首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
积雪是地表最活跃的自然要素之一,其动态变化对气候、环境以及人类生活都产生了重要影响。本文利用MODIS积雪产品和IMS雪冰产品,首先通过Terra、Aqua双星合成和临近日合成去除MODIS积雪产品中的部分云像元,再与IMS融合,获取了青藏高原2002-2012年逐日无云积雪覆盖产品,并逐像元计算每个水文年的积雪覆盖日数(SCD)、积雪开始期(SCS)和积雪结束期(SCE),分析了不同生态分区积雪的时空变化特征,以及积雪开始期和结束期与温度、降水的关系。结果表明:青藏高原积雪分布存在明显的空间差异,南部喜马拉雅山脉和念青唐古拉山地区以及西部帕米尔高原和喀喇昆仑山脉为SCD的2个高值区,年均积雪日数在200 d以上。18.1%的区域SCS表现出明显的提前趋势,主要集中在青藏高原中东部;羌塘高原南部、念青唐古拉山西段以及川西地区有显著推迟趋势,占高原面积的8.5%。23.2%的区域SCE显著推迟,主要集中在果洛那曲高寒区、昆仑山区和念青唐古拉山地区;而仅有6.9%的区域表现出提前趋势,主要分布在高原西南部。总体上,不同生态单元内积雪开始与结束期受温度、降水的影响差异很大,表现出不同的空间格局与演变趋势。  相似文献   

2.
Air temperature and snow cover variability are sensitive indicators of climate change. This study was undertaken to forecast and quantify the potential streamflow response to climate change in the Jhelum River basin. The implications of air temperature trends (+0.11°C/decade) reported for the entire north-west Himalaya for past century and the regional warming (+0.7°C/decade) trends of three observatories analyzed between last two decades were used for future projection of snow cover depletion and stream flow. The streamflow was simulated and validated for the year 2007-2008 using snowmelt runoff model (SRM) based on in-situ temperature and precipitation with remotely sensed snow cover area. The simulation was repeated using higher values of temperature and modified snow cover depletion curves according to the assumed future climate. Early snow cover depletion was observed in the basin in response to warmer climate. The results show that with the increase in air temperature, streamflow pattern of Jhelum will be severely affected. Significant redistribution of streamflow was observed in both the scenarios. Higher discharge was observed during spring-summer months due to early snowmelt contribution with water deficit during monsoon months. Discharge increased by 5% 40% during the months of March to May in 2030 and 2050. The magnitude of impact of air temperature is higher in the scenario-2 based on regional warming. The inferences pertaining to change in future streamflow pattern can facilitate long term decisions and planning concerning hydro-power potential, waterresource management and flood hazard mapping in the region.  相似文献   

3.
Mountainous basins like the Upper Indus Basin(UIB) of Gilgit Baltistan(GB) are dependent on seasonal snowmelt and glacier melt. Monitoring of the snow-covered area(SCA) is not only vital for the overall hydrology of the Indus basin but also important to the sustainable agriculture and hydropower system. The snow-covered area in the UIB of GB was investigated for changes over the last 18 years using the Moderate Resolution Imaging Spectroradiometer(MODIS) snow product. The study area was divided into five elevation zones ranging from 877-8564 meters above sea level(m ASL). In contrast to the global cryosphere related studies, SCA in the UIB is slightly increasing. Elevation based SCA analysis also indicated that SCA is slightly increasing in each elevation zone. However, a significant amount of snow is concentrated in areas above 5000 m ASL. Due to the strong correlation between SCA and precipitation, the precipitation data also follow a similar trend. Analysis of the climatic data suggests a statistically significant increase in total monthly precipitation and relative humidity, a slight decrease in mean monthly temperature and a significant upward tendency in monthly solar irradiance data. All these trends in combination with the increasing trend in global precipitation, winter westerly disturbances and orographic precipitation are the important factors behind the slightly increasing SCA in the study area. Our results though constrained by short observation period mainly contribute to the understanding of advancing snow cover and glaciers in Hindukush Karakoram.  相似文献   

4.
The dynamics of snow cover differs greatly from basin to basin in the Songhua River of Northeast China, which is attributable to the differences in the topographic shift as well as changes in the vegetation and climate since the hydrological year (HY) 2003. Daily and flexible multi-day combinations from the HY 2003 to 2014 were produced using Moderate Resolution Imaging Spectroradiometer (MODIS) from Terra and Aqua remote sensing satellites for the snow cover products in the three basins including the Nenjiang River Basin (NJ), Downstream Songhua River Basin (SD) and Upstream Songhua River Basin (SU). Snow cover duration (SCD) was derived from flexible multiday combination each year. The results showed that SCD was significantly associated with elevation, and higher SCD values were found out in the mountainous areas. Further, the average SCDs of NJ, SU and SD basins were 69.43, 98.14 and 88.84 d with an annual growth of 1.36, 2.04 and 2.71 d, respectively. Binary decision tree was used to analyze the nonlinear relationships between SCD and six impact factors, which were successfully applied to simulate the spatial distribution of depth and water equivalent of snow. The impact factors included three topographic factors (elevation, aspect and slope), two climatic factors (precipitation and air temperature) and one vegetation index (Normalized Difference Vegetation Index, NDVI). By treating yearly SCD values as dependent variables and six climatic factors as independent variables, six binary decision trees were built through the combination classification and regression tree (CART) with and without the consideration of climate effect. The results from the model show that elevation, precipitation and air temperature are the three most influential factors, among which air temperature is the most important and ranks first in two of the three studied basins. It is suggested that SCD in the mountainous areas might be more sensitive to climate warming, since precipitation and air temperature are the major factors controlling the persistence of snow cover in the mountainous areas.  相似文献   

5.
利用2000-2014年MOD10A2积雪产品和数字高程模型DEM数据,以积雪覆盖率为指标,在分析西藏高原积雪空间分布特点的基础上,定量研究了高程、坡度和坡向等地形要素对高原积雪时空分布的影响。主要结论有:① 西藏高原积雪的空间分布差异显著,具有中东部念青唐古拉山和周边高山积雪丰富,覆盖率高,而南部河谷和羌塘高原中西部积雪少,覆盖率低的特点。② 海拔越高积雪覆盖率越高,积雪持续时间越长,年内变化越稳定。海拔2 km以下积雪覆盖率不足4%,海拔6 km以上覆盖率达75%。海拔4 km以下年内积雪覆盖呈单峰型分布特点,海拔越高,单峰型越明显;而海拔4 km以上则为双峰型,海拔越高,双峰型越明显。海拔6 km以下积雪覆盖率最低值出现在夏季,而6 km以上则出现在冬季。③ 总体上,高原地形坡度越高积雪覆盖率越高。不同坡向中,北坡积雪覆盖率最高,南坡最低,年内分布呈双峰型,而无坡向的平地积雪覆盖率要小于有坡向的山地,其年内变化呈单峰型分布特点。  相似文献   

6.
An understanding 0f variati0ns in vegetati0n c0ver in resp0nse t0 climate change is critical f0r predicting and managing future terrestrial ec0system dynamics. Because scientists anticipate that m0untain ec0systems will be m0re sensitive t0 future climate change c0mpared t0 0thers, 0ur 0bjectives were t0 investigate the impacts 0f climate change 0n variati0n in vegetati0n c0ver in the Qilian M0untains (QLM), China, between 2000 and 2011. T0 acc0mplish this, we used linear regressi0n techniques 0n 250-m MODIS N0rmalized Difference Vegetati0n Index (NDVI) datasets and mete0r0l0gical rec0rds t0 determine spati0temp0ral variability in vegetati0n c0ver and climatic fact0rs (i.e. temperature and precipitati0n). Our results sh0wed that temperatures and precipitati0n have increased in this regi0n during 0ur study peri0d. In additi0n, we f0und that gr0wing seas0n mean NDVI was mainly distributed in the vertical z0ne fr0m 2,700 m t0 3,600 m in elevati0n. In the study regi0n, we 0bserved significant p0sitive and negative trends in vegetati0n c0ver in 26.71% and 2.27% 0f the vegetated areas. C0rrelati0n analyses indicated that rising precipitati0n fr0m May t0 August was resp0nsible f0r increased vegetati0n c0ver in areas with p0sitive trends in gr0wing seas0n mean NDVI. H0wever, there was n0 similar significant c0rrelati0n between gr0wing seas0n mean NDVI and precipitati0n in regi0ns where vegetati0n c0ver declined thr0ugh0ut 0ur study peri0d. Using spatial statistics, we f0und that veeetati0n c0ver freauentlvdeclined in areas within the 2,500-3,100 m vertical z0ne, where it has steep sl0pe, and is 0n the sunny side 0f m0untains. Here, the p0sitive influences 0f increasing precipitati0n c0uld n0t 0ffset the drier c0nditi0ns that 0ccurred thr0ugh warming trends. In c0ntrast, in higher elevati0n z0nes (3,900-4,500 m) 0n the shaded side 0f the m0untains, rising temperatures and increasing precipitati0n impr0ved c0nditi0ns f0r vegetati0n gr0wth. Increased precipitati0n als0 facilitated vegetati0n gr0wth in areas experiencing warming trends at l0wer elevati0ns (2,000-2,400 m) and 0n l0wer sl0pes where water was m0re easily c0nserved. We suggest that spatial differences in variati0n in vegetati0n as the result 0f climate change depend 0n l0cal m0isture and thermal c0nditi0ns, which are mainly c0ntr0lled by t0p0graphy (e.g. elevati0n, aspect, and sl0pe), and 0ther fact0rs, such as l0cal hydr0l0gy.  相似文献   

7.
《山地科学学报》2020,17(1):117-132
The climate change and unsustainable anthropogenic modification can intensify the vulnerability of the Himalayas. Natural springs are the principal source of potable water security for the Himalayan population. The changes in the trend of precipitation, temperature and glacier melt are expected to impact the quantity and quality of spring water significantly. This review presents an insight to unravel the effects of climate change and land use land cover changes on the spring resources and outline the essential elements of spring hydrology in the Himalayas. The sensitive response of spring flow to the climate has been observed to follows an annual periodic pattern strongly dependent on snowmelt,rainfall, and evapotranspiration. Among all types,Karst aquifers were found to be highly vulnerable. The changes in the forest and urban landscapes are affecting the recharging sites in the headwater region.In the Central Himalayan region(Kosi River basin,Kumaun), the number of perennial springs is decreasing at a rate of three springs year-1, and nonperennial springs are increasing at the rate of one spring year-1. The high concentration of NO3-, Cl-1,SO42-, and coliform counts reported from the spring water evidence a high susceptibility of shallow aquifers to the non-point source of pollution. Future projections indicate high surface-runoff and occurrence of extreme events such as floods, glacial lake outbursts, and landslides can affect the flow and water quality of springs. As the impact of climate change and anthropogenic activities are expected to increase with time remarkably, there is an urgent need to promote regional scientific studies on springs targeting hydrogeochemical evolution, vulnerability assessment, recharge area dynamics, and development of springshed management program.  相似文献   

8.
气候变暖背景下高海拔山区融雪(冰)以及强降水引发的洪水愈加难以预测,通过山区雨雪分离可判定引发洪水的温度条件,从而为山洪准确预报提供简单而科学的参考依据。本研究以昆仑山提孜那甫河流域为例,基于流域内不同海拔气象站2012-2016年的降水以及温度数据,结合MOD10A2积雪数据,采用温度积分法和概率统计方法,利用研究期内的平均温度,确定出不同降水形态对应的温度条件,以达到雨雪分离的目的。研究结果表明,莫木克站最大温和积温分别达到20.91 ℃和51.82 ℃时,降水可判定为降雨,最大温和积温分别低于18.13 ℃,43.69 ℃时,降水可判定为降雪;库地站最大温和积温分别达到14.51 ℃,33.17 ℃时,降水可判定为降雨,最大温和积温分别低于13.57 ℃,31.68 ℃时,降水可判定为降雪;西合休站最大温和积温分别达到9.43 ℃,19.53 ℃时,降水可判定为降雨,最大温和积温分别低于8.22 ℃,19.4 ℃时,降水可判定为降雪。利用流域内气象站点附近乡镇的气象统计数据对温度条件及分离结果进行验证,在海拔2000 m以下、2000~3000 m以及3000 m以上不同海拔地区的准确率分别为92.86%、79.49%以及88.3%。本研究可为判别洪水类型和洪水预报提供科学参考。  相似文献   

9.
喜马拉雅山是由印度板块和欧亚板块相碰撞而形成,这已被当代多数有关科学家所认识。一些测量数据也表明喜马拉雅山现在仍在快速隆升。而喜马拉雅山主峰——珠穆朗玛峰的高程的测定,也成为当代地学界的热点。本文结合最新资料对精确测定珠峰高程的一些问题,诸如水准基面、峰顶标志和积雪等进行了讨论。  相似文献   

10.
Snowmelt is an important component of any snow-fed river system.The Jhelum River is one such transnational mountain river flowing through India and Pakistan.The basin is minimally glacierized and its discharge is largely governed by seasonal snow cover and snowmelt.Therefore,accurate estimation of seasonal snow cover dynamics and snowmeltinduced runoff is important for sustainable water resource management in the region.The present study looks into spatio-temporal variations of snow cover for past decade and stream flow simulation in the Jhelum River basin.Snow cover extent(SCE) was estimated using MODIS(Moderate Resolution Imaging Spectrometer) sensor imageries.Normalized Difference Snow Index(NDSI) algorithm was used to generate multi-temporal time series snow cover maps.The results indicate large variation in snow cover distribution pattern and decreasing trend in different sub-basins of the Jhelum River.The relationship between SCE-temperature,SCE-discharge and discharge-precipitation was analyzed for different seasons and shows strong correlation.For streamflow simulation of the entire Jhelum basin Snow melt Runoff Model(SRM) used.A good correlation was observed between simulated stream flow and in-situ discharge.The monthly discharge contribution from different sub-basins to the total discharge of the Jhelum River was estimated using a modified version of runoff model based on temperature-index approach developed for small watersheds.Stream power - an indicator of the erosive capability of streams was also calculated for different sub-basins.  相似文献   

11.
Since the late 1950's, many Chinese scientists have explored the remains of the Quaternary glaciation in the Qinghai-Xizang (Tibet) Plateau and its surrounding mountains. In the main, 3-4 glaciations have been recognized. The largest one occurred in the Late Middle Pleistocene with piedmont glaciers, ice caps and trellis valley glaciers in many high peak regions. But here is no evidence of a unified ice sheet covering the whole plateau as described by M. Kuhle. Due to the further uplifting of the Himalayas and Qinghai-Xizang Plateau the climate became progressively drier, diminishing the extension of glaciers during the Late Pleistocene. The elevation of the snow line during the Last Glaciation was about 4,000 m on the south, east and northeast edges of the plateau and ascended to 5500 m on the hinder northwest of the plateau. The thermal effect of the big plateau massif, the sharp increase of aridity from the southeast rim to the northwest inland area and the abrupt decrease of precipitation during the  相似文献   

12.
光学与微波遥感的新疆积雪覆盖变化分析   总被引:1,自引:0,他引:1  
利用2002-2013年冬季的MODIS光学遥感数据,以及AMSR-E、AMSR2与MWRI被动微波遥感数据,建立了新疆地区冬季每日积雪分布遥感反演模型。首先,将Terra与Aqua双星MODIS的积雪产品融合,初步去云并最大化积雪信息;然后,利用AMSR-E/AMSR2和MWRI被动微波数据进行每日雪盖提取;最后,利用被动微波遥感数据反演得到的每日雪盖结果对双星融合后依然有云的像元进行替换,得到每日积雪分布情况。据此模型提取了11年间冬季的积雪天数信息,结合气象台站观测数据,分析了新疆冬季积雪的年内和年际变化规律。结果表明,新疆地区积雪主要分布在北部新疆,积雪天数与地形关系密切,山区积雪天数较多,盆地及城市区积雪天数较少;积雪天数年内变化是从11月到次年1月随温度降低逐渐增加,从1月到3月积雪天数则逐渐减少。新疆地区积雪天数在这11年中存在一定的波动,积雪天数与该年的平均气温,以及月低于0℃的天数存在显著相关性,与降雪量关系不明显。新疆地区近年来积雪天数重心有向西向南移动的趋势,这可能与全球气候变暖导致多年积雪融化有关。  相似文献   

13.
Since the late 1950’s, many Chinese scientists have explored the remains of the Quaternary glaciation in the Qinghai-Xizang (Tibet) Plateau and its surrounding mountains. In the main, 3–4 glaciations have been recognized. The largest one occurred in the Late Middle Pleistocene with piedmont glaciers, ice caps and trellis valley glaciers in many high peak regions. But here is no evidence of a unified ice sheet covering the whole plateau as described by M. Kuhle. Due to the further uplifting of the Himalayas and Qinghai-Xizang Plateau the climate became progressively driver, diminishing the extension of glaciers during the Late Pleistocene. The elevation of the snow line during the Last Glaciation was about 4,000 m on the south, east and northeast edges of the plateau and ascended to 5500 m on the hinder northwest of the plateau. The thermal effect of the big plateau massif, the sharp increase of aridity from the southeast rim to the northwest inland area and the abrupt decrease of precipitation during the Ice Age largely account for the distribution of the Quaternary glaciers in the Qinghai-Xizang Plateau. The neglect of Chinese literature may be one of the causes accounting for M. Kuhle’s misinterpretation on the environment of the Quaternary glaciations in the Qinghai-Xizang Plateau.  相似文献   

14.
Sdsealbedoisdefinedasaratioofreflectivesolarradiationtototalacradiation,whichcanindicatetheaborptionandreflectivecapabilityofthe~hforsolarradiation.Itisan~tfactortoinfluencethes~radiationbalance,espeiallyfortheformationandvariationoflocalndcroclirnate.Generally,theactualdatafromo~tionalstationSforrebationareedintheanalysisofsolacealal.HOwever,therepresentativenessOfthedateisIratedduetothescarcityofobservationalstationandunevendistributionofs~condition.Afterthe1960s,theanalysisfors~ealbedoise…  相似文献   

15.
Climate change has significantly affected hydrological processes and increased the frequency and severity of water shortage, droughts and floods in northeast China. A study has been conducted to quantify the influence of climate change on the hydrologic process in the Tao'er River Basin(TRB), one of the most prominent regions in northeast China for water contradiction. The Soil and Water Assessment Tool(SWAT) model was calibrated and validated with observed land use and hydro-climatic data and then employed for runoff simulations at upper, middle and lower reaches of the river basin for different climate change scenarios. The results showed that a gradual increase in temperature and decrease in annual precipitation in the basin was projected for the period 2020-2050 for both representative concentration pathways(RCP) 4.5 and 8.5 scenarios. The climate changes would cause a decrease in annual average runoff at basin outlet by 12 and 23 million m3 for RCP4.5 and 8.5, respectively. The future runoff in the upstream and midstream of the basin during 2020-2050 would be-10.8% and-12.1% lower than the observed runoff compared to the base period for RCP4.5, while those would be-5.3% and-10.7% lower for RCP8.5. The future runoff will decrease at three hydrology stations for the assumed future climate scenarios. The results can help us understand the future temperature and precipitation trends and the hydrological cycle process under different climate change scenarios, and provide the basis for the rational allocation and management of water resources under the influence of future climate change in the TRB.  相似文献   

16.
The multi-model assessment of glaciohydrological regimes can enhance our understanding of glacier response to climate change. This improved knowledge can uplift our computing abilities to estimate the contributing components of the river discharge. This study examined and compared the hydrological responses in the glacier-dominated Shigar River basin(SRB) under various climatic scenarios using a semi-distributed Modified Positive Degree Day Model(MPDDM) and a distributed Glacio-hydrological Degree-day Model(GDM). Both glacio-hydrological models were calibrated and validated against the observed hydro-meteorological data from 1988-1992 and 1993-1997. Temperature and precipitation data from Shigar and Skardu meteorological stations were used along with field estimated degree-day factor, temperature, and precipitation gradients. The results from both models indicate that the snow and ice melt are vital contributors to sustain river flow in the catchment. However, MPDDM estimated 68% of rain and baseflow contribution to annual river runoff despite low precipitation during the summer monsoon, while GDM estimated 14% rain and baseflow contribution. Likewise, MPDDM calculated 32%, and GDM generated 86% of the annual river runoff from snow and ice melt. MPDDM simulated river discharge with 0.86 and 0.78 NSE for calibration and validation, respectively. Similarly, GDM simulated river discharge with improved accuracy of 0.87 for calibration and 0.84 NSE for the validation period. The snow and ice melt is significant in sustaining river flow in the SRB, and substantial changes in melt characteristics of snow and ice are expected to have severe consequences on seasonal water availability. Based on the sensitivity analysis, both models' outputs are highly sensitive to the variation in temperature. Furthermore, compared to MPDDM, GDM simulated considerable variation in the river discharge in climate scenarios, RCP4.5 and 8.5, mainly due to the higher sensitivity of GDM model outputs to temperature change. The integration of an updated melt module and two reservoir baseflow module in GDM is anticipated to advance the representation of hydrological components, unlike one reservoir baseflow module used separately in MPDDM. The restructured melt and baseflow modules in GDM have fundamentally enriched our perception of glacio-hydrological dynamics in the catchment.  相似文献   

17.
以2000-2018年MODIS MOD10A1日产品数据为数据源,结合数字高程模型(DEM)及降水量、风向等气象数据,构建了积雪空间分布模型,能够有效地提取强降雪区域。以此为基础,利用相关分析、缓冲区分析等方法,探究山东半岛降雪时空分布特征,结果表明:① 将NDSI累积量与DEM数据相结合,能够有效构建山东半岛积雪空间分布模型,实现了对山东半岛强、弱降雪区域提取,NDSI累积量≥150的区域中,在强降雪区的面积占降雪范围的79.78%;② 降雪区域存在空间差异,呈现北多南少,东多西少的分布格局,以黄、渤海与山东半岛海陆分界线为基准,离岸距离39.1 km范围内降雪多,离岸距离39.1 km以外降雪少;山脉150 m高程线北侧迎风坡降雪多,南侧背风坡降雪少;③ 山东半岛强降雪年以3-5年为周期存在年际变化。探究山东半岛降雪长时间序列时空分布特征,在收集淡水资源,缓解用水紧张和灾害预防方面具有一定意义。  相似文献   

18.
准确掌握积雪覆盖信息对于气象、水文和全球气候变化研究都具有重要的意义。遥感技术在进行大范围、高频率的积雪覆盖监测中发挥着重要的作用。目前,SNOMAP算法是用于积雪遥感监测最普遍的技术手段,其核心是利用固定阈值的归一化差分积雪指数(Normalized Difference Snow Index,NDSI)进行积雪识别,但这种方法忽略了积雪光谱信息的时相变化,会产生积雪监测的误差。本文提出了一种动态NDSI阈值方法,以纯永久积雪像元的平均NDSI值作为参照系调整固定的NDSI阈值,从而削减影像光谱值波动对积雪识别的影响。以三江源地区作为研究区域,将基于每日MODIS数据进行积雪监测最佳的NDSI阈值与同日纯永久积雪像元的平均NDSI值作线性回归,通过每日纯永久积雪像元平均NDSI值的变化来调整用于积雪识别的NDSI阈值。结果表明:① 基于每日MODIS数据进行积雪覆盖监测最佳的NDSI阈值与同日纯永久积雪像元的平均NDSI值之间存在较好的线性关系,决定系数R 2达到0.86;② 三江源地区动态NDSI阈值的范围为0.29~0.37,其平均值在0.33左右,说明MODIS全球积雪面积产品中将NDSI阈值取为0.40会低估三江源地区的积雪面积;③ 与采用固定NDSI阈值0.33的监测方法相比,动态NDSI阈值法近似率、总体分类精度和F值的平均值分别提高了5.17%、0.70%、1.14%。  相似文献   

19.
As an important part of global climate system, the Polar sea ice is effccting on global climate changes through ocean surface radiation balance, mass balance, energy balance as well as the circulating of sea water temperature and salinity. Sea ice research has a centuries - old history. The many correlative sea ice projects were established through the extensive international cooperation during the period from the primary research of intensity and the boaring capacity of sea ice to the development of sea/ice/air coupled model. Based on these reseamhes, the sea ice variety was combined with the global climate change. All research about sea ice includes: the physical properties and processes of sea ice and its snow cover, the ecosystem of sea ice regions, sea ice and upper snow albedo, mass balance of sea ice regions, sea ice and climate coupled model. The simulation suggests that the both of the area and volume of polar sea ice would be reduced in next century. With the developing of the sea ice research, more scientific issues are mentioned. Such as the interaction between sea ice and the other factors of global climate system, the seasonal and regional distribution of polar sea ice thickness, polar sea ice boundary and area variety trends, the growth and melt as well as their influencing factors, the role of the polynya and the sea/air interactions. We should give the best solutions to all of the issues in future sea ice studying.  相似文献   

20.
积雪对自然环境和人类活动都有极其重要的影响。积雪参数(雪面积、雪深和雪水当量)反演对水文模型和气候变化研究有着实际的意义。然而,目前森林区的雪深遥感反演精度一直有待于进一步提高。东北地区是我国最大的天然林区和重要的季节性积雪区之一,本文利用FY3B卫星微波成像仪(MWRI)L1级亮温数据和L2级雪水当量数据,以及东北典型林区野外实测雪深数据,对Chang算法、NASA 96算法和FY3B雪深业务化反演算法进行了验证与分析。结果表明:在东北典型林区的雪深反演中,Chang算法和NASA 96算法反演的雪深波动都比较大,当森林覆盖度f≤0.6时,NASA 96算法表现比较好,均方根误差值在3种算法中较小,但当f >0.6时,NASA 96算法失真严重。当考虑纯森林像元(f=1)时,Chang算法低估了雪深47%。当f≤0.3时,FY3B业务化算法始终优于Chang算法。整体上,FY3B业务化算法相对稳定,具有较高的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号