首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater is the most important natural resource used for drinking by many people around the world, especially in arid and semi-arid areas. The resource cannot be optimally used and sustained unless the quality of groundwater is assessed. Saveh-Nobaran aquifer in Iran is the most important groundwater aquiferous system in the region which is considered a major source for drinking and irrigation. The main objective of this study is to understand the groundwater quality status of Saveh-Nobaran aquifer, followed by attempts to investigate the spatial distribution of groundwater quality parameters to identify places with the best quality for drinking consume within the study area. For this purpose, a set of original data, as yet unpublished, is presented. This paper provides an important contribution for understanding relationship between land use and groundwater quality, and also groundwater depth and groundwater quality. This goal has been achieved with the combined use of the Water Quality Index (WQI) and a geographical information system (GIS). A total of 58 groundwater samples were collected and analyzed for major cations and anions. Spatial distribution maps of pH, TDS, EC, TH, Cl, HCO, SO4, Ca, Mg, Na and K have been created using the kriging method in a GIS environment. From the WQI assessment, over 65 % of the water samples fall within the ‘‘Poor’’, ‘‘Very poor’’ and “unsuitable for drinking” categories, suggesting that groundwater from the center and north-east of the Saveh-Nobaran aquifer is unsuitable for drinking purposes. This research and its results have shown the great combination use of GIS and WQI in assessing groundwater quality. Having a clear view of the geographic areas of groundwater quality, decision makers can plan better for the operation and maintenance of groundwater resources.  相似文献   

2.
Groundwater plays a major life support to mankind. It is the major source to meet the domestic, irrigation and industrial water demands. The depletion of groundwater through excessive consumption and less recharge in the study area has detoriated the quality of groundwater. The present study has analyzed the pre- and post-monsoon physicochemical data of groundwater samples from 49 different bore wells in Virudunagar district. Spatial distribution maps were prepared for various physicochemical parameters using geographic information system. These maps are further classified according to highest desirable, maximum permissible and not permissible prescribed by the World Health Organization. Furthermore, a water quality index (WQI) map was also generated to understand the groundwater quality in the study area. It was observed that the groundwater in the area is hard and alkaline in nature and the WQI reveals that most part of the study area fall under fair water quality class. Also, the effect of recharge during monsoon period has diluted the geochemistry of the groundwater. The application of GIS and WQI in the study area is a promising tool to understand the spatial pattern of groundwater quality and its management.  相似文献   

3.
The assessment of the suitability of groundwater for drinking and irrigation uses was carried out in the alluvial plain of Low-Isser in the north of Algeria. The plain covers an area of 533 km2 and lies in a Mediterranean sub-humid climate. Groundwater is the main source for domestic uses and agricultural activities in this area. Groundwater samples were collected from 15 wells during dry and wet seasons in 2015, and they were analyzed for major cations and anions and compared with drinking and irrigation specification standards. The comparison of chemical concentration with WHO drinking water standards of 2006 shows that more than 30% of groundwater samples are unsuitable for drinking, and the majority of groundwater samples fell on the hard and very hard categories. Suitability of groundwater for drinking was also evaluated based on the water quality index (WQI). It shows more than 80% of samples have good or permissible water quality for dry and wet seasons. In terms of the irrigation usage, generally, groundwater in the study area is suitable for different uses in both seasons according to SAR, %Na, RSBC, and PI. However, water rock exchange processes and groundwater flow have been responsible for the dominated water type Ca–Mg–Cl.  相似文献   

4.
Groundwater is the most important natural resource used for drinking by many people around the world, especially in rural areas. In Tunisia, since the quantity and the quality of water available for different uses is variable from one place to another, groundwater quality in El Khairat deep aquifer was evaluated for its suitability for drinking purposes. To this end, an attempt has been made for the first time in order to determine spatial distribution of groundwater quality parameters and to identify places with the best quality for drinking within the study area based on: (1) an integrated analysis of physical?Cchemical parameters, (2) use of Geographical Information System, and (3) Water Quality Index (WQI) calculation. The physical?Cchemical results were compared with the World Health Organization (WHO) standards for drinking and public health, in order to have an overview of the present groundwater quality. According to the overall assessment of the basin, almost all the parameters analyzed are above the desirable limits of WHO. Using GIS contouring methods with Arcview 3.2a, spatial distribution maps of pH, TDS, EC, TH, Cl, HCO3, SO4, NO3, Ca, Mg, Na, and K have been created. The spatial analysis of groundwater quality patterns of the study area shows that the TDS value increases from north-west to south-east following the general trend of the Khairat aquifer flow direction. The spatial distribution map of TH shows that a majority of the groundwater samples falls in the very hard category. WQI was used to assess the suitability of groundwater from the study area for human consumption. From the WQI assessment, over 82% of the water samples fall within the ??Poor?? and ??Very poor?? categories, suggesting that groundwater from the south-eastern of the El Khairat deep aquifer is unsuitable for drinking purposes.  相似文献   

5.
An effort has been made to comprehend the groundwater quality of Raipur city for drinking purpose utilizing Water Quality Index (WQI) and Geographic Information System (GIS) techniques. In this study thirty four groundwater samples were collected during May, 2015. Standard methods has been adopted in groundwater sampling which are prescribed by the American Public Health Association (APHA, 1995). Eight water quality parameters have been considered to ascertained water quality index viz. pH, chloride, fluoride, calcium, magnesium, alkalinity, hardness and nitrate. The Bureau of Indian Standard (BIS, 2009) has been considered to assess the suitability of groundwater for drinking purposes and for the calculation of WQI. This study reveals that 76% area is falling under excellent, very good and good category and 24% area is falling under poor, very poor and unfit category as per the WQI classification. The predicted accuracy of the obtained result is around 97.05% reflecting capability of adopted techniques. Anthropogenic activities are influencing the groundwater quality of the study area. The present study is helpful in proper planning and management of available water resource for drinking purpose.  相似文献   

6.
Aquifer vulnerability and water quality were assessed in the Central Valleys of Oaxaca (Mexico) using the SINTACS method, based on a geographic information system. SINTACS layers were prepared using data such as climate (rainfall and temperature), water table, hydraulic conductivity, geology, soil type and topographic model. Maps for water quality index (WQI), contamination index and pollution sources index (PSI) were also obtained by this work. Groundwater quality in the Central Valleys may be affected by two factors, those with an anthropogenic origin and those with natural origin. High vulnerability values are located in the valleys of the basin, where granular sediments are exposed. Low vulnerability values are distributed in the basin??s ranges, where metamorphic rocks are found. Given that many of the zones with the highest groundwater vulnerability values correspond to zones with the greatest PSI values, there is great risk of groundwater contamination for the area of study because external (indicated by PSI) and internal (indicated by SINTACS) factors that cause pollution can be frequently observed in the same place. Geographic weighted regression (GWR) is used to test the dependency between WQI as dependent variable and SINTACS, PSI, Urban localities, Agriculture, Pastures and Rivers as predictors. The results indicate the non-stationary behavior of the dependent variable with respect to the predictors. While the obtained GWR models used to model WQI cannot be used in practical situations to predict the behavior of said variable, they can be used to estimate the degree to which the predictors influence the variable of interest.  相似文献   

7.
Agriculture sector by using 80% of freshwater is the greatest water consumer in Iran. Excessive use of agricultural fertilizers in last decade, caused accumulation of enormous amounts of salts and subsequence declined the physical properties of soil. In desert and dry regions such as Rafsanjan plain, use of the groundwater resources is more than the surface water resources. Therefore, information about the quality of these resources remains a necessary task for optimum management, protection of water resources, and stopping the future damages. In this study, the groundwater quantity and quality of Rafsanjan plain was investigated by MODFLOW and MT3DMS. The presented quantitative model for this aquifer was compared by observed data and calibrated. This model was used to predict a 10-year period. Results show that water elevation decreases approximately 15 m for 10 years to come in this plain. Qualitative model results show that most quality parameters will increase. Electrical conductivity will increase more than other parameters. As values of this parameter will reach 16,000 µs/l for next 5 years. Therefore, we suggest that exploitation of water from these resources should be reduced and discharge from some of agricultural wells stop; also we suggested that recharge to groundwater resources should be increased and agricultural activities should be limited or improved using of modern irrigation systems in this plain.  相似文献   

8.
Safeguarding groundwater from pollution is largely a global political decision. These decisions are basically supported by DRASTIC (D=Depth to water, R=Recharge, A=Aquifer media, S=Soil media, T=Topography, I=Impact of vadose zone, C=Hydraulic conductivity) analysis. Furthermore, water quality index (WQI) is an effective tool for groundwater quality evaluation and management. This study identifies the relationship between these two indices [i.e., pollution vulnerability index (PVI) and WQI]. The DRASTIC index of the study area was found to be from 60.4 to 178 characterized by very low, low, medium high, and very high vulnerability constituting of 12.88, 24.38, 34.11, 21.99, and 6.63% of the study area, respectively. In addition, the WQI of the area according to the analyzed parameters is between 10.19 and 55.63. It was established that a good correlation (61%) was found to exist between the two indices; which may be an indication that most pollutants present in the groundwater are likely due to anthropogenic activities on the land surface.  相似文献   

9.
甘肃西部平原区地下水同位素特征及更新性   总被引:8,自引:4,他引:8  
大量同位素资料研究表明,甘肃西部黑河流域南部平原区地下水补给和更新的特征是,具有非均一性和有限性;潜水较年轻又更新快,承压水较老又更新慢;东部地下水更新较快,西部更新较慢;祁连山前戈壁带地下水更新较快,细土平原更新较慢;近河道带地下水更新速率大,远离河道则小。上述特征与出山地表径流量及其补给源属性密切相关。因此,结合地下水更新特征,充分利用祁连山前戈壁带较强的入渗条件和调蓄功能,与地表水联合优化调控,有利于该区水资源可持续利用。  相似文献   

10.
At present,due to shortage of water resources,especially in arid and semiarid areas of the world such as Iran,exploitation of groundwater resources with suitable quality for drinking is of high importance.In this regard,contamination of groundwater resources to heavy metals,especially arsenic,is one of the most important hazards that threaten human health.The present study aims to develop an approach for presenting the groundwater quality of Sirjan city in Kerman Province,based on modern tools of spatial zoning in the GIS environment and a fuzzy approach of evaluating drinking water in accordance with the standards of world health organization(WHO).For this purpose,qualitative data related to 22 exploitation wells recorded during 2002 to 2017 were used.In addition,fuzzy aggregate maps were prepared in two scenarios by neglecting and considering arsenic presence in groundwater resources.The results showed a decrease in groundwater quality over time.More specifically,neglecting the presence of arsenic,in 2002,all drinking wells in the area were located in an excellent zone,while in 2017 a number of operation wells were located in the good and medium zone.Also,the final map,considering the presence of arsenic as a limiting factor of drinking water,indicated that parts of the southern regions of the plain would be the best place to dig wells for drinking water.Therefore,the use of new methods can contribute significantly to the usage of groundwater aquifers and provide a good view of the aquifer water quality.  相似文献   

11.
The relationship between surface water and groundwater not only influences the water quantity, but also affects the water quality. The stable isotopes (δD, δ 18O) and hydrochemical compositions in water samples were analysed in the Second Songhua River basin. The deep groundwater is mainly recharged from shallow groundwater in the middle and upper reaches. The shallow groundwater is discharged to rivers in the downstream. The runoff from upper reaches mainly contributed the river flow in the downstream. The CCME WQI indicated that the quality of surface water and groundwater was ‘Fair’. The mixing process between surface water and groundwater was simulated by the PHREEQC code with the results from the stable isotopes. The interaction between surface water and groundwater influences the composition of ions in the mixing water, and further affects the water quality with other factors.  相似文献   

12.
Conventional graphical and statistical methods were used with water quality indices to characterize the hydrochemistry of groundwater from the northern part of the Volta region of Ghana. The objective was to determine the processes that affect the hydrochemistry and the variation of these processes in space among the three main geological terrains: the Buem formation, Voltaian System and the Togo series that underlie the area, and to determine the suitability of groundwater from the area for drinking purposes. The Q-mode cluster analysis reveals three main water groups. The groups established from the Q-mode HCA appear to indicate different degrees of weathering which could further indicate varying levels of fracturing aquifer hydraulic properties. R-mode HCA and factor analysis (using varimax rotation and Kaiser Criterion) were then applied to determine the significant sources of variation in the hydrochemistry. This study finds that groundwater hydrochemistry in the area is controlled by the weathering of silicate and carbonate minerals, as well as the chemistry of infiltrating precipitation. Mineral activity diagrams for the CaO–Na2O–Al2O3–SiO2–H2O and CaO–MgO–Al2O3–SiO2–H2O systems plotted for the area indicate stability in the smectite field and attribute hydrochemistry to the weathering of silicate minerals. Silicate mineral weathering and the effects of precipitation appear to be pervasive among all the three main geological terrains, whereas carbonate weathering is localized among the Voltaian aquifers. Cation exchange does not appear to play a significant role in the hydrochemistry but mild Water quality indices (WQI) were calculated for the samples using the concentrations of Na+, Ca2+, Mg2+, Cl, NO3 , F, and EC at the various sample locations. The WQI values indicate that groundwater from the study area is of excellent quality for drinking purposes. WQI values from groundwater samples are averagely higher than samples taken from surface water sources in the area. This implies that geology has had an impact on the WQI of groundwater in the area.  相似文献   

13.
Groundwater is a vital source of water for industrial, domestic and agricultural activities in Tuticorin city due to lack of surface water resources; groundwater quality and its suitability for drinking usage were evaluated. A total of 72 groundwater samples were collected from open wells and boreholes during pre and post-monsoon period. Samples were analyzed for physico-chemical properties, major cation and major anions in the laboratory using the standard methods given by the American Public Health Association. The geographic information system-based spatial distribution map of different major elements has been prepared using ArcGIS 9.2. These maps are classified as desirable, maximum permissible and the values that exceed maximum permissible limit are termed as not permissible prescribed by the WHO (2004). From the Piper plot, which gives the cation chemistry, the concentration of the alkalies (Na+ and K+) exceeds the alkaline earths (Ca2+ and Mg2+) and those of strong acids exceeds weak acids. In the case of anions, during the two periods strong acid shows dominance over weak acid and HCO3 ? and Cl? have influences almost equal to Na+, which indicate the saltwater intrusion into the freshwater aquifer of the study area. A Canadian Council of Ministers for the Environment Water Quality Index (CCME WQI) map was also generated with the GIS technique to better understand the water portability over space. The categories of water quality evaluated by CCME WQI values of major part of the study area fall under fair category during PRM and good category during the POM period. The CCME WQI is a very useful and an efficient tool to summarize and to report on the monitoring data to the decision makers in order to understand the status of the groundwater quality. Finally, the study concludes that the groundwater quality is impaired by man-made activities, and proper management plan is necessary to protect valuable groundwater resources in Tuticorin city.  相似文献   

14.
Groundwater quality of the Tiruppur district in Tamil Nadu was investigated in this study to develop a Water Quality Index (WQI) model. Hydrochemical parameters showed tremendous variation in certain location over the seasons. Ionic chemistry of groundwater suggested that textile industries and rock-water interaction are major threats to the water quality. Analysis of Na and Ca concentration indicates that direct as well as the inverse cation exchange controls the natural cation chemistry. NO3 concentration shows that the pre-monsoon samples were affected by the fertilizer usage in agricultural fields. Na-Cl type of the water was dominant throughout the study area except few locations. WQI showed that 55% of the pre-monsoon samples and the 47% of the post monsoon samples were classified as poor/very poor/unsuitable for drinking category. Leaching of the textile waste and their transport to the downstream was well observed during the post-monsoon season. The specific contribution of river Noyyal in the transport of the solutes to the discharge zones was proved by the hydrochemistry of the samples.  相似文献   

15.
黄河下游河南段浅层地下水质量评价及污染分析   总被引:1,自引:0,他引:1  
续常胜  唐书平  黄继超 《地下水》2009,31(3):97-101
黄河下游冲积平原(河南段)浅层地下水资源丰富,浅层地下水质量如何?以水质监测资料为依据,根据地下水质量标准和饮用水标准进行了水质评价.结果表明,河南段浅层地下水作为饮用水使用,水质多属好、较好水,少部分属差、较差水,地下水质量多为较好的Ⅲ级水,没有极差的Ⅴ级水存在,矿化度及地下水类型分布总体特征是:从西到东水质由好到差,矿化度由低到高,地下水类型由简单 (HCO-Ca、Mg) 到复杂 HCO、CI-Na、Mg、Ca的变化特征.  相似文献   

16.
An attempt has been made to evaluate the water quality in the fast-growing coastal area of South Chennai. Groundwater samples were collected from selected locations and analyzed for major physico-chemical parameters. Experimental results show that the water has alkaline with pH varying from 7.2 to 8.2. Concentrations of Na and Cl were positively correlated with EC and elevated levels of these parameters near the coastal region, especially in the northern end of the study area, indicating the influence of seawater intrusion. Piper diagram identified Na–Cl as the dominant type of water in most of the samples. The presence of Ca–Cl facies in the groundwater suggests the possible ion exchange (Na with Ca) reaction in the aquifer. Molar ratios of Cl/HCO3 and Mg/Ca showed a higher value (>1) in many samples, which confirmed the influence of seawater intrusion on water quality. The Water Quality Index (WQI) of the study area ranged between 8 and 116, the highest recorded being at Thiruvanmiyur and the lowest at Muttukkadu. However, total hardness values show that 64% of the samples were hard or very hard in nature. The results of SAR, Na%, and PI show that majority of the samples are suitable for irrigation purposes. A comparison of spatial distribution maps of water quality parameters with those of WQI shows that groundwater quality has highly deteriorated in the Thiruvanmiyur region, located on the northeast part of the study area. Good-quality water is found at the southeast part of the study area, namely, Muttukkadu. This study indicates that urbanization and seawater intrusion have heavily affected the groundwater quality of South Chennai coastal area.  相似文献   

17.
通过对松嫩平原地下水超采形势分析,掌握地下水资源的补给及开发利用状况、地下水位下降趋势情况,为监测、监督地下水的过量开采与污染、保护、合理利用地下水资源,促进地下水可持续利用提供基础数据与决策依据。依据近10年地下水水位、水质监测数据,采用超采系数法、地下水位下降速率法,结合地下水资源均衡和地下水水质污染情况,通过数值模拟、数理统计、条件类比、地质分析等方法,综合分析确定地下水超采形势。  相似文献   

18.
Beijing is a city of severe water shortage. The groundwater plays a key role in the water supply. However, the groundwater level has been gradually descending due to extensive pumping in consecutive drought years. How to satisfy the water demand and recover the groundwater level is an urgent work. With the implementation of the South to North Water Transfer Project, an opportunity has been provided for restoration of groundwater under over exploitation. On the basis of hydrogeology conditions of the Beijing plain, as well as the high-performance parallel computing platforms, a groundwater flow numerical model was established. And dynamic monitoring data of groundwater levels were used to calibrate the numerical model. The calculation results fit well with the measured data in the calibrated model. Therefore, the calibrated model can be used to predict the dynamic change of groundwater levels in the Beijing plain. The results show that several obvious depression cones of groundwater have been formed because of the rapid decline of groundwater levels in the Beijing plain in recent years. After the implementation of the South to North Water Transfer project and due to the restrictions on groundwater exploitation, the area of cone of depression will be reduced to different degrees, the central water level of depression cone will increase, and some cones of depression around wellhead will disappear. It is a benefit to relieve water shortage and control the development of land subsidence and the deterioration of the ecological environment.  相似文献   

19.
The purpose of this research is to evaluate the groundwater quality in Dindugal district of Tamil Nadu based on the water quality index by geographic information system (GIS) and statistical analysis. This area consists of 80 functional tanneries around Dindigul town with a capacity to process about 200 Mt of hides and skins as leather. In 13 villages, as many as 1090 houses were damaged by tannery contamination. A total of 66 groundwater samples were collected to identify the geochemical sources and contamination. The order of major cations is Na > Ca > Mg > K, while that of anions is Cl > SO4 > HCO3 > F > PO4. CaCl2, MgCl2, and (CaHCO3)2 types suggested that the mixing of high-salinity water was caused by irrigation return flow, domestic wastewater, and septic tank effluents, with existing water followed by ion exchange reactions. Moreover, Gibbs plots indicated that groundwater contamination was derived from the weathering of granitic gneisses as well as the leaching of evaporated and crystallized ions from agricultural and industrial effluents. The water quality index (WQI) exhibited 8 % of the groundwater samples were not suitable for drinking purpose. The GIS maps showed that the poor water quality decreased toward the southern part of the study area. WQI of TDS, fluoride, sodium, potassium, and bicarbonate were high in groundwater. Multivariate statistical analyses (principal component analysis (PCA), factor analysis (FA)) suggested that the groundwater chemistry was changed by the weathering of source rocks ion exchange and leaching of inorganic components and addition from anthropogenic effluents. Finally, it is thought that the monitoring and assessment works are very useful to understand the degree and sources of groundwater contamination.  相似文献   

20.
海河流域水资源严重短缺,地下水长期超采是制约社会经济可持续发展的主要瓶颈.开展流域地下水资源及开发利用潜力研究,对支撑服务地下水超采治理、地下水资源可持续利用和生态环境保护都具有重要意义.经系统评价,海河流域天然资源量252.99×108 m3,生态水位约束条件下的浅层地下水开采资源量172.98×108 m3,可更新...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号