首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We performed U–Th radioactive disequilibrium analyses of carbonate nodules and sediment samples recovered from methane seep sites off Joetsu, of the eastern margin of Japan Sea, to decipher the active period of the methane seep. The carbonates contain 230Th, part of which is located in detritus such as silicate and organics, at the time of precipitation. The initial 230Th renders accurate dating with U–Th radioactive disequilibrium method difficult. We assessed the feasibility of correction using radioactive disequilibrium data of ambient sediment to overcome this difficulty. A (230Th/232Th)–(234U/232Th) isochron drawn by three chips divided from a carbonate nodule (PC05-04-50) passed through data points of local sediments. We conclude that the problem of initial 230Th can be resolved by measurements of local sediments. Results show that carbonate nodules include local sediment as impurities. Furthermore, the results of trace element analyses such as Rb, Zr, Nb, REE, Pb, and Th also support the idea.In all, 18 carbonate samples were dated with correction of initial 230Th using the mean value of local sediment in this study. The U–Th correction ages show 12–35ka with an isochron age of 26 ± 3ka. Results indicate that during the time interval of U–Th ages, from 12ka to 35ka, environmental conditions must have been favorable for enhanced methane flux through sediment. The extensive methane flow period at 20ka accords with the lowest-stand sea level during the last glacial age. Results of this study also suggest that U–Th ages of carbonate are useful as a reliable chronometer with regard to methane seep activation. In order to acquire U–Th ages of carbonate at methane seep sites, however, it is important to evaluate the amount of initial 230Th accurately using the value of sediment.  相似文献   

2.
The geochronology of cave deposits in the Cradle of Humankind UNESCO World Heritage Site in South Africa provides a timeframe essential for the interpretation of its fossils. The uranium-lead (U–Pb) and uranium-thorium disequilibrium (U/Th) dating of speleothems, mostly flowstones that underlie and blanket the fossil-bearing sediments, have been effective in this sense, but U–Pb is limited by the requirement of ∼1 ppm U concentrations and low common Pb contents, and U/Th has a c. 500 ka limit of applicability. Here we report age results for calcite-aragonite speleothems obtained using a new combined uranium-thorium-helium ((U,Th)–He) and U/Th dating routine. We reproduced within analytical uncertainty, the published U–Pb or U/Th ages for (a) flowstone in three drill core samples in the range 2000–3000 ka, (b) a flowstone hand sample taken at surface with an age of 1800 ka, and (c) five underground flowstone samples in the range 100–800 ka. Calcite retentivity for He under cave conditions is thus demonstrated. In the few cases where helium loss was observed in speleothems, only some of the subsamples were affected, and to varying degrees, suggesting loss by lattice damage not related to diagenetic processes, rather than volume diffusion. In the 100 to 800 ka range, the combined U/Th disequilibrium and (U,Th)–He method also yielded reliable values for initial (230Th/238U) and (234U/238U) activity ratios. Importantly, most subsamples had high initial (230Th/238U) values, ranging from 1.0 to 19.7, although having low Th/U ratios. This is probably due to incorporation of Fe–Mn oxides-hydroxides dust, on which 230Th was previously adsorbed. Such samples are mostly not dateable by U/Th without the additional input from the He analysis. If not detected and corrected for, such high initial (230Th/238U) values can lead to inaccurate U/Th and U–Pb ages. Our study shows that the incorporation of He analysis in U/Th dating has broad potential application, with four methods for calculating the ages, in carbonates from different environments where U-Pb or U/Th dating would not work.  相似文献   

3.
Correct and precise age determination of prehistorical catastrophic rock‐slope failures prerequisites any hypotheses relating this type of mass wasting to past climatic regimes or palaeo‐seismic records. Despite good exposure, easy accessibility and a long tradition of absolute dating, the age of the 230 million m3 carbonate‐lithic Tschirgant rock avalanche event of the Eastern Alps (Austria) still is relatively poorly constrained. We herein review the age of mass‐wasting based on a total of 17 absolute ages produced with three different methods (14C, 36Cl, 234U/230Th). Chlorine‐36 (36Cl) cosmogenic surface exposure dating of five boulders of the rock avalanche deposit indicates a mean event age of 3.06 ± 0.62 ka. Uranium‐234/thorium‐230 (234U/230Th) dating of soda‐straw stalactites formed in microcaves beneath boulders indicate mean precipitation ages of three individual soda straws at 3.20 ± 0.26 ka, 3.04 ± 0.10 ka and 2.81 ± 0.15 ka; notwithstanding potential internal errors, these ages provide an ‘older‐than’ (ante quam) proxy for mass‐wasting. Based on radiocarbon ages (nine sites) only, it was previously suggested that the present rock avalanche deposit represents two successive failures (3.75 ± 0.19 ka bp , 3.15 ± 0.19 ka bp ). There is, however, no evidence for two events neither in surface outcrops nor in LiDAR derived imagery and drill logs. The temporal distribution of all absolute ages (14C, 36Cl, 234U/230Th) also does not necessarily indicate two successive events but suggest that a single catastrophic mass‐wasting took place between 3.4 and 2.4 ka bp . Taking into account the maximum age boundary given by reinterpreted radiocarbon datings and the minimum U/Th‐ages of calcite precipitations within the rock avalanche deposits, a most probable event age of 3.01 ± 0.10 ka bp can be proposed. Our results underscore the difficulty to accurately date catastrophic rock slope failures, but also the potential to increase the accuracy of age determination by combining methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Uranium-series dating is a critical tool in quaternary geochronology, including paleoclimate work, archaeology and geomorphology. Laser ablation (LA) methods are not as precise as most isotope dilution methods, but can be used to generate calendar ages rapidly, expanding the range of dating tools that can be applied to late Pleistocene carbonates. Here, existing LA methods are revisited for corals (cold- and warm-water) and speleothems spanning the last 343 thousand years (ka). Measurement of the required isotopes (238U, 234U, 230Th and 232Th) is achieved by coupling a laser system to a multi-collector inductively-coupled-plasma mass spectrometer (MC-ICPMS) using a combination of a single central ion counter and an array of Faraday cups. Each sample analysis lasts for ∼4.3 min, and fifty samples can be measured in 12 h with an automated set up, after a day of sample preparation. The use of different standard materials and laser systems had no significant effect on method accuracy. Uncertainty on the measured (230Th/238U) activity ratios ranges from 5.4% to 7.6% for (230Th/238U) ratios equal to 0.7 and 0.1 respectively. Much of this uncertainty can be attributed to the heterogeneity of the standard material (230Th/238U) at the length scale of LA. A homogeneous standard material may therefore improve measurement uncertainty but is not a requirement for age-screening studies. The initial (234U/238U) of coral samples can be determined within ∼20‰, making it useful as a first indicator of open-system behaviour. For cold-water corals, success in determination of (232Th/238U) – which can affect final age accuracy – by LA depended strongly on sample heterogeneity. Age uncertainties (2 sigma) ranged from <0.8 ka at 0–10 ka, ∼1.5 ka at 20 ka to ∼15 ka at 125 ka. Thus, we have demonstrated that U-series dating by LA-MC-ICPMS can be usefully applied to a range of carbonate materials as a straightforward age-screening technique.  相似文献   

5.
A rhyolitic lava flow from Basiluzzo islet (Aeolian Islands), has been analysed with the Fission tracks (FT) and 40Ar–39Ar methods on glass, and with the U/Th method on whole rock to constrain its age and to compare the behaviour of different dating methodologies on glass samples late Quaternary in age. Laser 40Ar–39Ar total fusion analyses were performed on populations of grains. Due to the low yields of radiogenic 40Ar the age data are characterised by very high errors. The weighted average of the ages of the whole population is 55.7 ± 8.7 ka (MSWD = 0.7). The isochron age calculated on all points is 40.6 ± 11.4 ka (MSWD = 0.6), with an initial 40Ar/36Ar ratio of 297.8 ± 1.8; the isochron is characterised by very little spread among points. The procedure named ‘point-counting technique’ was adopted in FT dating. Spontaneous track mean size resulted reduced by around 20% compared to induced tracks, which indicates that the determined FT age, 28.6 ± 3.6 ka, is a reduced age, due to a certain amount of track annealing. For this reason the plateau technique for correcting thermally lowered ages was applied. We determined a plateau age (commonly assumed as a reliable estimate of the glass formation age) of 43.4 ± 7.1 ka. Four sub-samples of whole rock from Basiluzzo lava flow have been analysed using U/Th isochron method. The 238U/232Th and 230Th/232Th activity ratios of sub-samples have been determined by alpha counting and plotted on an isochron diagram. The resulting age is 46 ± 8 ka and the 234U/238U activity ratios are always close to one, demonstrating that no significant processes of alteration have occurred. The relatively high error associated with the age is due to a low fractionation of U/Th ratio in the analysed whole rocks. The ages obtained with different methods, 43.4 ± 7.1 ka (FT plateau age), 40.6 ± 11.4 ka (40Ar–39Ar isochron age of all grains), and 46 ± 8 ka (U/Th isochron) agree at the 1σ level, excluding a Holocene age for this sample. This could be valuable information for the Department of Civil Protection because it seems to mitigate the potential risk for present volcanic activity in the area. All ages are affected by very high analytical errors, which are due to the characteristics of the material analysed. Young ages result in low tracks numbers (FT dating) and barely detectable amounts of radiogenic 40Ar in the presence of high atmospheric contamination (40Ar–39Ar dating). Stratigraphic successions without strict chronologic constraints might however benefit even from age data with low precision.  相似文献   

6.
Tephrochronology is one of the most effective ways to correlate and date Quaternary deposits across large distances. However, it can be challenging to obtain direct ages on tephra beds when they are beyond the limit of radiocarbon dating, do not contain mineral phases suitable for 40K-40Ar (or 40Ar/39Ar) dating, or suitable glass shards for fission-track dating are not available. Zircon U-Pb dating by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is an emerging technique for dating young (<1 Ma) tephra. Here, we demonstrate that LA-ICP-MS zircon U-Pb dating can produce reliable ages for key tephra beds found in Yukon and Alaska. We assessed five different techniques for calculating tephra maximum depositional ages from zircon U-Pb ages for eight tephra beds. Our preferred zircon U-Pb ages (reported with 2σ uncertainties), based on a Bayesian model for calculating maximum depositional ages, are broadly consistent with previously established chronology constructed from stratigraphy, paleomagnetism, and/or glass fission track and 40Ar/39Ar ages: Biederman tephra (178 ± 17 ka), HP tephra (680 ± 47 ka), Gold Run tephra (688 ± 44 ka), Flat Creek tephra (708 ± 43 ka), PA tephra (1.92 ± 0.06 Ma), Quartz Creek tephra (2.62 ± 0.08 Ma), Lost Chicken tephra (3.14 ± 0.07 Ma), and GI tephra (542 ± 64 ka). We also present newly revised glass fission-track and 40Ar/39Ar ages recalculated from previous determinations using updated ages for the Moldavite tektite and Fish Canyon Tuff standards, and updated K decay constants. For Pleistocene age zircon crystals, corrections for 230Th disequilibrium and common-Pb are significant and must be treated with caution. Similarly, apparent tephra ages are sensitive to the choice of method used to calculate a maximum depositional age from the assemblage of individual crystallization ages. This study demonstrates that LA-ICP-MS zircon U-Pb dating can be successfully applied to numerous Pliocene-Pleistocene Alaskan-Yukon tephra, providing confidence in applying this method to other stratigraphically important tephra in the region.  相似文献   

7.
Fluvial sediments of the middle Atbara River Valley, eastern Sudan, contain abundant vertebrate fossils and stone tools. Previous work described two sedimentary units, the Butana Bridge Synthem (BBS) and the Khashm El Girba Synthem (KGS), with three divisions each (BBS1-3 and KGS1-3, from bottom to top, respectively). 230Th/U dating on bivalve shells suggested an age of ∼126 and ∼92 ka for the basal KGS2 and basal KGS3, respectively, and mammalian biochronology in combination with magnetostratigraphy suggested an age of late Early to early Middle Pleistocene for the underlying BBS. To establish a detailed chronology of this fluvial sedimentary sequence, we collected 17 luminescence samples from both sides of the Atbara River close to the Butana Bridge. Quartz OSL dating was applied to samples from the upper part of the profile (upper KGS2 and KGS3), but the signal reached saturation within the upper ∼10 m of the sequence. To select a suitable feldspar signal to date older samples beyond the limit of the quartz OSL, a comparison of the quartz OSL, feldspar post-IR IRSL at 225 and 290 °C, and pulsed IRSL signal at 50 °C was conducted for a sample from KGS3. The result showed that only the fading corrected pulsed IRSL yielded an age consistent with the quartz OSL, and the post-IR IRSL signals (both at 225 and 290 °C) overestimated the quartz age significantly. We therefore selected the pulsed IRSL signal to date the older deposits. The luminescence ages indicate that the entire BBS - KGS sequence was deposited between 224 ± 23 ka and <17 ± 1 ka, corresponding to marine isotope stages (MIS) 7–2, significantly revising previous conclusions.  相似文献   

8.
Ocean Drilling Program Site 658 lies under the North African summer dust plume, and ought to be an ideal target for optically stimulated luminescence (OSL) dating, since the main clastic input is far-travelled Saharan dust. However, OSL ages for coarse silt-sized quartz (40–63 μm) are systematically lower than independent age estimates when dose rates are calculated using a model which assumes detrital 238U, 232Th and 40K and excess 230Th and 231Pa. Ages which are in good agreement with independent age control are obtained from the coarse silt samples when a correction for authigenic uranium uptake is incorporated into the dose rate model. Authigenic uranium uptake occurs under reducing conditions, which are common at the sediment–water interface, and some degree of authigenic uranium correction may be required for most marine sediments. Using this revised dose rate model, ages produced using fine silt-sized quartz (4–11 μm) are up to 100% older than both independent and coarse silt ages. In addition, the fine silt ages show a consistent pattern of age decrease with depth over 1.5 m of core. 230Th data from Site 658 indicate that this site receives 3 times more sediment laterally than vertically. It is concluded that the fine silt at Site 658 contains a substantial reworked component, making it unsuitable for dating. Conversely the coarse silt fraction, which settles through water at ∼40 times the rate of fine silt, appears to be derived from dust input over the site at the time of deposition. Since prominent nepheloid (cloudy) layers occur in various deep ocean basins, and the material suspended in these layers often consists of reworked fine silt-sized sediments, coarser material should be dated where possible.  相似文献   

9.
Although vertebrate fossils are commonly abundant in museum palaeontological collections, they are only rarely accompanied by contextual data (e.g., stratigraphic and taphonomic information) that allow them to be placed independently into reliable temporal frameworks critical for testing significant evolutionary and extinction hypotheses. Moreover, where critical samples do exist in such collections, sampling for direct geochronological analyses becomes a significant concern, especially where such sampling is destructive in nature. Here we apply a direct fossil dating, micro-drilling sampling approach that minimises damage to and destruction of precious museum specimens. We carried out a systematic U–Th dating study (n = 28 ages) of an isolated museum specimen of the extinct Palorchestes azael (megafaunal ‘marsupial tapir’) originally collected in 1977 from Tea Tree Cave, Chillagoe, northeastern Australia. We obtained 21 U–Th ages and constructed 230Th-age profiles across three teeth exposed in cross-section, using micro-drilling and thermal ionisation mass spectrometry. Individual sample masses were as little as 0.18 mg (U concentration 33–82 ppm), meaning that the sampling resulted in only minimal destruction of the specimen. The results show no evidence of U leaching, suggesting that the dates represent reliable minimum ages. For independent age control, we also dated calcite that had encrusted the sample (thus, providing a minimum age; n = 6) and an older calcite clast that had been reworked into the surrounding breccia at the time of burial (thus, providing a maximum age; n = 1). U–Th ages of the teeth are older than the calcite overgrowths and younger than the reworked calcite, consistent with their demonstrable relative age relationships. Collectively, the results unequivocally bracket the age of the fossil between 199.1 ± 8.9 ka and 137.4 ± 1.1 ka (2σ), adding another rare datum to inform the timing and geographic distribution of last occurrences of the species. The benefits of our dating approach of museum fossil specimens are threefold: 1) it is minimally destructive even compared with laser-ablation method; 2) the use of U vs. apparent age approach allows direct testing for potential U leaching as occasionally seen in fossil dating; and 3) the combination of fossil and associated speleothem dating provides the most robust means of securely bracketing the age of fossils that lack firm stratigraphic control.  相似文献   

10.
A block of sulfide crust collected from an active hydrothermal mound in an Archaean site (12°56.4′N, 143°37.9′E; depth ca. 3000 m) of the South Mariana Trough was dated using both 230Th/234U disequilibrium and electron spin resonance (ESR) methods to establish the growth duration. Eight subsamples from the sulfide crust were separated further into magnetic and non-magnetic fractions using a Franz isodynamic separator. Thirteen sulfide samples, soluble in nitric acid, yielded 230Th/234U ages of 0.3–2.2 ka. The magnetic fractions had significantly lower Th/U ratios, which enabled age determinations as precise as ±2% (2σ). The age distribution obtained for the section of sulfide crust analyzed is consistent with deposition of sulfide minerals from the upper surface of the crust to the inner side. The 230Th/234U ages of the sulfide minerals were compared with ESR ages of barites separated from 12 subsamples of the same sulfide crust. ESR ages of 0.27–1.3 ka show a spatial pattern broadly resembling that observed in 230Th/234U dating method. While there are some significant offsets, these results illustrate the potential of the two methods for use in investigation of the evolutional history of a hydrothermal system.  相似文献   

11.
We have measured 238U–206Pb, 235U–207Pb, and 232Th–208Pb ages on Quaternary zircons by laser ablation, single-collector, magnetic sector inductively coupled plasma mass spectrometry (LA-ICP-MS). To obtain reliable ages for Quaternary zircons, corrections for initial disequilibrium associated with deficits and excesses of both 230Th and 231Pa relative to secular equilibrium resulting from differential partitioning during zircon crystallization or source melting must be made. In contrast, the 232Th–208Pb decay system is clearly advantageous for samples affected by disequilibrium because the 232Th decay system lacks long-lived intermediate daughter isotopes. Conventionally, the initial disequilibrium for the 238U and 235U decay series has been determined by the distribution ratio between the melt and zircon (i.e., ƒTh/U = (Th/U)Zircon/(Th/U)Melt and ƒPa/U = (Pa/U)Zircon/(Pa/U)Melt). In our study, these correction factors were determined from comparison of the measured 238U–206Pb and 235U–207Pb ages with 232Th–208Pb ages obtained for three zircons of known eruption and, in some cases, zircon crystallization ages (Kirigamine Rhyolite, Bishop Tuff, and Toga Pumice). The resulting correction factors are ƒTh/U = 0.19 ± 0.14 and ƒPa/U = 3.66 ± 0.89 (Kirigamine Rhyolite), ƒTh/U = 0.24 ± 0.20 and ƒPa/U = 3.1 ± 1.2 (Bishop Tuff), and ƒTh/U = 0.28 ± 0.17 and ƒPa/U = 3.04 ± 0.99 (Toga Pumice). Although the uncertainties of these f values are relatively large, our results support the adequacy of the conventional approach for correction of initial disequilibrium. A recent study published results that apparently show zircon crystallization ages are younger than the eruption age of Bishop Tuff. It seems to be difficult to eliminate these discrepancies, even if the Th/U partitioning and disequilibrium generated during partial melting are taken into account for recalculation of its zircon age. However, magma chamber process and history of Bishop Tuff are too complex to obtain accurate zircon ages by U–Pb method. To overcome this, therefore, the Th–Pb zircon dating method is a key technique for understanding complex, pre-eruptive magma processes, and further efforts to improve its precision and accuracy are desirable.  相似文献   

12.
Lakes over the inner Tibetan Plateau (TP) are very sensitive to the regional environmental transformations and climate changes. Well-preserved lake sediments around these lakes provide critical geomorphological and sedimentary evidence that can be used to infer the past hydroclimate changes. In this study, a lacustrine section from a sandy shoreline (∼74 m above the modern lake) situated to the northwest of modern Dawa Co in the inner TP was investigated using both luminescence and radiocarbon dating methods. Our results demonstrated: (1) the quartz optically simulated luminescence (OSL) dating yielded much younger ages (∼4 ka) than that of the post-infrared IRSL (pIRIR) dating of the K-feldspar fraction; (2) fading test showed g-values ranging between 1.34 and 4.46%/decade for quartz OSL signals, which is considered to be responsible for the underestimation of the corresponding ages; (3) the AMS 14C age of the charcoal sample from the section is in line with the K-feldspar pIRIR225 ages, confirming the reliability of the pIRIR225 dates and the underestimation of the quartz OSL ages. The anomalous fading of quartz OSL signals and the consequent age underestimation have been reported in several other lakes on the TP, we presented here for the first time firm evidence of the phenomenon with the help of a robust independent control of AMS 14C age of the charcoal. Based on the pIRIR225 and AMS 14C ages, we conclude that Dawa Co underwent a prominent highstand during the early Holocene (∼9–7 ka), which was probably controlled by the large amounts of glacial meltwater input and the increased monsoonal precipitation.  相似文献   

13.
In this study, fine-grain quartz was used for luminescence dating for lava baked samples from different sites in Datong. Optical stimulated luminescence (OSL), thermal transferred OSL (TT-OSL)/recuperated OSL (Re-OSL) and thermoluminescence (TL) dating protocols were applied. For these samples, the OSL signals saturate at about 300–400 Gy, which limits their age to less than 100 ka based on their ambient dose rates. The TT-OSL/Re-OSL method has poor dose recovery. TL dating gives reliable results, and multiple-aliquot regenerative-dose TL method with sensitivity change correction based on the 325 °C TL peak of a test dose can be applied for samples up to 400 ka. The results indicate that the ages of the volcanoes in Datong are from 380 ka to 84 ka. The volcanic activity started earlier in the southeast area than those in the northwest part, which is consist with the literature data.  相似文献   

14.
The Three Gorges and Western Hubei area in the geographic central part of China was a potential migration corridor for early hominin and mammals linking South and North China during the Pleistocene period. Some key early hominin sites are known in this region where limestone cave and fissure sites are numerous but difficult to date as beyond the dating range of OSL and mass spectrometry U-series method. Here, we report radiometric dating study for such a hominin site, Meipu (Hubei Province), by coupled ESR and U-series dating of nine fossil teeth and cosmogenic 26Al/10Be burial dating of one quartz sediment. The burial age calculated by simple burial model (573 ± 266 ka) gives a minimum age constraint of the sediment. The fossil dating provided two main age groups at 541 ± 48 ka and 849 ± 39 ka, the older age group is in agreement with the U-series age (>630 ka) of the flowstone overlying the fossil layer and the paleomagnetic data which placed the Brunhes-Matuyama boundary in the fossil layer. The reason of this age difference is probably caused by the U-content discrepancy in the enamel of the dated fossil samples. This study exhibits the limitation of ESR/U-series fossil dating and the importance of using multiple dating approach when it is possible in order to identify the problematic ages.  相似文献   

15.
Reliable chronology is critical for reconstructing estuarine delta process. In this study, detailed chronological framework has been performed on a core HPQK01 (52 m in depth) from the central Pearl River delta (PRD) of China. Both quartz OSL and feldspar post-IR IRSL (pIRIR) methods for late Pleistocene sediments, as well as radiocarbon dating for Holocene sediments, were applied to date the core. Results show that quartz OSL ages range from 125 ± 18 ka to 58 ± 6 ka, and that all of them were minimum ages due to the OSL signal saturation. Feldspar pIR200IR290 protocol shows some overestimation in dose recovery test, with the recovered to the given ratio of 1.2, while a ratio of around 1 was obtained for feldspar pIR50IR250 signals. Robust ages have been obtained from feldspar fading corrected pIR50IR250 dating with ages ranging from 150 ± 17 ka to 98 ± 12 ka. AMS 14C results suggest that subtidal-intertidal zone was deposited during the middle Holocene from 8.21 ± 0.19 cal ka BP to 4.99 ± 0.25 cal ka BP. The sedimentology of core HPQK01 record two marine transgressive-regressive cycles. Based on the dating results, the lower fluvial sediment unit (T2) could be correlated to marine isotope stage (MIS) 6, and the lower marine unit (M2) was deposited during MIS 5. A sedimentary hiatus occurred with age range of from MIS 4 to MIS 2. Since middle Holocene, another marine stratum (M1) has been accumulated. Overall, our findings suggest that feldspar pIRIR dating method has the potential to establish the Quaternary chronostratigraphic framework of the PRD for samples with ages within 150 ka.  相似文献   

16.
Dust depositions are critical archives for understanding interior aridification and westerly climatic changes in Central Asia. Accurate and reliable dating of loess is very important for interpreting and correlating environmental records. There remains a disparity between luminescence ages and radiocarbon dating of late Quaternary loess from the Ili Basin in Central Asia. In this study, we establish a closely spaced quartz optically stimulated luminescence (OSL) chronology for the 20.5-m-thick Nilka loess section in the Ili Basin. Based on OSL ages, two intervals of higher mass accumulation rate occurred at 49–43 ka and 24–14 ka. We further compare these OSL ages with 23 accelerator mass spectrometry (AMS) 14C ages of bulk organic matter. The results indicate that the OSL and radiocarbon ages agree well for ages younger than ca. 25 14C cal ka BP. However, beyond 30 cal ka BP, there is no consistent increase in AMS 14C age with depth, while the OSL ages continue to increase. These differences confirm the observation that the AMS 14C ages obtained using conventional acid–base–acid (ABA) pretreatment are severely underestimated in other terrestrial deposits in Central Asia, which could be due to 2–4% modern carbon contamination. However, OSL dating is applicable for constructing an accurate chronology beyond 30 cal ka BP. We suggest caution when interpreting paleoenvironmental changes based on radiocarbon ages older than 25 cal ka BP.  相似文献   

17.
Late Pleistocene records of loess deposition are a critical archive for understanding terrestrial paleoenvironment changes in Central Asia. The age of loess is not well known for the deserts regions and surrounding high plateaus in Central Asia. Previous studies have shown that there remains a disparity between ages for loess deposition by luminescence and 14C dating. This study evaluates the potential of optically stimulated luminescence (OSL) to date a loess sequence resting on fluvial sands in the east Ili Basin, Central Asia. The single-aliquot regenerative-dose (SAR) protocol on coarse grain quartz was employed for equivalent dose determinations. The basal fluvial sand returned a secure OSL age, with low overdispersion value in equivalent doses (19 ± 2%) of ca. 36 ka and provides a close, but maximum age estimate (within 5 ka) on the initiation of loess deposition. However, the loess yielded high overdispersion values for equivalent doses and age reversals, coincident with diffuse paleosols; indicating that pedoturbation with loess deposition may be a dominant process. OSL ages between ca. 45 and 14 ka calculated using a maximum age model and OSL ages from other sites in the Basin suggests that the latest major period of loess deposition was between 70 and 10 ka ago. A future hypothesis to test based on these analyses is that there may be three periods of heightened loess deposition at ca. 45, 35 to 19 and 14 ka, when desert source areas to the west were particularly dry.  相似文献   

18.
Two laminated carbonate deposits from the wall of an underground aqueduct, built between the 13th and 15th century, in Paris, France, were studied to provide historical information about nearby human occupation and urban development. To obtain a robust chronology for these small (29 and 45 mm thick) and very young deposits (< 800 a based on the probable date of aqueduct construction), we adopted two methods: laminae counting and U–Th analysis. For laminae, we tested the hypothesis that their deposition is bi-annual. Concerning U–Th dating, the influence of inherited 230Th on calculated ages is discussed and detrital 230Th/232Th values for each speleothem was determined using stratigraphic constraints and found to be significantly different despite their close proximity. In these speleothems, that precipitated over approximately 300 a according to U–Th dating, the number of laminae is similar, and two laminae were deposited each year. The lamina-counting chronology was used to interpret the rare earth elements and yttrium content (REE + Y) variations measured by ICP-QMS as historical variations in water quality in relation with the anthropogenic use of these elements. There is a marked increase of the REE + Y concentrations since the second half of the twentieth century. A marked negative Ce anomaly in the NASC-normalized REE trend is evidenced, and is more pronounced for post 1850s. This anomaly could be due to prior precipitation of Ce4+ before the water reached the aqueduct, related to a high organic matter content of the water in oxidizing conditions. The increase in the Ce anomaly could indicate a second source of water, from a wastewater collection system or a modern water conveyance system. We thus demonstrate the interest of using these annual carbonate deposits in urban areas as a proxy for the history of urbanization or human activities.  相似文献   

19.
Palaeolimnological studies together with geomorphological investigations of exposed lacustrine sections on the Tibetan Plateau provided valuable palaeoclimate records. Radiocarbon dating is the most commonly used method for establishing chronologies of lake sediments. However, 14C dating of such sediments could be problematic due to the lack of organic matter or a reservoir effect, which commonly appears in radiocarbon ages of lacustrine sediments from the Tibetan Plateau. OSL dating is an alternative for dating the lake sediments and also provides the opportunity to independently test radiocarbon chronologies. The current study tries to compare OSL and 14C dating results in order to evaluate the reservoir effect of 14C dating, and then based on quartz OSL dating and stratigraphic analysis, to construct the chronostratigraphy of a lacustrine sedimentary sequence (TYC section), an offshore profile from Tangra Yumco lake on the southern Tibetan Plateau. Results suggest that: (1) it is possible to obtain robust OSL age estimates for these lake sediments and the OSL ages of the three samples range from ca. 7.6 ka to ca. 2.3 ka; (2) The discrepancy between the OSL and 14C ages is ca. 4–5 ka, which possibly results from the age overestimate of 14C dating due to a reservoir effect in the studied lake; (3) the chronostratigraphy of TYC section and sedimentological environmental analysis show a large lake with a lake level distinctively above the present during ca. 7.6–2.7 ka indicating a wet mid-Holocene in the study area.  相似文献   

20.
The numerical dating of megaflood sediments is a worldwide challenge, a fact that has impeded a full understanding of Late Quaternary dam-outburst flood processes that occurred along the river courses of the Tibetan Plateau. Optically stimulated luminescence (OSL) dating has been widely used on such sediments. Due to their short transportation distances prior to deposition, the OSL signals of megaflood sediments are often partially bleached, resulting in age overestimations. Here, we report on a comparison of OSL ages obtained using both quartz (4–11 μm FG; 90–125, 180–250 μm CG) and K-feldspar (180–250 μm CG) extracted from sediments taken from the Binghong-Bingnong Neolithic-Bronze Age site on the second Jinshan River terrace (T2), in Yunnan Province, southwestern China. Contrary to previous experience suggesting that CG fractions are usually better bleached than FG fractions prior to deposition, our results showed that the OSL ages for the FG quartz fraction were generally younger than those for the CG fraction. This would suggest that the two fractions may have come from different sources, and may have been subject to different geomorphological processes prior to deposition. FG quartz fractions may be suitable to define the maximum age of sediments located in alpine gorge regions. CG quartz fractions can be used by applying the minimum age model (MAM) to select relatively well-bleached grains yielded ages close to the ‘true’ burial ages of the sediments. The results showed that the post-IR IRSL225 ages of single grain K-feldspar were overestimated by > 3 ka, suggesting K-feldspar may not be suitable dating material for megaflood sediments <30 ka. The OSL dates suggest that the T2 terrace was formed ∼8.4 ka, that aeolian sediments were deposited during ∼2.6–1.5 ka, and that the megaflood event occurred after ∼1.5 ka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号