently represented in the stratigraphic profiles of all the Aeolian Islands (and Capo Milazzo on the northern coast of Sicily). Detailed stratigraphy and tephrochronology together with available radiometric ages suggest that they were emplaced over a long time interval spanning from the end of the last interglacial period (ca. 80 ka BP) up to 4–5 ka BP (age of the overlying Punte Nere pyroclastic products on Vulcano). The most complete BT succession is documented on Lipari where 14 distinct and successive units are subdivided by the interbedding of widespread tephra layers, local volcanic products, paleosols and epiclastic deposits and the occurrence of local erosive surfaces. Inter-island occurrence of Ischia-Tephra (a widely known tephra layer in the Aeolian archipelago dated at 56 ka BP) and Monte Guardia pyroclastics from Lipari (dated at 22–20 ka BP) subdivides the BT succession in Upper (UBT), Intermediate (IBT) and Lower BT units (LBT), which can be correlated at regional level: the LBT was emplaced between 80 and 56 ka BP, the IBT between 56 and 22 ka BP and the UBT between 20 and 4–5 ka BP. On the basis of stratigraphy, similarity in lithology and textural features, morphology of glass fragments, composition and consistency of thickness and grain-size variations, UBT units correlate with Piano Grotte dei Rossi tuffs on Vulcano island. They were generated by pulsating hydromagmatic explosive activity giving rise to pyroclastic density currents spreading laterally from a source located inside the La Fossa caldera on Vulcano island. Composition is in agreement with this hypothesis since UBT compositional features match those of Vulcano magmas erupted in that period. The effect of co-ignimbrite ash clouds (or associated fallout processes from sustained eruptive columns) is seen to explain the presence of UBT in areas further away from the suggested source (e.g. Salina and Lipari islands and Capo Milazzo). The origin of UBT exposed on Panarea island is still a matter of debate, due to contrasting compositional data. Due to large uniformity of lithological, textural and componentry characters with respect to the UBT, the lower portions of the BT succession (LBT-IBT) are considered to be the result of recurrent, large scale hydromagmatic eruptions of similar type. Moreover, for the IBT units, the correlation with Monte Molineddo 3 pyroclastics of Vulcano island (on the basis of lithological, compositional and stratigraphic matching) again suggests source(s) related to the Vulcano plumbing system and located within the La Fossa Caldera.  相似文献   

12.
Environmental history of the northern continental shelf of the South China Sea during the last 280 ka BP, e.g. Marine Isotope Stages 1–8 (MIS 1–8) was reconstructed based on pollen record from the top 225m of ODP 1144 Site. During the interglacial periods, pollen assemblages are predominated by pine similar to those of the present day indicating that the environment of the interglacial periods was more or less close to that of today. Nevertheless, those from glacial periods are characterized by a large amount of herbaceous pollen, e.g.Artemisia, Gramineae, Cyperaceae, etc. inferring that grassland covered the merged continental shelf when the sea level lowered and the continental shelf was exposed. The exposed areas of the shelf were insignificant before MIS 5, but enlarged since MIS 4 and reached its maximum during MIS 2 according to ratios of pollen percentages between pine and herbs. The history of different exposure of the shelf can be compared with transgression records of the coastal areas of China and might result from neotectonic movement of Chinese continent. Some changes also took place in the components of grassland growing on the shelf during glaciations. Gramineae is the main element at MIS 8. ThenArtemisia increased upwards the profile and at last became the main component at the Last Glacial Maximum (MIS 2). Such changes in vegetation might be in response to cooler and drier climate.  相似文献   

13.
During the past 500 thousand years, Unzen volcano, an active composite volcano in the Southwest Japan Arc, has erupted lavas and pyroclastic materials of andesite to dacite composition and has developed a volcanotectonic graben. The volcano can be divided into the Older and the Younger Unzen volcanoes. The exposed rocks of the Older Unzen volcano are composed of thick lava flows and pyroclastic deposits dated around 200–300 ka. Drill cores recovered from the basal part of the Older Unzen volcano are dated at 400–500 ka. The volcanic rocks of the Older Unzen exceed 120 km3 in volume. The Younger Unzen volcano is composed of lava domes and pyroclastic deposits, mostly younger than 100 ka. This younger volcanic edifice comprises Nodake, Myokendake, Fugendake, and Mayuyama volcanoes. Nodake, Myokendake and Fugendake volcanoes are 100–70 ka, 30–20 ka, and <20 ka, respectively. Mayuyama volcano formed huge lava domes on the eastern flank of the Unzen composite volcano about 4000 years ago. Total eruptive volume of the Younger Unzen volcano is about 8 km3, and the eruptive production rate is one order of magnitude smaller than that of the Older Unzen volcano.  相似文献   

14.
Volcán Aucanquilcha, northern Chile, has produced ∼37 km3 of dacite (63–66 wt% silica), mainly as lavas with ubiquitous magmatic inclusions (59–62 wt% silica) over the last ∼1 million years. A pyroclastic flow deposit related to dome collapse occurs on the western side of the edifice and a debris avalanche deposit occurs on the eastern side. The >6,000-m high edifice defines a 9-km E–W ridge and lies at the center of a cluster of more than 15 volcanoes, the Aucanquilcha Volcanic Cluster, that has been active for at least the past 11 million years. The E–W alignment of vents is nearly orthogonal to the arc axis. A majority of Volcán Aucanquilcha was constructed during the first 200,000 years of eruption, whereas the last 800,000 years have added little additional volume. The peak eruptive rate during the edifice-building phases was ∼0.16 km3/ka and the later eruptive rate was ∼0.02 km3/ka. Comparable dacite volcanoes elsewhere show a similar pattern of high volcanic productivity during the early stages and punctuated rather than continuous activity. Volcán Aucanquilcha lavas are dominated by phenocrysts of plagioclase, accompanied by two populations of amphibole, biotite, clinopyroxene, Fe–Ti oxides and (or) orthopyroxene. Accessory phases include zircon, apatite and rare quartz and sanidine. One amphibole population is pargasite and the other is hornblende. The homogeneity of dacite lava from Volcán Aucanquilcha contrasts with the heterogeneity (52–66 wt% silica) at nearby Volcán Ollagüe, which has been active over roughly the same period of time. We attribute this homogeneity at Aucanquilcha to the thermal development of the crust underneath the volcano resulting from protracted magmatism there, whereas Volcán Ollagüe lacks this magmatic legacy.  相似文献   

15.
The cone-building volcanic activity and subsequent erosion of San Francisco Mountain, AZ, USA, were studied by using high-resolution digital elevation model (DEM) analysis and new 40Ar/39Ar dating. By defining remnants or planèzes of the volcano flanks in DEM-derived images, the original edifice can be reconstructed. We propose a two-cone model with adjacent summit vents which were active in different times. The reconstructed cones were 4,460 and 4,350 m high a.s.l., corresponding to ∼2,160 and 2,050 m relative height, respectively. New 40Ar/39Ar data allow us to decipher the chronological details of the cone-building activity. We dated the Older and Younger Andesites of the volcano that, according to previous mapping, built the stage 2 and stage 3 stratocones, respectively. The new 40Ar/39Ar plateau ages yielded 589–556 ka for the Older and 514–505 ka for the Younger Andesites, supporting their distinct nature with a possible dormant period between. The obtained ages imply an intense final (≤100 ka long) cone-building activity, terminating ∼100 ka earlier than indicated by previous K-Ar ages. Moreover, 40Ar/39Ar dating constrains the formation of the Inner Basin, an elliptical depression in the center of the volcano initially created by flank collapse. A 530 ka age (with a ±58.4 ka 2σ error) for a post-depression dacite suggests that the collapse event is geochronologically indistinguishable from the termination of the andesitic cone-building activity. According to our DEM analysis, the original cone of San Francisco Mountain had a volume of about 80 km3. Of this volume, ∼7.5 km3 was removed by the flank collapse and subsequent glacial erosion, creating the present-day enlarged Inner Basin, and ∼2 km3 was removed from the outer valleys by erosion. Based on volumetric analysis and previous and new radiometric ages, the average long-term eruption rate of San Francisco Mountain was ∼0.2 km3/ka, which is a medium rate for long-lived stratovolcanoes. However, according to the new 40Ar/39Ar dates for the last ≤100 ka period, the final stratovolcanic activity was characterized by a greater ∼0.3 km3/ka rate.  相似文献   

16.
A land gravity survey of the Aeolian volcanic arc, including 235 measurament points, has shown the occurrence of Bouguer gravity lows related to each island, except Panarea. As Bouguer anomalies of the southern Tyrrhenian sea are only slightly disturbed by the Aeolian arc, the anomalies found in the present survey are generally due to shallow causes. These lows can be ascribed to the effect of low density superficial volcanics thickening in correspondence of each volcano. For Vulcano-Lipari and Stromboli the occurrence of a shallow magmatic reservoir can be a concomitant cause. The Bouguer high related to Panarea and associated islets indicates shallow high density masses, probably solidified within a magmatic pipe.  相似文献   

17.
A detailed survey of morphological and biological markers of paleo-shorelines has been carried out along the coastal sector of Mt. Etna volcano (eastern Sicily, Italy), in order to better define causes and timing of vertical deformation. We have mapped markers of raised Holocene shorelines, which are represented by beach rocks, wave-cut platforms, balanid, vermetid and algal rims. The timing of coastal uplift has been determined by radiocarbon dating of shells collected from the raised paleo-shorelines and, to correctly assess the total amount of tectonic uplift of the coast during the Late Holocene, we have compared the elevation-age data of sampled shells to the local curve of Holocene sea-level rise. Taking into account the nominal elevation of the associated paleo-shorelines, an uplift rate of 2.5–3.0 mm/year has been estimated for the last 6–7 ka. This general process of uplifting is only locally interrupted by subsidence related to flank sliding of the volcanic edifice, measured at docks and other manmade structures, and by acceleration along the hinge of an active anticline and at the footwall of an active fault. Based on this new data we suggest more precise time–space constraints for the dynamics of the lower eastern flank of Mt. Etna volcano.  相似文献   

18.
 The postglacial eruption rate for the Mount Adams volcanic field is ∼0.1 km3/k.y., four to seven times smaller than the average rate for the past 520 k.y. Ten vents have been active since the last main deglaciation ∼15 ka. Seven high flank vents (at 2100–2600 m) and the central summit vent of the 3742-m stratocone produced varied andesites, and two peripheral vents (at 2100 and 1200 m) produced mildly alkalic basalt. Eruptive ages of most of these units are bracketed with respect to regional tephra layers from Mount Mazama and Mount St. Helens. The basaltic lavas and scoria cones north and south of Mount Adams and a 13-km-long andesitic lava flow on its east flank are of early postglacial age. The three most extensive andesitic lava-flow complexes were emplaced in the mid-Holocene (7–4 ka). Ages of three smaller Holocene andesite units are less well constrained. A phreatomagmatic ejecta cone and associated andesite lavas that together cap the summit may be of latest Pleistocene age, but a thin layer of mid-Holocene tephra appears to have erupted there as well. An alpine-meadow section on the southeast flank contains 24 locally derived Holocene andesitic ash layers intercalated with several silicic tephras from Mazama and St. Helens. Microprobe analyses of phenocrysts from the ash layers and postglacial lavas suggest a few correlations and refine some age constraints. Approximately 6 ka, a 0.07-km3 debris avalanche from the southwest face of Mount Adams generated a clay-rich debris flow that devastated >30 km2 south of the volcano. A gravitationally metastable 2-to 3-km3 reservoir of hydrothermally altered fragmental andesite remains on the ice-capped summit and, towering 3 km above the surrounding lowlands, represents a greater hazard than an eruptive recurrence in the style of the last 15 k.y. Received: 24 June 1996 / Accepted: 6 December 1996  相似文献   

19.
Holocene and Pleistocene tectonic deformation of the coast in the Mexico subudction margin is recorded by geomorphic and stratigraphic markers. We document the spatial and temporal variability of active deformation on the coastal Mexican subduction margin. Pleistocene uplift rates are estimated using wave-cut platforms at ca. 0.7?C0.9?m/ka on the Jalisco block coast, Rivera-North America tectonic plate boundary. We examine reported measurements from marine notches and shoreline angle elevations in conjunction with their radiocarbon ages that indicate surface uplift rates increasing during the Holocene up to ca. 3?±?0.5?m/ka. In contrast, steady rates of uplift (ca. 0.5?C1.0?m/ka) in the Pleistocene and Holocene characterize the Michoacan coastal sector, south of El Gordo graben and north of the Orozco Fracture Zone (OFZ), incorporated within the Cocos-North America plate boundary. Significantly higher rates of surface uplift (ca. 7?m/ka) across the OFZ subduction may reflect the roughness of subducting plate. Absence of preserved marine terraces on the coastal sector across El Gordo graben likely reflects slow uplift or coastal subsidence. Stratigraphic markers and their radiocarbon ages show late Holocene (ca. last 6?ka bp) coastal subsidence on the Guerrero gap sector in agreement with a landscape barren of marine terraces and with archeological evidence of coastal subsidence. Temporal and spatial variability in recent deformation rates on the Mexican Pacific coast may be due to differences in tectonic regimes and to localized processes related to subduction, such as crustal faults, subduction erosion and underplating of subducted materials under the southern Mexico continental margin.  相似文献   

20.
We present 24 40Ar/39Ar ages for the youngest volcanic products from the Alban Hills volcanic district (Rome). Combined with petrological data on these products, we have attempted to define the chronology of the most recent phase of activity and to investigate the magma evolution of this volcanic district. The early, mainly explosive activity of the Alban Hills spanned the interval from 561±1 to 351±3 ka. After approximately 50-kyr of dormancy, a mainly effusive phase of activity took place, accompanied by the strombolian activity of a small central edifice (Monte delle Faete). This second phase of activity spanned the interval 308±2 to 250±1 ka. After another dormancy period of approximately 50-kyr, a new, hydromagmatic phase of activity started at 200 ka at several centers located to the southwest of the Monte delle Faete edifice. After an initial recurrence period of approximately 50-kyr, which also characterized this new phase of activity, the longest dormancy period (approximately 80-kyr) in the history of the volcanic district preceded the start of the activity of the Albano and Giuturna centers at 70±1 ka. Results of our study suggest a quasi-continuous magmatic activity feeding hydromagmatic centers with a new acme of volcanism since around 70 ka. Based on data presented in this paper, we argue that the Alban Hills should not be considered an extinct volcanic district and a detailed re-assessment of the volcanic hazard for the area of Rome is in order. Published online: 4 April 2003 Editorial responsibility: J. Donnelly-Nolan  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号