首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The investigated area around Sarvapuram represents a part of the Karimnagar granulite terrane of the Eastern Dharwar Craton, India. Garnet–bearing gneiss is hosted as enclaves, pods within granite gneiss and charnockite. It is largely made up of garnet, orthopyroxene, cordierite, biotite, plagioclase, K–feldspar, sillimanite and quartz. The peak metamorphic stage is represented by the equilibrium mineral assemblage i.e. garnet, orthopyroxene, cordierite, biotite, plagioclase, sillimanite and quartz. Breakdown of the garnet as well as preservation of the orthopyroxene–cordierite symplectite, formation of cordierite with the consumption of the garnet + sillimanite + quartz represents the decompressional event. The thermobarometric calculations suggest a retrograde P–T path with a substantial decompression of c. 3.0 kbar. The water activity(XH2 O) conditions obtained with the win TWQ program for core and symplectite compositions from garnet–bearing gneiss are 0.07–0.14 and 0.11–0.16 respectively. The quantitative estimation of oxygen fugacity in garnet–bearing gneiss reveal log f O2 values ranging from-11.38 to-14.05. This high oxidation state could be one of the reasons that account for the absence of graphite in these rocks.  相似文献   

2.
The Motuo area is located in the east of the Eastern Himalayan Syntaxis. There outcrops a sequence of high-grade metamorphic rocks, such as metapelites. Petrology and mineralogy data suggest that these rocks have experienced three stages of metamorphism. The prograde metamorphic mineral assemblages(M1) are mineral inclusions(biotite + plagioclase + quartz ± sillimanite ± Fe-Ti oxides) preserved in garnet porphyroblasts, and the peak metamorphic assemblages(M2) are represented by garnet with the lowest XSps values and the lowest XFe# ratios and the matrix minerals(plagioclase + quartz ± Kfeldspar + biotite + muscovite + kyanite ± sillimanite), whereas the retrograde assemblages(M3) are composed of biotite + plagioclase + quartz symplectites rimming the garnet porphyroblasts. Thermobarometric computation shows that the metamorphic conditions are 562–714°C at 7.3–7.4 kbar for the M1 stage, 661–800°C at 9.4–11.6 kbar for the M2 stage, and 579–713°C at 5.5–6.6 kbar for the M3 stage. These rocks are deciphered to have undergone metamorphism characterized by clockwise P-T paths involving nearly isothermal decompression(ITD) segments, which is inferred to be related to the collision of the India and Eurasia plates.  相似文献   

3.
The high-pressure (HP) eclogite in the western Dabie Mountain encloses numerous hornblendes, mostly barroisite. Opinions on the peak metamorphic P-T condition, PT path and mineral paragenesis of it are still in dispute. Generally, HP eclogite involves garnet, omphacite, hornblendes and quartz, with or without glaucophane, zoisite and phengite. The garnet has compositional zoning with XMg increase, XCa and XMn decrease from core to rim, which indicates a progressive metamorphism. The phase equilibria of the HP eclogite modeled by the P-T pseudosection method developed recently showed the following: (1) the growth zonation of garnet records a progressive metamorphic PT path from pre-peak condition of 1.9–2.1 GPa at 508°C–514°C to a peak one of 2.3–2.5 GPa at 528°C–531°C for the HP eclogite; (2) the peak mineral assemblage is garnet+omphacite+glaucophane+quartz±phengite, likely paragenetic with lawsonite; (3) the extensive hornblendes derive mainly from glaucophane, partial omphacite and even a little garnet due to the decompression with some heating during the post-peak stage, mostly representing the conditions of about 1.4–1.6 GPa and 580°C–640°C, and their growth is favored by the dehydration of lawsonite into zoisite or epidote, but most of the garnet, omphacite or phengite in the HP eclogite still preserve their compositions at peak condition, and they are not obviously equilibrious with the hornblendes.  相似文献   

4.
We report new petrological, phase equilibria modeling, and fluid inclusion data for pelitic and mafic granulites from Rundv?gshetta in the highest-grade region of the Neoproterozoic Lützow-Holm Complex(LHC),East Antarctica, and provide unequivocal evidence for fluid-rock interaction and high-temperature metasomatism in the presence of brine fluid. The studied locality is composed dominantly of well-foliated pelitic granulite(K-feldspar+quartz+sillimanite+garnet+ilmenite) with foliation-parallel bands and/or layers of mafic granulite(plagioclase+orthopyroxene+garnet+ilmenite+quartz+biotite). The boundary between the two lithologies is defined by thin(about 1 -20 cm in thick) garnet-rich layers with a common mineral assemblage of garnet+plagioclase+quartz+ilmenite+biotite ? orthopyroxene. Systematic increase of grossular and decrease of pyrope contents in garnet as well as decreasing Mg/(Fe+Mg) ratio of biotite from the pelitic granulite to garnet-rich rock and mafic granulite suggest that the garnet-rich layer was formed by metasomatic interaction between the two granulite lithologies. Phase equilibria modeling in the system NCKFMASHTO demonstrates that the metasomatism took place at 850 -860℃, which is slightly lower than the peak metamorphism of this region, and the modal abundance of garnet is the highest along the metapeliteemetabasite boundary(up to 40%), which is consistent with the field and thin section observations. The occurrence of brine(7.0 -10.9 wt.% Na Cleqfor ice melting or 25.1 -25.5 wt.% NaC leqfor hydrohalite melting) fluid inclusions as a primary phase trapped within plagioclase in the garnet-rich layer and the occurrence of Cl-rich biotite(Cl = 0.22 -0.60 wt.%) in the metasomatic rock compared to that in pelitic(0.15 -0.24 wt.%) and mafic(0.06-0.13 wt.%) granulites suggest infiltration of brine fluid could have given rise to the high-temperature metasomatism. The fluid might have been derived from external sources possibly related to the formation of major suture zones formed during the Gondwana amalgamation.  相似文献   

5.
http://www.sciencedirect.com/science/article/pii/S1674987112000060   总被引:2,自引:1,他引:1  
The Khondalite Belt within the Inner Mongolia Suture Zone(IMSZ) in the North China Craton is a classic example for Paleoproterozoic ultrahigh-temperature(UHT) metamorphism.Here we report new spinel-bearing metapelitic granulites from a new locality at Xumayao within the southern domain of the IMSZ.Petrological studies and thermodynamic modeling of the spinel+quartz-bearing assemblage shows that these rocks experienced extreme metamorphism at UHT conditions.Spinel occurs in two textural settings:(1) high XZn(Zn/(Mg+Fe+Zn)=0.071-0.232) spinel with perthitic K-feld-spar. sillimanite and quartz in the rock matrix;and(2) low XZn(0.045—0.070) spinel as inclusions within garnet porphyroblasts in association with quartz and sillimanite. Our phase equilibria modeling indicates two main stages during the metamorphic evolution of these rocks:(1) near-isobaric cooling from 975℃to 875℃around 8 kbar.represented by the formation of garnet porphyroblasts from spinel and quartz;and(2)cooling and decompression from 850℃.8 kbar to below 750℃.6.5 kbar,represented by the break-down of garnet.The spinel+quartz assemblage is considered to have been stable at peak metamorphisni.formed through the break-down of cordierite.indicating a near isothermal compression process.Our study confirms the regional extent of UHT metamorphisni within the IMSZ associated with the Paleoproterozoic subduction-collision process.  相似文献   

6.
The basement of the central Qilian fold belt exposed along the Minhe-Ledu highway consists of psammitic schists, metabasitic rocks, and crystalline limestone. Migmatitic rocks occur sporadically among psammitic schist and metabasitic rocks. The mineral assemblage of psammitic schist is muscovite + biotite + feldspar + quartz ± tourmaline ± titanite ± sillimanite and that of metabasitic rocks is amphibole + plagioclase + biotite ± apatite ± magnetite ± pyroxene ± garnet ± quartz. The migmatitic rock consists of leucosome and restite of various volume proportions; the former consists of muscovite + alkaline feldspar + quartz ± garnet ± plagioclase while the latter is either fragments of psammitic schist or those of metabasitic rock. The crystalline limestone consists of calcite that has been partly replaced by olivine. The olivine was subsequently altered to serpentine. Weak deformations as indicated by cleavages and fractures were imposed prominently on the psammitic schists, occasionally on me  相似文献   

7.
There are obvious differences in the mineral assemblage and metamorphic P-T conditions between the eclogites from the northern and southern parts of the eastern Dabie Mountains. Those from the northern part of the mountains are developed in Alpine peridotite and gneiss. They have a mineral assemblage of garnet+diopside with no quartz, and were formed at temperatures of 600℃-740℃. Those from the southern part are developed in gneiss and marble. They consist of garnet+omphacite+less quartz and were metamorphosed at temperatures in the range of 650°-800℃. These differences suggest that the former may be formed during the metamorphism of the deep subducted oceanic crust, whereas the latter may be genetically related to the subduction of the continental crust in this area.  相似文献   

8.
In the gneisses from the drillhole ZK2304 of the Donghai area, there have been preserved high- and ultrahigh-pressure metamorphic mineral assemblages, a series of complicated retrogressive textures and relevant metamorphic reactions. In addition to garnet, jadeititic-clinopyroxene and rutile, other peak stage (M2) minerals in some gneisses include phengite, aragonite and coesite or quartz pseudomorphs after coesite. The typical peak-stage mineral assemblages in gneisses are characterized by garnet + jadeitic-clinopyroxene + rutile + coesite, garnet + jadeitic-clinopyroxene + phengite + rutile ± coesite and garnet + jadeitic-clinopyroxene + aragonite + rutile ± coesite. The grossular content (Gro) in garnet is high and may reach 50. 1 mol%. The SiO2 content of phengite ranges from 54.37% to 54.84% with 3.54-3.57 p.f.u. Quartz pseudomorphs after coesite occur as inclusions in garnet.The gneisses of the Donghai area have been subjected to multistage recrystallization and exhibit a closewise P-T evolution  相似文献   

9.
According to the kinds of feldspar and rock associations in the Ai-rich gneisses, the low-pressure metamorphic crust of the Early Proterozoic granulite facies in central Inner Mongolia can be divided into southern and northern belts which are composed of six rock associations. They represent the relevant rock sequences of the layered metamorphic rock series formed under specific metamorphic temperature and pressure conditions as well as tectonic environments. Mineral inclusions and reaction texture have recorded that the medium-temperature high-pressure mineral assemblages are replaced by the high-temperature low-pressure mineral assemblages, thus, giving rise to: garnet+quartz→ hypersthene+plagioclase; kyanite→sillimanite and garnet+kyanite/sillimanite+quartz→cordierite. The deformation fabrics of the rocks, the change of mineral assemblages and the PTt path of metamorphism indicate that the contempranceous high-temperature normal-slip ductile shearing is the main cause of the formation of the low-pressure metamorphic crust of granulite facies. In the orogenic event, the co-action of thrusting and extension resulted in the change of a medium-temperature high-pressure metamorphic environment into the high-temperature low-pressure metamorphic conditions.  相似文献   

10.
Metapelite is one of the predominant rock types in the high-pressure–ultrahigh-pressure(HP–UHP) metamorphic belt of western Tianshan, NW China; however, the spatial and temporal variations of this belt during metamorphism are poorly understood. In this study, we present comparative petrological studies and 40Ar/39 Ar geochronology of HP and UHP pelitic schist exposed along the Habutengsu valley. The schist mainly comprises quartz, white mica, garnet, albite and bluish amphibole. In the Mn O–Na2O–Ca O–K2O–Fe O–Mg O–Al2O3–Si O2–H2O(Mn NCKFMASH) system, P–T pseudosections were constructed using THERMOCALC 333 for two representative pelitic schists. The results demonstrate that there was a break in the peak metamorphic pressures in the Habutengsu area. The northern schist has experienced UHP metamorphism, consistent with the presence of coesite in the same section, while the southern one formed at lower pressures that stabilized the quartz. This result supports the previous finding of a metamorphic gradient through the HP–UHP metamorphic belt of the Chinese western Tianshan by the authors. Additionally, phengite in the northern schist was modelled as having a Si content of 3.55–3.70(a.p.f.u.) at the peak stage, a value much higher than that of oriented matrix phengite(Si content 3.32–3.38 a.p.f.u.). This indicates that the phengite flakes in the UHP schist were subjected to recrystallization during exhumation, which is consistent with the presence of phengite aggregates surrounding garnet porphyroblast. The 40Ar/39 Ar age spectra of white mica(dominantly phengite) from the two schists exhibit similar plateau ages of ca. 315 Ma, which is interpreted as the timing of a tectonometamorphic event that occurred during the exhumation of the HP–UHP metamorphic belt of the Chinese western Tianshan.  相似文献   

11.
The Zhuxi deposit is a recently discovered W–Cu deposit located in the Jiangnan porphyry–skarn W belt in South China. The deposit has a resource of 3.44 million tonnes of WO3, making it the largest on Earth,however its origin and the evolution of its magmatic–hydrothermal system remain unclear, largely because alteration–mineralization types in this giant deposit have been less well-studied, apart from a study of the calcic skarn orebodies. The different types of mineralization can be classified into magnesian skarn, calcic skarn, and scheelite–quartz–muscovite(SQM) vein types. Field investigations and mineralogical analyses show that the magnesian skarn hosted by dolomitic limestone is characterized by garnet of the grossular–pyralspite(pyrope, almandine, and spessartine) series, diopside, serpentine,and Mg-rich chlorite. The calcic skarn hosted by limestone is characterized by garnet of the grossular–andradite series, hedenbergite, wollastonite, epidote, and Fe-rich chlorite. The SQM veins host highgrade W–Cu mineralization and have overprinted the magnesian and calcic skarn orebodies. Scheelite is intergrown with hydrous silicates in the retrograde skarn, or occurs with quartz, chalcopyrite, sulfide minerals, fluorite, and muscovite in the SQM veins.Fluid inclusion investigations of the gangue and ore minerals revealed the evolution of the ore-forming fluids, which involved:(1) melt and coexisting high–moderate-salinity, high-temperature, high-pressure(>450 ℃and >1.68 kbar), methane-bearing aqueous fluids that were trapped in prograde skarn minerals;(2) moderate–low-salinity, moderate-temperature, moderate-pressure(~210–300 ℃and ~0.64 kbar),methane-rich aqueous fluids that formed the retrograde skarn-type W orebodies;(3) low-salinity,moderate–low-temperature, moderate-pressure(~150–240 ℃and ~0.56 kbar), methane-rich aqueous fluids that formed the quartz–sulfide Cu(–W) orebodies in skarn;(4) moderate–low-salinity,moderate-temperature, low-pressure(~150–250 ℃and ~0.34 kbar) alkanes-dominated aqueous fluids in the SQM vein stage, which led to the formation of high-grade W–Cu orebodies. The S–Pb isotopic compositions of the sulfides suggest that the ore-forming materials were mainly derived from magma generated by crustal anatexis, with minor addition of a mantle component. The H–O isotopic compositions of quartz and scheelite indicate that the ore-forming fluids originated mainly from magmatic water with later addition of meteoric water. The C–O isotopic compositions of calcite indicate that the ore-forming fluid was originally derived from granitic magma, and then mixed with reduced fluid exsolved from local carbonate strata. Depressurization and resultant fluid boiling were key to precipitation of W in the retrograde skarn stage. Mixing of residual fluid with meteoric water led to a decrease in fluid salinity and Cu(–W) mineralization in the quartz–sulfide stage in skarn. The high-grade W–Cu mineralization in the SQM veins formed by multiple mechanisms, including fracturing, and fluid immiscibility, boiling, and mixing.  相似文献   

12.
The process and path of retrometamorphism of coesite have great significance to our understanding of the P-T tracks of the exhumation of ultrahigh-pressure metamorphic rocks. Most of the coesites in the eclogite from Shima, Anhui Province, the Dabie Mountains, China, are found degraded to quartz partly or wholly, with ruptures occurring in the shells, outside which include the coesite and quartz. According to the microscopic observation, the sample of coesite inclusion is composed of garnet, quartz and coesite, based on which we have built a three-shelled composite sphere model to compute the transition of coesite. Based on the crystal growth formulas and pressure conditions of the ruptures in the garnet, we have calculated the radius of the quartz sphere, which depends on temperature, and eventually drawn the different retrometamorphic paths for different retrometamorphism rates.  相似文献   

13.
The garnet muscovite granitic pegmatite of Um Solimate, in southern Egypt, represents a promising asset for strategic and economic metals, especially Bi–Ni–Ag–Nb–Ta as well as U and Th. The ore bodies occur as large masses, pockets and/or veins of very coarse-grained pegmatites, which consist mainly of K-feldspar, quartz and albite with subordinate muscovite, garnet, and biotite. Radiometric data revealed that eU- and eTh-contents of the pegmatites reach up to 39 ppm and 82 ppm, respectively. The studied pegmatites are enriched in primary U and Th minerals (uraninite, coffinite, thorianite and uranothorite) as well as Hf-rich zircon and monazite, which give rise to anomalous radioactive zones. Niobium-tantalium-bearing minerals (i.e. ferrocolumbite, microlite and uranopyrochlore), xenotime, barite, galena, fluorite, and apatite are ubiquitous, and, consequently, the studied pegmatites belong tothe Niobium–Yttrium–Fluorine-type (NYF) family. The noble metal mineralization includes argentite (Ag2S), native Ni and Bi as well as bismite and bismoclite. In addition, beryl and tourmaline are observed in pegmatites near the contact with metasediments and ultramafic bodies. The observed compositional variations of Ta/(Ta+Nb) and Mn/(Mn+Fe) ratios in columbite (0.08–0.45 and 0.11–0.57, respectively) and Hf contents in zircon (3.54–6.46 wt%) may reflectan extreme degree of magmatic fractionation leading to formation of the pegmatite orebody.  相似文献   

14.
The high-pressure (HP) eclogite in the western Dabie Mountain encloses numerous hornblendes,mostly barroisite.Opinions on the peak metamorphic P-T condition,PT path and mineral paragenesis of it are still in dispute.Generally,HP eclogite involves garnet,omphacite, hornblendes and quartz,with or without glaucophane,zoisite and phengite.The garnet has compositional zoning with X_(Mg) increase,X_(Ca) and X_(Mn) decrease from core to rim,which indicates a progressive metamorphism.The phase equilibria of the ...  相似文献   

15.
Danba (丹巴) domal metamorphic terrain belongs to Songpan (松潘)-Ganze (甘孜) orogenic belt, where typical Barrovian and Buchan metamorphic zones are preserved. The former included chlorite, biotite, garnet, staurolite, kyanite and sillimanite zones, while the latter only developed silimanite+muscovite and sillimanite+K-feldspar zones. Integrated study has been carried on metamorphic reactions of garnet production and consumption, P-T paths and P-T-X-M phase relation and thermal tectonic model for Danba metamorphic zones. Petrological textures in thin sections show that garnet production and consumption in kyanite-sillimanite zone is mainly attributed to ChI+Ms+PI+Q=Grt+Bt+H2O and kyanite=sillimanite respectively. Based on mineral compositions, the geothermobarometry gives an average P, T condition of (4.9±0.3)×108 Pa, 543±30℃ for the first growth stage of the garnet and (5.8±0.3)±108 Pa, 534±29 ℃ for the second stage of garnet growth respectively. Anti-counter clockwise P-T paths were drawn using Gibbs method by NCMnKFMASH system for sample G98686 in the kyanite zone. The P-T-X-M modeling for the first mineral assemblages shows that the prediction is similar to the measured values in gossular, almandine and spessartine but mole fraction of pyrope and Fe/(Fe+Mg) deviated far from the contours; while that for the second mineral assemblages exhibits that the prediction is consistent with the measured value of pyrope, grossular content and Fe/(Fe+Mg) of garnet. A thermal tectonic model that there are at least three structure levels across the thrnst-decollement zones is presented according to the P-T paths, metamorphic grades and deformation styles for the staurolite-kyanite zone of the Barroviau type metamorphism, which will provide some constraints for the evolution of the nappe complex.  相似文献   

16.
The North Qaidam orogenic belt(NQOB) is generally considered to be an early Paleozoic ultrahigh pressure metamorphic belt,but increasing reports of the Neoproterozoic magmatic and metamorphic events indicate that the NQOB probably also experienced the assembly of the Rodinia.However,the Neoproterozoic evolution of the NQOB is not well constrained due to the sparse records and ambiguous nature of the Neoproterozoic metamorphism.In order to reveal the multi-orogenic history of the NQOB,an integrated study of petrology,phase equilibrium modelling and geochronology was conducted on an epidote eclogite and host garnet mica schist from the Yuka–Luofengpo terrane.New zircon and monazite U–Pb ages show that the protolith of the garnet mica schist was deposited during 994–920 Ma and experienced Neoproterozoic(920–915 Ma) and early Paleozoic(451–447 Ma) polyphase metamorphism together with the enclosed eclogite.Relic omphacite inclusions were first identified in garnet and early Paleozoic zircon domains from the garnet mica schist,which provide solid evidence for the early Paleozoic eclogite facies metamorphism of the mica schist.Similar early Paleozoic peak P–T conditions of 27.4 kbar/613–670 ℃ and 30.2–30.8 kbar/646–655 ℃ were obtained for the garnet mica schist and enclosed eclogite,respectively,indicating that eclogites and their host paragneisses in this region underwent continental deep subduction as a coherent metamorphic terrane in early Paleozoic.The peak P–T conditions of the Neoproterozoic metamorphism were roughly constrained at 7.7–12.0 kbar and 634–680 ℃ for the garnet mica schist,based on stability field of mineral inclusions in Neoproterozoic zircons domains in P–T pseudosection,the relic garnet core composition and Ti-in-zircon thermometer.The high thermal gradients(16–37 ℃/km) defined by presently our and previously reported P–T conditions indicate that the Neoproterozoic metamorphism likely occurred in continental collision setting at 945–890 Ma.Since the Grenvillian syn-orogenic granitic magmatism and metamorphism(ca.1.0–0.9 Ga) in the NQOB are much younger than the Grenvillian orogeny in the central part of Rodinia,the Qaidam Block was probably located at the north margin of Rodinia in Neoproterozoic.  相似文献   

17.
The Dayingezhuang gold deposit, hosted mainly by Late Jurassic granitoids on Jiaodong Peninsula in eastern China, contains an estimated 170 t of gold and is one of the largest deposits within the Zhaoping fracture zone. The orebodies consist of auriferous altered pyrite–sericite–quartz granites that show Jiaojia-type (i.e., disseminated and veinlet) mineralization. Mineralization and alteration are structurally controlled by the NE- to NNE-striking Linglong detachment fault. The mineralization can be divided into four stages: (K-feldspar)–pyrite–sericite–quartz, quartz–gold–pyrite, quartz–gold–polymetallic sulfide, and quartz–carbonate, with the majority of the gold being produced in the second and third stages. Based on a combination of petrography, microthermometry, and laser Raman spectroscopy, three types of fluid inclusion were identified in the vein minerals: NaCl–H2O (A-type), CO2–H2O–NaCl (AC-type), and pure CO2 (PC-type). Quartz crystals in veinlets that formed during the first stage contain mainly AC-type fluid inclusions, with rare PC-type inclusions. These fluid inclusions homogenize at temperatures of 251°C–403°C and have low salinities of 2.2–9.4 wt% NaCl equivalent. Quartz crystals that formed in the second and third stages contain all three types of fluid inclusions, with total homogenization temperatures of 216°C–339°C and salinities of 1.8–13.8 wt% NaCl equivalent for the second stage and homogenization temperatures of 195°C–321°C and salinities of 1.4–13.3 wt% NaCl equivalent for the third stage. In contrast, quartz crystals that formed in the fourth stage contains mainly A-type fluid inclusions, with minor occurrences of AC-type inclusions; these inclusions have homogenization temperatures of 106°C–287°C and salinities of 0.5–7.7 wt% NaCl equivalent. Gold in the ore-forming fluids may have changed from Au(HS)0 as the dominant species under acidic conditions and at relatively high temperatures and fO2 in the early stages, to Au(HS)2– under neutral-pH conditions at lower temperatures and fO2 in the later stages. The precipitation of gold and other metals is inferred to be caused by a combination of fluid immiscibility and water–rock interaction.  相似文献   

18.
LA-ICP-MS analysis of molybdenite from the Sar Cheshmeh porphyry Cu-Mo deposit(PCD), Iran, shows moderate concentration of Re(average ~207 ppm) and low concentration of chalcogenides(average of Pb + Te + Bi, ~31 ppm) as well as metalloids(average of As + Sb + Ge, ~4.5 ppm). The early-formed quartz–molybdenites associated with potassic alteration are characterized by moderately low concentration of Re(21–215 ppm with an average of 83 ppm), whereas the transitional quartz–molybdenite veins related to the sericitic stage of mineralization contain more Re(62–465 ppm, with an average of 207 ppm). In contrast, the late-formed quartz–molybdenite veins associated with phyllic alteration show the highest concentration of Re(up to 1273 ppm with an average of 395 ppm). Gradual increase in Re content of molybdenites deposited throughout the evolution of the porphyry system is probably related to elevated ?O2 and acidic conditions of the ore fluids governing the transitional and late stage of mineralization, when compared to the moderately low ?O2 and basic conditions of the ore fluids precipitating the low-Re molybdenites associated with potassic alteration. The mixed mantle/crustal source of the ore-related magma and its fractionated composition in Sar Cheshmeh are consistent with magmatic conditions for the formation of Mo-rich and Re-poor PCDs in the world.  相似文献   

19.
The Bangbu gold deposit is a large orogenic gold deposit in Tibet formed during the AlpineHimalayan collision. Ore bodies(auriferous quartz veins) are controlled by the E-W-trending Qusong-Cuogu-Zhemulang brittle-ductile shear zone. Quartz veins at the deposit can be divided into three types: pre-metallogenic hook-like quartz veins, metallogenic auriferous quartz veins, and postmetallogenic N-S quartz veins. Four stages of mineralization in the auriferous quartz veins have been identified:(1) Stage S1 quartz+coarse-grained sulfides,(2) Stage S2 gold+fine-grained sulfides,(3) Stage S3 quartz+carbonates, and(4) Stage S4 quartz+ greigite. Fluid inclusions indicate the oreforming fluid was CO_2-N_2-CH_4 rich with homogenization temperatures of 170–261°C, salinities 4.34–7.45 wt% Na Cl equivalent. δ~(18)Ofluid(3.98‰–7.18‰) and low δDV-SMOW(-90‰ to-44‰) for auriferous quartz veins suggest ore-forming fluids were mainly metamorphic in origin, with some addition of organic matter. Quartz vein pyrite has δ~(34)SV-CDT values of 1.2‰–3.6‰(an average of 2.2‰), whereas pyrite from phyllite has δ~(34)SV-CDT 5.7‰–9.9‰(an average of 7.4‰). Quartz vein pyrites yield 206Pb/204 Pb ratios of 18.662–18.764, 207Pb/204 Pb 15.650–15.683, and ~(208)Pb/204 Pb 38.901–39.079. These isotopic data indicate Bangbu ore-forming materials were probably derived from the Langjiexue accretionary wedge. 40Ar/39 Ar ages for sericite from auriferous sulfide-quartz veins yield a plateau age of 49.52 ± 0.52 Ma, an isochron age of 50.3 ± 0.31 Ma, suggesting that auriferous veins were formed during the main collisional period of the Tibet-Himalayan orogen(~65–41 Ma).  相似文献   

20.
《地学前缘(英文版)》2019,10(6):2007-2019
Madagascar,a major fragment of Gondwana,is mainly composed of Precambrian basenent rocks formed by Mesoarchean to Neoproterozoic tectono-thernial events and recording a Pan-African metamorphic overprint.The Ranotsara Shear Zone in southern Madagascar has been correlated with shear zones in southern India and eastern Africa in the reconstruction of the Gondwana supercontinent.Here we present detailed petrology,mineral chemistry,metamorphic P-T constraints using phase equilibrium modelling and zircon U-Pb geochronological data on high-grade metamorphic rocks from Ihosy within the Ranotsara Shear Zone.Garnet-cordierite gneiss from Ihosy experienced two stages of metamorphism.The peak mineral assemblage is interpreted as garnet+sillimanite+cordierite+quartz+plagioclase+Kfeldspar+magnetite+spinel+ilmenite,which is overprinted by a retrograde mineral assemblage of biotite+garnet+cordierite+quartz+plagioclase+K-feldspar+magnetite+spinel+ilmenite.Phase equilibria nodelling in the system Na_2 O-CaO-K_2 O-FeO-MgO-Al_2 O_3-SiO_2-H_2 O-TiO_2-Fe_2 O_3(NCKFMASHTO) indicates peak metamorphic conditions of 850-960 C and 6.9-77 kbar,and retrograde P-Tconditions of 740 C and 4.8 kbar,that define a clockwise P-T path.Near-concordant ages of detrital zircon grains in the garnet-cordierite gneiss dominantly exhibit ages between 2030 Ma and 1784 Ma,indicating dominantly Paleoproterozoic sources.The lower intercept age of 514±33 Ma probably indicates the timing of high-grade metamorphism,which coincides with the assembly of the Gondwana supercontinent.The comparable rock types,zircon ages and metamorphic P-T paths between the Ranotsara Shear Zone and the Achankovil Suture Zone in southern India support an interpretation that the Ranotsara Shear Zone is a continuation of the Achankovil Suture Zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号