首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geological storage of CO2 in the offshore Gippsland Basin, Australia, is being investigated by the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) as a possible method for storing the very large volumes of CO2 emissions from the nearby Latrobe Valley area. A storage capacity of about 50 million tonnes of CO2 per annum for a 40-year injection period is required, which will necessitate several individual storage sites to be used both sequentially and simultaneously, but timed such that existing hydrocarbon assets will not be compromised. Detailed characterisation focussed on the Kingfish Field area as the first site to be potentially used, in the anticipation that this oil field will be depleted within the period 2015–2025. The potential injection targets are the interbedded sandstones of the Paleocene-Eocene upper Latrobe Group, regionally sealed by the Lakes Entrance Formation. The research identified several features to the offshore Gippsland Basin that make it particularly favourable for CO2 storage. These include: a complex stratigraphic architecture that provides baffles which slow vertical migration and increase residual gas trapping and dissolution; non-reactive reservoir units that have high injectivity; a thin, suitably reactive, lower permeability marginal reservoir just below the regional seal providing mineral trapping; several depleted oil fields that provide storage capacity coupled with a transient production-induced flow regime that enhances containment; and long migration pathways beneath a competent regional seal. This study has shown that the Gippsland Basin has sufficient capacity to store very large volumes of CO2. It may provide a solution to the problem of substantially reducing greenhouse gas emissions from future coal developments in the Latrobe Valley.  相似文献   

2.
The efficiency and sustainability of carbon dioxide (CO2) storage in deep geological formations crucially depends on the integrity of the overlying cap-rocks. Existing oil and gas wells, which penetrate the formations, are potential leakage pathways. This problem has been discussed in the literature, and a number of investigations using semi-analytical mathematical approaches have been carried out by other authors to quantify leakage rates. The semi-analytical results are based on a number of simplifying assumptions. Thus, it is of great interest to assess the influence of these assumptions. We use a numerical model to compare the results with those of the semi-analytical model. Then we ease the simplifying restrictions and include more complex thermodynamic processes including sub- and supercritical fluid properties of CO2 and non-isothermal as well as compositional effects. The aim is to set up problem-oriented benchmark examples that allow a comparison of different modeling approaches to the problem of CO2 leakage.  相似文献   

3.
Seismic surveys successfully imaged a small scale CO2 injection (1,600 ton) conducted in a brine aquifer of the Frio Formation near Houston, Texas. These time-lapse borehole seismic surveys, crosswell and vertical seismic profile (VSP), were acquired to monitor the CO2 distribution using two boreholes (the new injection well and a pre-existing well used for monitoring) which are 30 m apart at a depth of 1,500 m. The crosswell survey provided a high-resolution image of the CO2 distribution between the wells via tomographic imaging of the P-wave velocity decrease (up to 500 m/s). The simultaneously acquired S-wave tomography showed little change in S-wave velocity, as expected for fluid substitution. A rock physics model was used to estimate CO2 saturations of 10–20% from the P-wave velocity change. The VSP survey resolved a large (∼70%) change in reflection amplitude for the Frio horizon. This CO2 induced reflection amplitude change allowed estimation of the CO2 extent beyond the monitor well and on three azimuths. The VSP result is compared with numerical modeling of CO2 saturations and is seismically modeled using the velocity change estimated in the crosswell survey.  相似文献   

4.
The stable carbon isotopic composition of the planktonic foraminifera Globigerinoides sacculifer and G. ruber (white) and sedimentary organic matter from the northern Gulf of Aqaba have been investigated to estimate changes in 13CDIC in surface waters during the last 1,000 years. The high sedimentation rates at the core sites (about 54 cm/Kyear) provide high temporal resolution (~10 years). Recent sediments at the top of the cores reflect conditions younger than 1950. The 13C records of the planktonic foraminifera from three multicores display similar trends, showing a uniform and consistent pattern before the 1750s, and a gradual decrease of approximately 0.63 over the last two centuries. This decrease seems to track the decrease of 13CDIC in surface waters, which is mainly caused by the increase of anthropogenic input of 13C-depleted CO2 into the atmosphere. Similarly, a trend towards lighter values of the carbon isotopic composition of sedimentary organic matter (13Corg) during the last 200 years supports the interpretation obtained from the planktonic foraminiferal 13C. Furthermore, direct measurements of seawater show that 13C of the dissolved inorganic carbon (DIC) in the northern Gulf of Aqaba has decreased by about 0.44 during the period 1979–2000. The average annual decrease is 0.021, which is similar to that observed globally. The 13C values of planktonic foraminifera combined with organic matter 13C from marine sediments are good indicators for reconstructing past changes in atmospheric CO2 concentrations from the northern Gulf of Aqaba.  相似文献   

5.
Motivated by the rapid increase in atmospheric CO2 due to human activities since the Industrial Revolution, and the climate changes it produced, the world’s concerned scientific community has made a huge effort to investigate the global carbon cycle. However, the results reveal that the global CO2 budget cannot be balanced, unless a “missing sink” is invoked. Although numerous studies claimed to find the “missing sink”, none of those claims has been widely accepted. This current study showed that alkaline soil on land are absorbing CO2 at a rate of 0.3–3.0 μmol m−2 s−1 with an inorganic, non-biological process. The intensity of this CO2 absorption is determined by the salinity, alkalinity, temperature and water content of the saline/alkaline soils, which are widely distributed on land. Further studies revealed that high salinity or alkalinity positively affected the CO2 absorbing intensity, while high temperature and water content had a negative effect on the CO2 absorbing intensity of these soils. This inorganic, non-biological process of CO2 absorption by alkaline soils might have significant implications to the global carbon budget accounting.  相似文献   

6.
This paper reports a preliminary investigation of CO2 sequestration and seal integrity at Teapot Dome oil field, Wyoming, USA, with the objective of predicting the potential risk of CO2 leakage along reservoir-bounding faults. CO2 injection into reservoirs creates anomalously high pore pressure at the top of the reservoir that could potentially hydraulically fracture the caprock or trigger slip on reservoir-bounding faults. The Tensleep Formation, a Pennsylvanian age eolian sandstone is evaluated as the target horizon for a pilot CO2 EOR-carbon storage experiment, in a three-way closure trap against a bounding fault, termed the S1 fault. A preliminary geomechanical model of the Tensleep Formation has been developed to evaluate the potential for CO2 injection inducing slip on the S1 fault and thus threatening seal integrity. Uncertainties in the stress tensor and fault geometry have been incorporated into the analysis using Monte Carlo simulation. The authors find that even the most pessimistic risk scenario would require ∼10 MPa of excess pressure to cause the S1 fault to reactivate and provide a potential leakage pathway. This would correspond to a CO2 column height of ∼1,500 m, whereas the structural closure of the Tensleep Formation in the pilot injection area does not exceed 100 m. It is therefore apparent that CO2 injection is not likely to compromise the S1 fault stability. Better constraint of the least principal stress is needed to establish a more reliable estimate of the maximum reservoir pressure required to hydrofracture the caprock.  相似文献   

7.
Geologic storage of CO2 is expected to produce plumes of large areal extent, and some leakage may occur along fractures, fault zones, or improperly plugged pre-existing wellbores. A review of physical and chemical processes accompanying leakage suggests a potential for self-enhancement. The numerical simulations presented here confirm this expectation, but reveal self-limiting features as well. It seems unlikely that CO2 leakage could trigger a high-energy run-away discharge, a so-called “pneumatic eruption,” but present understanding is insufficient to rule out this possibility. The most promising avenue for increasing understanding of CO2 leakage behavior is the study of natural analogues.  相似文献   

8.
A screening and ranking framework (SRF) has been developed to evaluate potential geologic carbon dioxide (CO2) storage sites on the basis of health, safety, and environmental (HSE) risk arising from CO2 leakage. The approach is based on the assumption that CO2 leakage risk is dependent on three basic characteristics of a geologic CO2 storage site: (1) the potential for primary containment by the target formation; (2) the potential for secondary containment if the primary formation leaks; and (3) the potential for attenuation and dispersion of leaking CO2 if the primary formation leaks and secondary containment fails. The framework is implemented in a spreadsheet in which users enter numerical scores representing expert opinions or published information along with estimates of uncertainty. Applications to three sites in California demonstrate the approach. Refinements and extensions are possible through the use of more detailed data or model results in place of property proxies.  相似文献   

9.
The high-pressure behavior of a vanadinite (Pb10(VO4)6Cl2, a = b = 10.3254(5), = 7.3450(4) Å, space group P63/m), a natural microporous mineral, has been investigated using in-situ HP-synchrotron X-ray powder diffraction up to 7.67 GPa with a diamond anvil cell under hydrostatic conditions. No phase transition has been observed within the pressure range investigated. Axial and volume isothermal Equations of State (EoS) of vanadinite were determined. Fitting the PV data with a third-order Birch-Murnaghan (BM) EoS, using the data weighted by the uncertainties in P and V, we obtained: V 0 = 681(1) Å3, K 0 = 41(5) GPa, and K′ = 12.5(2.5). The evolution of the lattice constants with P shows a strong anisotropic compression pattern. The axial bulk moduli were calculated with a third-order “linearized” BM-EoS. The EoS parameters are: a 0 = 10.3302(2) Å, K 0(a) = 35(2) GPa and K′(a) = 10(1) for the a-axis; c 0 = 7.3520(3) Å, K 0(c) = 98(4) GPa, and K′(c) = 9(2) for the c-axis (K 0(a):K 0(c) = 1:2.80). Axial and volume Eulerian-finite strain (fe) at different normalized stress (Fe) were calculated. The weighted linear regression through the data points yields the following intercept values: Fe a (0) = 35(2) GPa for the a-axis, Fe c (0) = 98(4) GPa for the c-axis and Fe V (0) = 45(2) GPa for the unit-cell volume. The slope of the regression lines gives rise to K′ values of 10(1) for the a-axis, 9(2) for the c-axis and 11(1) for the unit cell-volume. A comparison between the HP-elastic response of vanadinite and the iso-structural apatite is carried out. The possible reasons of the elastic anisotropy are discussed.  相似文献   

10.
Rising atmospheric pCO2 and ocean acidification originating from human activities could result in increased dissolution of metastable carbonate minerals in shallow-water marine sediments. In the present study, in situ dissolution of carbonate sedimentary particles in Devil’s Hole, Bermuda, was observed during summer when thermally driven density stratification restricted mixing between the bottom water and the surface mixed layer and microbial decomposition of organic matter in the subthermocline layer produced pCO2 levels similar to or higher than those levels anticipated by the end of the 21st century. Trends in both seawater chemistry and the composition of sediments in Devil’s Hole indicate that Mg-calcite minerals are subject to selective dissolution under conditions of elevated pCO2. The derived rates of dissolution based on observed changes in excess alkalinity and estimates of vertical eddy diffusion ranged from 0.2 mmol to 0.8 mmol CaCO3 m−2 h−1. On a yearly basis, this range corresponds to 175–701 g CaCO3 m−2 year−1; the latter rate is close to 50% of the estimate of the current average global coral reef calcification rate of about 1,500 g CaCO3 m−2 year−1. Considering a reduction in marine calcification of 40% by the year 2100, or 90% by 2300, as a result of surface ocean acidification, the combination of high rates of carbonate dissolution and reduced rates of calcification implies that coral reefs and other carbonate sediment environments within the 21st and following centuries could be subject to a net loss in carbonate material as a result of increasing pCO2 arising from burning of fossil fuels.  相似文献   

11.
CO2-rich fluid inclusions containing opaque mineral crystals were found in the Fenghuangshan skarn-porphyry Cu–Fe–Au deposit in Tongling, Anhui, China. These inclusions show variable CO2 contents and are accompanied by aqueous inclusions, both occurring as secondary inclusions in quartz and being locally associated with chalcopyrite mineralization. Laser Raman microspectroscopic analyses confirm the predominance of CO2 in the vapor and the presence of H2S as high as 8 mol%, and identify the opaque mineral with yellow reflectance color in the inclusions as chalcopyrite. More than half of the CO2-bearing inclusions contains chalcopyrite, whereas few of the associated aqueous inclusions do so. The chalcopyrite, occupying less than 1% (volume) of the inclusions, is interpreted to be a daughter mineral, and calculated Cu concentrations in the inclusions range from 0.1 to 3.4 wt%. Copper is inferred to have been transported in CO2-dominated fluids as HS complexes. The occurrence of chalcopyrite daughter crystals in CO2-rich fluid inclusions indicates that CO2-rich vapor has the capacity of transporting large amounts of Cu, and possibly Au. This finding has significant implications for metal transport and mineralization in hydrothermal systems enriched in CO2, such as orogenic-type and granitic intrusion-related gold deposits.  相似文献   

12.
Geological sequestration of CO2 into depleted hydrocarbon reserviors or saline aquifers presents the enormous potential to reduce greenhouse gas emission from fossil fuels. However, it may give rise to a complicated coupling physical and chemical process. One of the processes is the hydro-mechanical impact of CO2 injection. During the injection project, the increase of pore pressures of storing formations can induce the instability, which finally results in a catastrophic failure of disposal sites. This paper focuses mainly on the role of CO2-saturated water in the fracturing behavior of rocks. To investigate how much the dissolved CO2 can influence the pore pressure change of rocks, acoustic emission (AE) experiments were performed on sandstone and granite samples under triaxial conditions. The main innovation of this paper is to propose a time dependent porosity method to simulate the abrupt failure process, which is observed in the laboratory and induced by the pore pressure change due to the volume dilatancy of rocks, using a finite element scheme associated with two-phase characteristics. The results successfully explained the phenomena obtained in the physical experiments.  相似文献   

13.
Freshwater marshes could be a source of greenhouse gases emission because they contain large amounts of soil carbon and nitrogen. These emissions are strongly influenced by exogenous nitrogen. We investigate the effects of exogenous nitrogen on ecosystem respiration (CO2), CH4 and N2O emissions from freshwater marshes in situ in the Sanjiang Plain Northeast of China during the growing seasons of 2004 and 2005, using a field fertilizer experiment and the static opaque chamber/GC techniques. The results show that there were no significant differences in patterns of seasonal variations of CO2 and CH4 among the fertilizer and non-fertilizer treatments, but the seasonal patterns of N2O emission were significantly influenced by the exogenous nitrogen. Seasonal averages of the CO2 flux from non-fertilizer and fertilizer were 987.74 and 1,344.35 mg m 2 h 1, respectively, in 2004, and 898.59 and 2,154.17 mg m 2 h 1, respectively, in 2005. And the CH4 from the control and fertilizer treatments were 6.05 and 13.56 mg m 2 h 1 and 0.72 and 1.88 mg m 2 h 1, respectively, in 2004 and 2005. The difference of N2O flux between the fertilizer and non-fertilizer treatments is also significant either in 2004 and 2005. On the time scale of 20-, 100-, and 500-year periods, the integrated global warming potential (GWP) of CO2 + CH4 + N2O released during the two growing seasons for the treatment of fertilizer was 97, 94 and 89%, respectively, higher than that for the control, which suggested that the nitrogen fertilizer can enhance the GWP of the CH4 and N2O either in long time or short time scale.  相似文献   

14.
The behaviour of synthetic Mg-ferrite (MgFe2O4) has been investigated at high pressure (in situ high-pressure synchrotron radiation powder diffraction at ESRF) and at high temperature (in situ high-temperature X-ray powder diffraction) conditions. The elastic properties determined by the third-order Birch–Murnaghan equation of state result in K0=181.5(± 1.3) GPa, K=6.32(± 0.14) and K= –0.0638 GPa–1. The symmetry-independent coordinate of oxygen does not show significant sensitivity to pressure, and the structure shrinking is mainly attributable to the shortening of the cell edge (homogeneous strain). The lattice parameter thermal expansion is described by a0+a1*(T–298)+a2/(T–298)2, where a0=9.1(1) 10–6 K–1, a1=4.9(2) 10–9 K–2 and a2= 5.1(5) 10–2 K. The high-temperature cation-ordering reaction which MgFe-spinel undergoes has been interpreted by the ONeill model, whose parameters are = 22.2(± 1.8) kJ mol–1 and =–17.6(± 1.2) kJ mol–1. The elastic and thermal properties measured have then been used to model the phase diagram of MgFe2O4, which shows that the high-pressure transition from spinel to orthorombic CaMn2O4-like structure at T < 1700 K is preceded by a decomposition into MgO and Fe2O3.  相似文献   

15.
The low-temperature isobaric heat capacities (C p) of β- and γ-Mg2SiO4 were measured at the range of 1.8–304.7 K with a thermal relaxation method using the Physical Property Measurement System. The obtained standard entropies (S°298) of β- and γ-Mg2SiO4 are 86.4 ± 0.4 and 82.7 ± 0.5 J/mol K, respectively. Enthalpies of transitions among α-, β- and γ-Mg2SiO4 were measured by high-temperature drop-solution calorimetry with gas-bubbling technique. The enthalpies of the α−β and β−γ transitions at 298 K (ΔH°298) in Mg2SiO4 are 27.2 ± 3.6 and 12.9 ± 3.3 kJ/mol, respectively. Calculated α−β and β−γ transition boundaries were generally consistent with those determined by high-pressure experiments within the errors. Combining the measured ΔH°298 and ΔS°298 with selected data of in situ X-ray diffraction experiments at high pressure, the ΔH°298 and ΔS°298 of the α−β and β−γ transitions were optimized. Calculation using the optimized data tightly constrained the α−β and β−γ transition boundaries in the P, T space. The slope of α−β transition boundary is 3.1 MPa/K at 13.4 GPa and 1,400 K, and that of β−γ boundary 5.2 MPa/K at 18.7 GPa and 1,600 K. The post-spinel transition boundary of γ-Mg2SiO4 to MgSiO3 perovskite plus MgO was also calculated, using the optimized data on γ-Mg2SiO4 and available enthalpy and entropy data on MgSiO3 perovskite and MgO. The calculated post-spinel boundary with a Clapeyron slope of −2.6 ± 0.2 MPa/K is located at pressure consistent with the 660 km discontinuity, considering the error of the thermodynamic data.  相似文献   

16.
A detailed geochemical study on river waters of the Australian Victorian Alps was carried out to determine: (i) the relative significance of silicate, carbonate, evaporite and sulfide weathering in controlling the major ion composition and; (ii) the factors regulating seasonal and spatial variations of CO2 consumption via silicate weathering in the catchments. Major ion chemistry implies that solutes are largely derived from evaporation of precipitation and chemical weathering of carbonate and silicate lithologies. The input of solutes from rock weathering was determined by calculating the contribution of halite dissolution and atmospheric inputs using local rain and snow samples. Despite the lack of carbonate outcrops in the study area and waters being undersaturated with respect to calcite, the dissolution of vein calcite accounts for up to 67% of the total dissolved cations, generating up to 90% of dissolved Ca and 97% of Mg. Dissolved sulfate has δ34S values of 16 to 20‰CDT, indicating that it is derived predominantly from atmospheric deposition and minor gypsum weathering and not from bacterial reduction of FeS2. This militates against sulphuric acid weathering in Victorian rivers. Ratios of Si vs. the atmospheric corrected Na and K concentrations range from ~ 1.1 to ~ 4.3, suggesting incongruent weathering from plagioclase to smectite, kaolinite and gibbsite.Estimated long-term average CO2 fluxes from silicate weathering range from ~ 0.012 × 106 to 0.039 × 106 mol/km2/yr with the highest values in rivers draining the basement outcrops rather than sedimentary rocks. This is about one order of magnitude below the global average which is due to low relief, and the arid climate in that region. Time series measurements show that exposure to lithology, high physical erosion and long water–rock contact times dominate CO2 consumption fluxes via silicate weathering, while variations in water temperature are not overriding parameters controlling chemical weathering. Because the atmospheric corrected concentrations of Na, K and Mg act non-conservative in Victorian rivers the parameterizations of weathering processes, and net CO2 consumption rates in particular, based on major ion abundances, should be treated with skepticism.  相似文献   

17.
Single-crystal polarized Raman spectra (3,000–4,000 cm−1 at 3 ≤ T ≤ 300 K) were measured for synthetic alkali-free and natural beryl, Be2Al3Si6O18·xH2O, to determine the behavior of H2O molecules of both Type I and Type II in the cavities. At low temperature, the H2O molecules of Type I displace from the center of cavity and give rise to very weak hydrogen bonding with the host lattice. The H2O Type I translational motion is characterized by substantial anharmonicity and looks like a motion of “a particle in the box” with a frequency of 6.3 cm−1. Water Type II is characterized by a free rotation with respect to the C 2 molecule axis, and it makes possible the water nuclear isomers (i.e. ortho- and para-) to be observed at low temperature.
Boris KolesovEmail:
  相似文献   

18.
To investigate the potential for the geologic storage of CO2 in saline sedimentary aquifers, 1600 ton of CO2 were injected at 1500 m depth into a 24-m sandstone section of the Frio Formation — a regional reservoir in the US Gulf Coast. Fluid samples obtained from the injection and observation wells before, during and after CO2 injection show a Na–Ca–Cl type brine with 93,000 mg/L TDS and near saturation of CH4 at reservoir conditions. As injected CO2 gas reached the observation well, results showed sharp drops in pH (6.5 to 5.7), pronounced increases in alkalinity (100 to 3000 mg/L as HCO3) and Fe (30 to 1100 mg/L), and significant shifts in the isotopic compositions of H2O and DIC. Geochemical modeling indicates that brine pH would have dropped lower, but for buffering by dissolution of calcite and Fe oxyhydroxides. Post-injection results show the brine gradually returning to its pre-injection composition.  相似文献   

19.
The investigation of the NH3 loss in the NH4+-vermiculite (Santa Olalla) by thermogravimetry, evolved gas analysis, chemical analysis, X-ray diffraction and IR spectroscopy is reported here. The mass loss during heating takes place in two steps at about 650 and 825 °C. Additionally, the releases of H2O and NH3 occurs simultaneously. The experimental results indicate that the protons remaining in the interlayer space after NH3 removal trigger the H2O release. X-ray diffraction shows that during the decomposition of NH4+-vermiculite there are two domains with different interlayer spaces at ~9 and ~10 Å. As the decomposition proceeds, the intensity of the 9 Å peak increases at the expense of the second one. The change in the IR-stretching modes of the structural OH groups during heating indicates that the OH groups surrounded by 3Mg2+ or 2Mg2+Fe2+ are released at lower temperatures than those with environments like 2Mg2+Fe3+, 2Mg2+Al3+ or more complex ones.  相似文献   

20.
Magma ascent, decompression-induced H2O exsolution and crystallization is now recognized as an important process in hydrous subduction zone magmas. During the course of such a process calculations suggest that the ascent rate of a degassing and crystallizing mafic magma will be greater than crystal settling velocities. Thus, any crystals formed as a consequence of volatile exsolution will remain suspended in the magma. If the magma erupts before the percentage of suspended crystals reaches the critical crystallinity value for mafic magma (~55 vol.%) it will produce the commonly observed crystal rich island arc basalt lava. If the magma reaches its critical crystallinity before it erupts then it will stall within the crust. Extension of compaction experiments on a 55 vol.% sand-Karo syrup suspension at different temperatures (and liquid viscosities) to the likely viscosities of interstitial andesitic to dacitic liquid within such a stalled magma suggest that small amounts (up to ~10%) can be expelled on a time scale of 1–10 years. The expelled liquid can create a new intermediate to silicic body of magma that is related to the original mafic magma via fractional crystallization. The short time scale for liquid expulsion indicate that decompression-induced H2O exsolution and crystallization can be an important mechanism for fractional crystallization. Based on this assumption a general model of decompression-induced crystallization and fractionation is proposed that explains many of the compositional, mineralogical and textural features of Aleutian (and other andesites).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号