首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We investigated how dustfall flux (DF) and dust particle size (DPS) were affected by geomorphic conditions, wind speed, and precipitation using data from 27 sites in northern China. The sites with the greatest DF and greatest median diameter of dustfall (MDD) were primarily in desert regions and had extensive mobile sands. DF and MDD were lowest in agricultural regions, which had low levels of coarse particles because of human land use and high vegetation coverage that restrained blowing sand. DF values were higher and MDD values were lower in the western agricultural region than in the eastern agricultural region because the former is closer to desert regions and contains more fine dust that has traveled far. In regions with extensive desertified lands, DF values were lower than those in desert regions, and MDD values were greater than in agricultural regions, possibly due to coarsening of soil texture by desertification processes combined with higher vegetation coverage and soil moisture than in desert regions, thereby restraining blowing sand. Although high DF and MDD always coincided spatially with strong winds and low precipitation, the strong winds and low precipitation did not always mean high DF and MDD. High DF also coincided temporally with periods of low precipitation, but low precipitation did not always mean high DF. Thus, although the spatial trends in DF and DPS were controlled mostly by geomorphic conditions, and monthly trends in DF were controlled mainly by wind speed, weak wind and high precipitation can restrain the blowing sand at certain times and locations. Seasonal changes in DPS may be controlled simultaneously by geomorphic conditions, meteorological factors, and distance from source areas, not solely by the winter monsoon.  相似文献   

2.
The extensive debris that covers glaciers in the ablation zone of the Himalayan region plays an important part in regulating ablation rates and water availability for the downstream region. The melt rate of ice is determined by the amount of heat conducted through debris material lying over the ice. This study presents the vertical temperature gradients, thermal properties in terms of thermal diffusivity and thermal conductivity, and positive degree-day factors for the debris-covered portion of Lirung Glacier in Langtang Valley, Nepal Himalaya using field-based measurements from three different seasons.Field measurements include debris temperatures at different debris thicknesses, air temperature, and ice melt during the monsoon(2013), winter(2013), and pre-monsoon(2014) seasons. We used a thermal equation to estimate thermal diffusivity and thermal conductivity, and degree-day factors(DDF) were calculated from cumulative positive temperature and ice melt of the measurement period. Our analysis of debris temperature profiles at different depths of debris show the daily linear gradients of-20.81 °C/m, 4.05 °C/m, and-7.79 °C/m in the monsoon, winter, and pre-monsoon seasons, respectively. The values of thermal diffusivity and thermal conductivity in the monsoon season were 10 times greater than in the winter season. The large difference in these values is attributed to surface temperature and moisture content within the debris. Similarly, we found higher values of DDFs at thinner debris for the pre-monsoon season than in the monsoon season although we observed less melting during the pre-monsoon season. This is attributed to higher cumulative temperature during the monsoon season than in the pre-monsoon season. Our study advances our understanding of heat conductivity through debris material in different seasons, which supports estimating ice melt and discharge from glacierized river basins with debris-covered glaciers in the Himalayan region.  相似文献   

3.
The Salawusu Formation of Milanggouwan section in Salawusu River Valley includes 7 layers of paleo-mobile dune sands, and 4 layers of paleo-fixed and semi-fixed dune sands. Their structures have been observed and their grain size, surface textural features and several main chemical elements have been analyzed. The results showed that: 1) Some of the aeolian structural characteristics of these dune sands are similar to that of the recent dune sands. 2) They are also similar to the recent dune sands in grain size components, and parameters of Mz,σ, Sk and Kg, as well as in several main chemical components. 3) The scattergrams of Mz-σ and SiO2-Al2O3+TOFE and the probability curves of grain size showed that these paleo-dune sands are different from paleosols and fluvio-lacustrine facies, but are consistency with recent dune sands. 4) Quartz sands have well roundness and surface textural features such as dish-shaped pits, crescent-shaped pits, pockmarked pits, upturned cleavage plates, siliceous precipitates and siliceous crevasses, indicating that they had been carried for a long time by the wind. As the 11 layers of paleo-dune sands possess the aeolian characteristics in structure, grain size, surface textural features and chemical elements, the origin of their formation should be attributed to eolation.  相似文献   

4.
西南地区冬季气温和降水的时空变化   总被引:2,自引:0,他引:2  
In recent years,the socio-economic impacts of winter extreme climate events have underscored the importance of winter climate anomalies in Southwest China (SWC).The spatio-temporal variability of surface air temperature (SAT) and precipitation in SWC and their possible causes have been investigated in this paper based on observational data from 1961 to 2010.The results indicate that SAT anomalies in SWC have two dominate modes,one is homogenous,and the other a zonal dipole.The former is caused by the anomalies of East Asian winter monsoon;the latter arises from the anomalies of both subtropical west Pacific high and regional cold air in lower troposphere.The most dominant mode of precipitation anomalies in SWC is homogenous and it has a high correlation with northern hemisphere annular mode (NAM,AO).Neither NAM nor ENSO has significant impacts on SAT in SWC.The anomalies of NAM are associated with the anomalies of tropical circulations,and there-fore precipitation over the SWC.When NAM is in positive (negative) phase,the winter pre-cipitation is more (less) than normal in SWC.Winter precipitation increase over the whole SWC is associated with the El Nino.However,during La Nina winter,the pattern is not uni-form.There is an increase in precipitation over the central parts and a decrease in western and eastern parts of SWC.The severe drought in SWC in winter 2010 is more likely caused by anomalies of NAM,not El Nino.  相似文献   

5.
The variation of the Asian winter monsoonal strength has seriously affected the climate and environmental conditions in the Asian monsoonal region, and even in marginal islands and the ocean in the East Asian region. However, relevant understanding remains unclear due to the lack of suitable geological materials and effective proxies in the key study areas. Here, we present a grain-size record derived from the palaeo-aeolian sand dune in the southeastern Mu Us Desert, together with other proxies and OSL dating, which reflect a relatively detailed history of the winter monsoon and abrupt environmental events during the past 4.2 ka. Our grain-size standard deviation model indicated that >224 μm content can be considered as an indicator of the intensity of Asian winter monsoon, and it shows declined around 4.2-2.1 ka, enhanced but unstable in 2.1-0.9 ka, and obviously stronger since then. In addition, several typical climate events were also documented, forced by the periodic variation of winter monsoonal intensity. These include the cold intervals of 4.2, 2.8, 1.4 ka, and the Little Ice Age (LIA), and relatively warm sub-phases around 3.0, 2.1, 1.8 ka, and the Medieval Warm Period (MWP), which were roughly accordant with the records of the aeolian materials, peat, stalagmites, ice cores, and sea sediments in various latitudes of the Northern Hemisphere. Combined with the previous progresses of the Asian summer monsoon, we preliminarily confirmed a millennial-scale anti-correlation of Asian winter and summer monsoons in the Late Holocene epoch. This study suggests that the evolution of the palaeo-aeolian sand dune has the potential for comprehending the history of Asian monsoon across the desert regions of the modern Asian monsoonal margin in northern China.  相似文献   

6.
The Hunshandake Desert is located at the northern edge of the East Asian monsoon region,and its natural environment is sensitive to monsoonal changes.Geologic records suggest that desert evolution corresponding to climate change had experienced several cycles in the Holocene,and the evolutionary process can be distinguished by four dominant stages according to changing trends of the environment and climate.(1) Holocene Ameliorative Period(11.0-8.7 cal ka B.P.),when the desert area gradually shrank following an approaching warm-wet climate and strengthening summer monsoon.(2) Holocene Optimum(8.7-6.0 cal ka B.P.),when the majority of moving sand dunes were stabilized and vegetation coverage quickly expanded in a suitable warm-wet climate and a strong summer monsoon.(3) Holocene Multivariate Period(6.0-3.5 cal ka B.P.),during a low-amplitude desert transformed between moving and stabilized types under alternating functions of cold-dry with warm-wet climate,and winter monsoon with summer monsoon.(4) Holocene Decay Period(since 3.5 cal ka B.P.),when the desert area tended to expand along with a weakened summer monsoon and a dry climate.  相似文献   

7.
Knowledge of moisture sources is of great significance for understanding climatic change and landscape evolution in desert environments. In this paper, we aim to clarify moisture origins for the Alashan(Alxa) Sand Seas(ALSS) in western Inner Mongolia and their transport pathways during the Last Glacial Maximum(LGM) and the mid-Holocene using modern analogues and paleoclimatic simulations. Precipitation data for the period 1959–2015 from meteorological stations in the study area and wind and specific humidity data from the European Center for Medium-Range Weather Forecasts(ECMWF) daily reanalysis were adopted to determine the moisture sources of summer precipitation in the ALSS. In addition paleoclimate simulations under PMIP3/CMIP5 protocols were used to detect the atmospheric circulation and precipitation at 21 ka BP and 6 ka BP over the ALSS. We also reviewed paleoclimate records from the ALSS to acquire a semi-quantitative reconstruction of the moisture history during the late Pleistocene and Holocene. Our results suggest that the summer monsoon transported water vapor from the Indian Ocean and the South China Sea to the ALSS during July and August, causing increased precipitation. The dominant moisture source was from the southwest monsoon, while the East Asian summer monsoon also partly contributed to precipitation in the ALSS. The increased humidity during the period 8.2–4.2 ka BP in the ALSS, as derived from both climate simulation outputs and sedimentary records, was caused by monsoons according to the outputs of simulations. At 21 ka BP, the moisture sources of the ALSS were greatly associated with the prevailing westerlies.  相似文献   

8.
With basic information from 8353 archaeological sites, this study describes a holistic spatial-temporal distribution pattern of archaeological sites of the prehistoric culture sequence from 9.5 ka BP (ka BP = thousands of years before 0 BP, where "0 BP" is defined as the year AD 1950) to 2.3 ka BP in the region that extends from the Yanshan Mountains to the Liaohe River Plain(i.e., the Yan-Liao region) in northern China. Based on spatial statistics analysis – including the spatial density of the sites and Geographic Information System nearest-neighbour analysis, combined with a review of environmental and climatic data – this paper analyses cultural evolution, the spatial-temporal features of the archaeological sites and human activities against the backdrop of climatic and environmental changes in this region. The results reveal that prehistoric cultural evolution in the Yan-Liao region is extensively influenced by climatic and environmental changes. The Xinglongwa, Zhaobaogou and Fuhe cultures, which primarily developed during a habitable period from 8.5 ka BP to 6.0 ka BP with strong summer monsoons, have similar maximum density values, spatial patterns and subsistence strategies dominated by hunting-gathering. Significant changes occurred in the Hongshan and Lower Xiajiadian cultures, with a significant increase in numbers and densities of sites and a slump in average nearest-neighbour ratio when the environment began to deteriorate starting in 6.0 ka BP. Additionally, with the onset of a weak summer monsoon and the predominance of primitive agriculture, sites of these two cultures present a different type of concentric circle-shaped pattern in space. As the environment continuously deteriorated with increasing aridity and the spread of steppe, more sites were distributed towards the south, and primitive agriculture was replaced by livestock husbandry in the Upper Xiajiadian culture. The most densely populated areas of the studied cultures are centralized within a limited area. The Laohahe River and Jiaolaihe River basins formed the core area in which most archaeological sites were distributed during the strong summer monsoon period and the first few thousand years of the weak summer monsoon period.  相似文献   

9.
Geochemical and grain size analysis on the DQ (Dongqi) profile from Gonghe Basin, northeastern Qinghai-Tibetan Plateau, indicates that regional climate has experienced several cold-dry and warm-wet cycles since the last glacial maximum (LGM). The cold and dry climate dominated the region before 15.82 cal. ka B.P. due to stronger winter monsoon and weaker summer monsoon, but the climate was relatively cold and wetter prior to 21 cal. ka B.P.. In 15.82–9.5 cal. ka B.P., summer monsoon strength increased and winter monsoon tended to be weaker, implying an obvious warm climate. Specifically, the relatively cold and dry condition appeared in 14.7–13.7 cal. ka B.P. and 12.1–9.5 cal. ka B.P., respectively, while relatively warm and wet in 13.7–12.1 cal. ka B.P.. The winter and summer monsoonal strength presents frequent fluctuations in the Holocene and relatively warm and wet conditions emerged in 9.5–7.0 cal. ka B.P. due to stronger summer monsoon. From 7.0 to 5.1 cal. ka B.P., the cycle of cold-dry and warm-wet climate corresponds to frequent fluctuations of winter and summer monsoons. The climate becomes warm and wet in 5.1–2.7 cal. ka B.P., accompanying increased summer monsoon, but it tends to be cold and dry since 2.7 cal. ka B.P. due to enhanced winter monsoonal strength. In addition, the evolution of regional winter and summer monsoons is coincident with warm and cold records from the polar ice core. In other words, climatic change in the Gonghe Basin can be considered as a regional response to global climate change.  相似文献   

10.
The structure of the ice core varies with depth, Its surface layer is firn, followed by an ice layer with random fabric pattern (beginning at 28m depth), then transformed to a small circle girdle pattern (beginning at 147 m depth) through a transition layer, finally to a single-maximum pattern (beginning at 191 m depth). The stratigraphic profile of the ice core is similar to those of other cores on the Law Dome, For BHQ located in the middle of a flow line from the summit to the coast, the initial depth of every specific layer is less than that in the upstream and larger than that in the downstream. The ice was analyzed for trace elememts using instrumental neutron activation technique. No tendency towards a systematic increase or decrease in the element concentrations in the past 4000 years has been found. The mean concentrations of Na and Al over the past 4000 years are higher than those in the Vostok ice core by factors of 9 and 4, respectively.  相似文献   

11.
The components of the primary elements in the dune sands for the MGS1 subsec-tion of the Milanggouwan section in the Salawusu River valley, compared with those of mod-ern dune sands, show that they were caused by East Asian winter monsoon in the Mu Us desert during Holocene. The examined ages for the 11 layers of dune sands, based on the average sedimentary rate, are: 0 to 960, 1350–2240, 2470 to 3530, 4000 to 4180, 4290 to 4350, 4380 to 4760, 5040 to 5920, 6570 to 8270, 9020 to 9700, 9880 to 10160 and 10580 to 11080 a BP, respectively. The climatic events indicated by these dune sands are consistent with those records in the Huguangyan volcanic lake, Zoige peat bog, Hulu cave and Dunde ice core, particularly with the climatic fluctuations of the North Atlantic since 11 000 a BP. Among them, patterns from B0 to B8 correspond to the peak values of 0MD, 2D, 4D, 6D+8D+10D, 12D, 14D, 16D, 18D and 20D respectively. It might be caused by the North Atlantic ice age induced by the heat circulation, which strengthened the polar high pressure and Siberian-Mongolian high pressure and further led to the dominance of the winter mon-soon over China’s desert area.  相似文献   

12.
Intensive grazing in spring–summer has been responsible for environmental degradation of the Gurbantunggut Desert in recent years. The coverage of plants and biological crusts, sand surface stability and physicochemical characteristics of soil on the dune surface were conducted in 2002 (winter grazing) and 2005 (spring–summer grazing). The results showed that over 80% of the total area of the dune surface was covered by well-developed biological crusts and plants in 2002, when the interdune and middle to lower part of dune slopes were stabilized and only the crest had 10–40 m wide mobile belt. Affected by spring–summer grazing in 2005, over 80% of the total cover of biological crust was destructed and the plant coverage only reached 1/5 of that in 2002, especially the ephemeral plant cover had a great change. The value of sand transport potential in 2005 only reached 1/3 of that in 2002, but the total surface activity in 2005 was 1.6 times stronger than that in 2002. Meanwhile the mobile area began to expand from the dune top to the whole dune surface following spring–summer grazing. Compared with 2002, medium sand content of the dune surface soil increased by 13.9%, while that of fine and very fine sands decreased by 7.4% and 8.0% respectively in 2005 and the soil organic matter in 2005 was only about 1/2 of that in 2002. It is obvious that the presence of snow cover and frozen soil in winter could avoid the surface structure destruction in winter, while spring–summer grazing made excessive damage to biologic crusts and ephemeral plants. Spring is the main windy season in Gurbantunggut Desert and therefore intensive activity of dune surface occurred following spring–summer grazing, which led to a great loss of fine sand and organic matter. It can be seen that grazing season have a significant influence on the sustainable development of the desert ecosystem in Northwest China. Foundation: National Basic Research Program of China, No.2009CB421303; National Natural Science Foundation of China, No.40771032; National Science Supporting Program, No.2007BAC17B03 Author: Wang Xueqin (1964–), Ph.D and Associate Professor, specialized in aeolian sand geomorphology, desertification and its control.  相似文献   

13.
位于巴丹吉林沙漠东南缘的查格勒布鲁剖面CGS1层段记录了全新世以来显示风力强弱的沙丘砂与黄土堆积旋回。以Md(Φ)、Mz(Φ)的5 Φ(31.5 μm)为界,可以划分出10个“C1-C10”明显的和1个“C11”较弱的(<5 Φ)旋回变化。其中,有7个属于沙丘砂与之上覆黄土或古土壤构成的旋回。这些旋回在Md(Φ)、Mz(Φ)上显示出多谷峰波动的形式。不仅如此,粒度的σ、SC/D值和>63 μm含量亦随之响应。研究认为,CGS1层段粗粒和细粒层位Md(Φ)等参数和>63 μm含量的变化分别代表了东亚冬夏季风的作用过程;冬季风时期的C1与北大西洋IRD事件的冷期B0和B1,C2、C3、C4依次与B2、B3、B4,C7、C9、C10依次与B5、B6、B7在时间-气候性质上具有很好的对应;北大西洋B8冷期在CGS1中没有明显表现,但仍然能够在Md(Φ)、Mz(Φ)曲线上看到这是一个<5 Φ的低值时期,而>63 μm的含量相应增高;C5、C6和C8寒冷时段虽未见于北大西洋,但在中国一些地点却有发现。这些由若干粒度指标反映出来的寒冷事件表明,在全新世东亚夏季风活动盛行的总的形势下还存在频繁的千年尺度的冬季风波动。而尤为重要的是这些寒冷事件存在的与北大西洋寒冷事件的遥相关的关系表明,除C5、C6和C8以外的CGS1粒度记录的寒冷事件都隐含了北大西洋的强烈信号。从这个意义上来说,笔者讨论的内容可为全新世北半球的D/O震荡及其形成机制提供一个比较理想的东亚季风变化与中国沙漠区域环境响应的地质证据。  相似文献   

14.
 毛乌素沙漠东南缘萨拉乌苏河流域米浪沟湾剖面MGS1层段含有11个由古沙丘砂与河湖相或古土壤构成的沉积旋回。通过对该层段粒度和CaCO3的分析,发现其河湖沼相和古土壤的平均粒径、分选系数、偏度和峰态的值明显高于古沙丘砂;CaCO3含量在古沙丘砂及其上覆的河湖相和古土壤中依次变化于0.07%~0.32%(平均值为0.16%)、0.05%~1.50%(0.27%)和0.06%~1.42%(0.64%),并与平均粒径呈显著相关(相关系数0.8);构成与沉积旋回波动韵律相同的11个峰谷交替的粒度和CaCO3旋回,指示了全新世气候冷、暖的变化过程和东亚冬夏季风千年尺度交替变化的气候旋回。这些旋回中的冬季风主导时期可与北大西洋8 200、5 000、4 000、2 700、1 400 a BP等寒冷事件进行对比,和中国若干地点的气候波动具有良好对应关系,可能表明全新世东亚季风在全球大气、海洋、陆地和全球冰量变化的共同作用下,表现为干冷冬季风和暖湿夏季风的相互交替的千年尺度的气候变化特征。  相似文献   

15.
海南岛西海岸沙丘形成动力过程的风洞模拟试验   总被引:3,自引:0,他引:3  
The western coast of Hainan Island exhibits a savanna landscape. Many types of sand dunes, including transverse dune ridges, longitudinal dune ridges, elliptical dunes, coppice dunes, and climbing dunes, are widely distributed in the coastal zone. In winter, high-frequency and high-energy NE winds (dominant winds) are prevalent, with a resultant drift direction (RDD) of S35.6°W. In spring, low-frequency and low-energy SW secondary winds prevail, with a RDD of N25.1°E. Wind tunnel simulations revealed that the airflow over the dune surface is the main factor controlling the erosion and deposition patterns of dune surfaces and the morphological development of dunes. In the region’s bidirectional wind en- vironment, with two seasonally distinct energy levels, the airflow over the surface of elliptical dunes, barchan dunes, and transverse dune ridges will exhibit a transverse pattern, whereas the airflow over longitudinal dunes ridges exhibits a lateral pattern and that over climbing dunes exhibits a climbing-circumfluent pattern. These patterns represent different dynamic processes. The coastal dunes on the western coast of Hainan Island are influenced by factors such as onshore winds, sand sources, coastal slopes, rivers, and forest shelter belts. The source of the sand that supplements these dunes particularly influences the development pattern: when there is more sand, the pattern shows positive equilibrium deposition between dune ridges and dunes; otherwise, it shows negative equilibrium deposition. The presence or absence of forest shelter belts also influences deposition and dune development patterns and transformation of dune forms. Coastal dunes and inland desert dunes experience similar dynamic processes, but the former have more diversified shapes and more complex formation mechanisms.  相似文献   

16.
全新世浑善达克沙地粒度旋回及其反映的气候变化   总被引:6,自引:13,他引:6  
 利用浑善达克沙地北部锡林浩特风成砂/古土壤剖面的粗颗粒含量、标准偏差、中值粒径、平均粒径和粘粒含量等气候代用指标,对浑善达克沙地10 ka以来的沉积物粒度进行了系统分析研究\.结果表明气候变化存在4个阶段:10.7~9.6 ka BP气候相对干冷;9.6~6 ka BP气候温暖湿润; 6~3.4 ka BP气候干冷暖湿波动频繁;3.4 ka BP以来气候以干旱为主。  相似文献   

17.
1 Introduction Oases are unique ecosystems and important residences for our ancestors in arid and semiarid regions of the world, and have deeply been imprinted by human actions, such as Jericho oasis of Jordan Valley, Jarmo oasis of the Euphrates River an…  相似文献   

18.
 位于鄂尔多斯高原萨拉乌苏河米浪沟湾剖面是重建毛乌素沙地晚更新世以来古气候的理想地点。其末次间冰阶(MIS3)层序含4种沉积相,划分为19个沉积单元,构成9.5个风成的砂丘砂与河流相、湖相和古土壤交替的沉积旋回。主元素分析结果显示,该剖面MIS3层序中河流相、湖相和古土壤的Al2O3、TOFE、CaO、MgO、K2O、Na2O、TiO2含量明显高于古风成砂, 而SiO2则相反, 构成与沉积旋回相应的9.5个元素波动旋回。这些元素旋回指示了该地末次间冰阶至少经历了10次温湿(W事件)和9次冷干(C事件)气候波动,且可划分为MIS3e(58.90~49.50 ka BP)、MIS3d(49.50~40.70 ka BP)、MIS3c(40.70~36.90 ka BP)、MIS3b(36.90~27.00 ka BP)和MIS3a(27.00~22.30 ka BP)等5个亚段。其中, 19次冷/暖波动可与格陵兰GRIP冰芯δ18O冰段/间冰段大致对应, 5个亚段与我国古里雅冰芯和V23-81冷性浮游有孔虫数代表的北大西洋地区气候也具有较好的可比性。  相似文献   

19.
“河套东南角理想剖面”的新近研究   总被引:16,自引:10,他引:6  
以在萨拉乌苏河流域近年命名的“米浪沟湾地层剖面”作为河套东南的理想剖面,描述了其地层特征,讨论了地层磁化率值和粒度分布与气候变迁的关系,研究提出,该剖面记录了150ka BP以来毛乌素沙漠27个旋回的砂丘与河湖相和古土壤互为交替的演化历史;剖面风成砂丘的堆积时期和河湖相或古土壤发育时期分别主要与过去冬季风和夏季风作为加强有关。根据中国沙漠及黄土区现代沙尘暴发生的区域特征认为,米浪沟湾剖面记录的150ka来的27次砂丘期代表了中国沙区存在27个沙漠堆积时期。  相似文献   

20.
A 6-m ice core was recovered in 2004 from the Naimona'Nyi Glacier, the middle Himalayas. Empirical orthogonal function (EOF) analysis on the major ion reveals that EOF1 represents the variations of majority of ions which may be originated from crustal aerosols. Comparing the calcium concentrations from the Naimona'Nyi with these from Dasuopu, East Rongbuk and Guliya ice cores, it is observed that calcium, a good indicator of the input of crustal aerosol in snow, concentrates mostly in the Guliya ice core located on the northern Tibetan Plateau, and gradually decreases from west to east in the Himalayas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号