共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
受声线弯曲的影响,多波束测深的边缘波束的数据质量较低,而单波束测深受声线弯曲的影响比较小。结合多波束覆盖面大和声速剖面误差对单波束影响相对较小的特点,研究了多波束和单波束的测深数据融合方法,利用同一位置单波束和多波束测深数据的差值,拟合一个与坐标位置相关的误差模型,并利用该误差曲面对多波束测深数据进行综合改正,从而提高多波束测深的数据质量。 相似文献
8.
9.
10.
11.
针对传统趋势面滤波方法中多项式拟合曲面系数向量的求取和作为阈值的均方根误差的求取都受到异常数据的影响,使该方法在异常测深数据较多的情况下滤波效果不佳的问题,提出了一种中值滤波加权修正的改进方法。在构造趋势面之前,对水深数据进行加权修正,以前后两次修正后数据的拟合优度的变化量作为是否进行下一步水深修正的依据,利用最终修正后的水深数据求取多项式拟合曲面系数向量和均方根误差,大幅降低了异常数据的影响,具有很强的抗差性。经仿真模拟数据和多波束实测数据滤波试验,该方法在异常数据较多的情况下依然良好,能够保持良好的滤波效果,明显优于传统趋势面滤波;同时,该方法能够保持较高的运算效率,适用于海量多波束测深数据的自动滤波。 相似文献
12.
13.
近岸多波束测量中的GPS-RTK差分技术及其受影响的因素 总被引:4,自引:0,他引:4
分析了近岸多波束测量中应用GPS-RTK差分技术对船只导航与定位,对在受波浪影响的多波束测量中,船只所受潮汐、换能器吃水的动态变化量等诸影响因素的改正以及船只的运动姿态纠正等问题进行了讨论。使用GPS-RTK系统可以有效地解决潮汐(水位)、波浪影响和换能器吃水的动态变化量对多波束测量精度综合影响的问题,如果使用"一加三"的GPS-RTK接收机,还可以实现船只姿态的高精度综合修正。同时,对4个影响GPS-RTK差分技术系统能力的主要因素应引起重视,采取措施加以解决,使近岸的多波束测量工作更加富有成效。 相似文献
14.
Vertical errors often present in multibeam swath bathymetric data. They are mainly sourced by sound refraction, internal wave disturbance, imperfect tide correction, transducer mounting, long period heave, static draft change, dynamic squat and dynamic motion residuals, etc. Although they can be partly removed or reduced by specific algorithms, the synthesized depth biases are unavoidable and sometimes have an important influence on high precise utilization of the final bathymetric data. In order to confidently identify the decimeter-level changes in seabed morphology by MBES, we must remove or weaken depth biases and improve the precision of multibeam bathymetry further. The fixed-interval profiles that are perpendicular to the vessel track are generated to adjust depth biases between swaths. We present a kind of postprocessing method to minimize the depth biases by the histogram of cumulative depth biases. The datum line in each profile can be obtained by the maximum value of histogram. The corrections of depth biases can be calculated according to the datum line. And then the quality of final bathymetry can be improved by the corrections. The method is verified by a field test. 相似文献
15.
基于CUBE算法的多波束测深数据自动处理研究 总被引:1,自引:0,他引:1
对CUBE算法自动处理多波束测深数据的模型建立、格网节点的多重估计和最优估值选取准则进行了详细介绍,深入分析了多重估计的实用性,并通过实测数据对该算法进行实现.利用了抗差Kalman滤波改进CUBE算法.通过模拟数据对改进的CUBE算法进行实验,验证了算法改进的必要性. 相似文献
16.
We have developed a new software package, called MB-System, for processing and display of Hydrosweep DS multibeam data on the R/V Maurice Ewing. The new software includes tools for modeling water sound velocity profiles, calculating multibeam bathymetry from travel time values by raytracing through a water sound velocity profile, interactive and automatic editing of multibeam bathymetry, as well as a variety of tools for the manipulation and display of multibeam data. A modular input/output library allows MB-System programs to access and manipulate data in any of a number of supported swath-mapping sonar data formats, including data collected on Hydrosweep DS, Sea-Beam Classic, SeaBeam 2000, SeaBeam 2100, H-MR1, Simrad EM12, and other sonars. Examples are presented of the software's application to Hydrosweep data recently collected on the R/V Maurice Ewing. 相似文献
17.
The wobble errors caused by the imperfect integration of motion sensors and transducers in multibeam echo-sounder systems(MBES) manifest as high-frequency wobbles in swaths and hinder the accurate expression of high-resolution seabed micro-topography under a dynamic marine environment.There are many types of wobble errors with certain coupling among them.However,those current calibration methods ignore the coupling and are mainly manual adjustments.Therefore,we proposed an automatic calibration ... 相似文献
18.
A new method for weakening the combined effect of residual errors on multibeam bathymetric data 总被引:2,自引:0,他引:2
Jianhu Zhao Jun Yan Hongmei Zhang Yuqing Zhang Aixue Wang 《Marine Geophysical Researches》2014,35(4):379-394
Multibeam bathymetric system (MBS) has been widely applied in the marine surveying for providing high-resolution seabed topography. However, some factors degrade the precision of bathymetry, including the sound velocity, the vessel attitude, the misalignment angle of the transducer and so on. Although these factors have been corrected strictly in bathymetric data processing, the final bathymetric result is still affected by their residual errors. In deep water, the result usually cannot meet the requirements of high-precision seabed topography. The combined effect of these residual errors is systematic, and it’s difficult to separate and weaken the effect using traditional single-error correction methods. Therefore, the paper puts forward a new method for weakening the effect of residual errors based on the frequency-spectrum characteristics of seabed topography and multibeam bathymetric data. Four steps, namely the separation of the low-frequency and the high-frequency part of bathymetric data, the reconstruction of the trend of actual seabed topography, the merging of the actual trend and the extracted microtopography, and the accuracy evaluation, are involved in the method. Experiment results prove that the proposed method could weaken the combined effect of residual errors on multibeam bathymetric data and efficiently improve the accuracy of the final post-processing results. We suggest that the method should be widely applied to MBS data processing in deep water. 相似文献
19.
多波束声呐图像是进行海底底质分类的主要数据源之一,由于受海洋噪声、声波散射和混响、仪器设备等因素影响,其经各项常规改正后仍存在明显残差,突出表现在中央波束区和条带重叠区,难以形成高质量的声呐图像。文中分析了多波束声呐图像残差的成因及影响,提出了一种基于多条带最小二乘拟合的多波束声呐图像残差处理方法。首先,得到相邻声脉冲(ping)信号中央区域、重叠区域以及整体趋势的拟合函数;然后,通过拟合函数计算得到中央和重叠区域的残差改正系数;最后,通过改正系数进行残差改正。实验分析表明,该方法在保留原始细节的基础上,有效削弱了残差对声呐图像的影响,对多波束声呐图像处理具有参考和应用价值。 相似文献
20.
Some errors and noises are often present in multibeam swath bathymetric data. Echo detection error (EDE) is one of the main errors. It causes the depth error to become bigger in outer beams and looks like sound refraction. But depth errors due to EDEs have a trumpet-shaped appearance, instead of a curved appearance that is caused by the sound refraction errors. EDEs, including systematic acoustic signal detection errors and internal noises, cannot be removed during the correction of sound refraction. It causes depth inconsistencies between adjacent swaths and degrades precision of outer beams. Sometimes, the bathymetric errors caused by EDEs do not even meet the requirements of IHO (International Hydrographic Organization). Therefore, a post-processing method is presented to minimize the EDEs by filtering outliers and compressing outer beams of multibeam bathymetric data. The outliers caused by internal noises are removed by an automatic filter algorithm first. Then the outer beams are compressed to reduce systematic acoustic signal detection errors according to their depths, the calculated depth line and standard deviations (SDs). The automatic filter process is important for calculating the depth line. The selection of inner beams to calculate the average SD of beam depths is crucial to achieving compressing goals. The quality of final bathymetric data in outer beams can be improved by these steps. The method is verified by a field test. 相似文献