首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
强龙卷超级单体风暴特征分析与预警研究   总被引:26,自引:12,他引:14       下载免费PDF全文
利用多普勒雷达资料,对发生在安徽的3次强烈龙卷过程进行了分析.重点研究了导致F2~F3级强龙卷的3次超级单体风暴多普勒雷达回波特征及其与强冰雹超级单体风暴的差异.另外,利用安徽省、市、县气象报表、历年气候评价灾情资料(部分来自民政部门的灾情报告),对1960年至今的龙卷天气的时空分布及变化趋势、产生龙卷的环流形势特征进行了分析,结果表明:(1)龙卷主要出现在淮北东部和江淮之间东部地势平坦地区,7月份出现龙卷的概率最高.(2)超级单体龙卷产生在中等大小的对流有效位能和强垂直风切变条件下,同时抬升凝结高度较低.(3)3次F2~F3级龙卷在发生前、发生时在多普勒雷达上都探测到强中气旋和龙卷涡旋特征TVS.与非龙卷超级单体风暴相比,导致强龙卷的中气旋底高明显偏低,基本在1 km以下.同时风暴结构也有所不同,造成龙卷天气的超级单体风暴最大反射率因子与风暴质心高度接近,基本在3 km左右,反射率因子在50~60 dBz.造成强冰雹的超级单体风暴在冰雹产生前,风暴最大反射率因子高于风暴质心的高度;当风暴开始降雹时,最大反射率因子高度开始降低,而风暴质心的高度变化不大,高于最大反射率因子高度,基本保持在5km左右,反射率因子在60~70 dBz.  相似文献   

2.
利用高空、地面常规观测资料、分钟级加密自动气象站资料和榆林多普勒雷达资料,对 2013 年8月4日傍晚发生在榆林市的一次超级强对流风暴天气进行中尺度分析。结果表明:(1)此次过程疑似一次超级单体龙卷天气过程;(2)从环流背景来看,榆林市上空中层强干冷平流配合低层切变线、西南急流,高层干冷、低层暖湿特征明显;从环境条件来看,强风暴发生前和发生期间能量、抬升凝结高度、风切变满足龙卷发生所需的热力不稳定、垂直风切变条件;(3)雷达钩状回波结构清晰,并伴有强中气旋,大于60 dBZ的回波和正负速度对已接地,呈现龙卷发生时的回波特征;(4)强风暴发生前后,由北向南经过榆林地区有多个龙卷涡旋TVS产品被识别;(5)气象要素场变化剧烈,地面气压明显降低,风速出现极值增强,风向发生突变,与龙卷发生期间风场观测特征基本一致,表明该区域出现龙卷的可能性较大。  相似文献   

3.
利用地面气象观测、多普勒天气雷达、风廓线雷达及现场灾调等资料,对2018年9月17日上午发生在佛山的"山竹"台风(1822)外围强龙卷天气过程进行分析。结果表明:龙卷发生在台风登陆后前进方向右前侧的东北象限,强度为EF2级。低层急流汇合与高层辐散相互配合提供了有利的环流背景,环境场表现为中等偏弱的对流有效位能、弱的对流抑制能量、低的抬升凝结高度、大的风暴相对螺旋度和0—1 km强垂直风切变等特征。地面气象要素受龙卷影响表现出明显的信号,龙卷过境前后单站气压降低/升高明显,风向出现明显气旋式旋转。产生龙卷的风暴为低质心微超级单体,龙卷出现在雷达钩状回波的弱回波区附近,雷达低仰角速度图上出现强中气旋和龙卷涡旋特征,中气旋尺度小、伸展高度低,且在龙卷发生前其最强切变突然增强。当环境条件有利时,在台风龙卷的高发区,当雷达低仰角速度图上出现中等强度以上中气旋,且底高在1 km以下时,可以考虑发布龙卷预警。  相似文献   

4.
利用常规观测、自动气象站、多普勒雷达等资料分析珠江三角洲台风龙卷的活动特征及其产生的环境条件。结果表明:台风龙卷发生在6—10月,时间多为10—20时,出现在台风登陆后1.3~21.3 h的时段内;多数龙卷位于台风中心的东北象限,台风中心在广东湛江一广西东南部或北部湾附近时是珠江三角洲龙卷发生的高风险期。高层辐散、低层辐合及中低空强东南急流在珠江口附近叠加是龙卷产生的有利环流背景。强或弱龙卷环境条件的共同特征为低抬升凝结高度、强深层和低层垂直风切变及较大风暴相对螺旋度(SRH),主要差异是强龙卷的深层和低层垂直风切变与SRH更大;相似台风路径下,有/无龙卷环境条件的明显差异在于0~1 km低层垂直风切变和SRH,两值越大出现超级单体或中气旋的可能性越大,龙卷发生概率也就越高。台风龙卷风暴母体属于低质心的微型超级单体风暴;低层有强或中等强度中气旋,有时强中气旋中心伴有龙卷涡旋特征(TVS);龙卷出现在钩状回波顶端或TVS附近。与西风带超级单体龙卷相比,台风龙卷中气旋的尺度更小、垂直伸展高度更低。  相似文献   

5.
王毅  郑媛媛  张晓美  郝莹  曹卫卫 《气象》2012,38(12):1473-1481
利用NCEP再分析资料,对安徽省夏季高空槽前形势下两类强对流天气各5次个例的环流特征、热力和动力条件进行了对比分析。结果表明:以大风、短时强降水天气为主的非龙卷类表现为高空的低槽比较深厚,而龙卷的产生多是由于较浅的短波槽引起的,并且低层有西南急流存在,导致较强的垂直风切变。通过比较热力和动力物理量平均场的分布特征发现:在槽前形势下水汽条件都比较好,夏季整层大气可降水量平均在55mm以上,但出现龙卷时中低层的垂直风切变非常强,龙卷类0-1km垂直风切变大约是非龙卷类的3倍。由于存在较强的垂直风切变,龙卷类低层的风暴相对螺旋度也强于非龙卷类。从动力和热力条件综合来看,出现龙卷时的对流有效位能并不是很大,但能量螺旋度很大,即风暴相对螺旋度上差异更加明显。因此在预报槽前类龙卷天气时,应重点关注环境风场的垂直切变和风暴相对螺旋度。  相似文献   

6.
利用欧洲中期天气预报中心ERA5再分析数据, 统计1979—2020年辽宁省42个温带气旋龙卷环境背景和物理量参数特征, 结果表明:辽宁省温带气旋龙卷多发于温带气旋中心的西南、东南象限, 与冷锋前暖区相对应, 主要分布在辽河平原中西部及渤海湾沿岸, 强龙卷(EF2及以上级别)占比为28.6%。风暴相对螺旋度和对流有效位能的大值区出现在气旋西南—东南象限, 呈带状分布, 龙卷风暴主要分布于风暴相对螺旋度大值区西北侧、对流有效位能大值区的顶端的强梯度区附近。强龙卷参数最大值达0.7, 其大值区与EF2及以上级别龙卷相对应。地面冷锋和干线是温带气旋龙卷的关键触发系统, 对比近气旋中心和冷锋尾部湿度垂直分布, 后者所表现的高层强干侵入导致风暴产生更强的冷池, 过强的下沉气流可能是龙卷产生的不利因素。温带气旋龙卷多分布于高空急流左侧气流的分流区内, 对应高空强辐散区。0~3 km垂直温度递减率大值区与气旋中心附近的弱龙卷高发区有较好对应关系。  相似文献   

7.
2018年9月17日09:37—10:00,在登陆台风“山竹”外围螺旋雨带中,广东省佛山市三水区到肇庆市四会区发生了EF2级强龙卷,龙卷路径长度18 km,持续时间23 min,平均时速47 km/h,导致不少建筑物损毁。本次过程佛山市进行了龙卷预警试验,提前37 min发布了龙卷预警,龙卷没有造成人员伤亡。利用观测资料对产生强龙卷的环境场特征、地面自动站和雷达观测的中小尺度特征以及龙卷预警试验进行了分析,结果表明:产生龙卷的微型超级单体出现在台风外围和副高边缘之间的强东南急流中,具有低层辐合、高层辐散、水汽充足等典型台风外围龙卷环流形势特征;强的低空0~1 km垂直风切变、大的风暴相对螺旋度和低的抬升凝结高度等环境条件利于龙卷的生成;龙卷影响时,邻近地面自动气象站观测要素表现出明显的信号,瞬时大风和最低气压的极值区呈东南至西北向带状分布,与龙卷路径一致,龙卷过境前后,单站气压“漏斗”明显,5 min降压/升压幅度达-2.5 hPa/+2.1 hPa;广州多普勒天气雷达探测到龙卷母体风暴的低层钩状回波和入流缺口特征,以及低层强中气旋和类TVS特征。预警试验初步表明,对台风龙卷高发区,在环境场有利情况下,若低层出现中等或以上强度中气旋,其底高在1 km以下,可以考虑发布龙卷预警。   相似文献   

8.
利用ERA5 再分析资料、雷达资料以及北京VDRAS资料,对2021年7月1日发生在张家口的一次与超级单体伴随的龙卷天气特征进行分析。结果表明:①此次龙卷天气发生在高空冷涡的东南象限、低空切变线前侧暖区及地面辐合线附近。②雷达资料分析显示在超级单体的南侧产生了此次龙卷,龙卷过程中超过50 dBz的高度在6 km以下,强核中心在3 km以下,为低质心的对流系统,反演的风场上在低层1 km高度存在闭合的气旋性环流。③北京VDRAS资料分析表明低层强辐合与高层强辐散配置、中低层强的正风暴相对螺旋度为龙卷发生提供了有利的环境条件;垂直速度分布显示龙卷生成地存在强上升运动,其两侧均存在下沉运动;扰动温度的垂直分布表明4 km以下存在负中心,4 km以上存在正中心。  相似文献   

9.
2018年8月13—14日,1814号台风“摩羯”(YAGI)由强热带风暴逐渐减弱成热带低压,在山东省境内造成强降水,并引发了系列龙卷。龙卷发生后,气象部门对龙卷进行了详细的实地灾情调查。通过对6处龙卷路径无人机航拍的高分辨率图像和现场勘察的建筑物损毁、树木折断、庄稼倒伏等状况的综合分析,判断发生在滨州市姜楼镇、东营市盐窝镇的龙卷达到EF2级,其他为EF0/EF1级。上述龙卷都发生在残余低压环流中心移动方向的右前方,且集中在残余低压环流外围偏北段雨带中的小型超级单体内;其中在滨州引发的龙卷距离残余低压环流中心最近,约150 km,在潍坊引发的龙卷距离残余低压环流中心最远,约400 km。这些小型超级单体在雨带中,自南向北或者自东南向西北方向移动,尺度都很小,发展高度较低,强反射率因子核位于风暴的底部,低层反射率因子的南端有入流缺口,呈钩状回波特征;低层径向速度产品有较强的正负速度对。用雷达系统原适配参数值计算表明,在调查的6次龙卷中,仅有1次龙卷发生前算出了中气旋(M)产品,2次算出龙卷涡旋特征(TVS)产品;用修改的适配参数值进行计算,在6次龙卷发生前都算出了M产品,4次算出TVS产品,优化适配参数可提前将弱的M和TVS识别出来,对龙卷的临近预警具有指导作用。  相似文献   

10.
利用X波段双极化相控阵雷达等多源观测资料,分析了2022年6月19日早晨广东佛山超级单体龙卷的环境条件和对流风暴的结构及演变特征。龙卷母体风暴是在强西南季风天气背景下的一条东北-西南向飑线南端发展起来的。环境条件具备较大对流有效位能、低抬升凝结高度和强垂直风切变等有利于超级单体龙卷发生发展的热力和动力条件;低空风暴相对螺旋度、超级单体复合指数和强龙卷指数的显著增强对超级单体龙卷的发生有较好指示意义。具有高时空分辨率的佛山南海X波段双极化相控阵雷达探测到了龙卷母体微型超级单体的发展过程和龙卷涡旋的演变特征:对流单体在前侧低层入流的加强下逐渐形成钩状回波和反射率弱回波空洞;中气旋首先在2.5km附近高度形成后向低层伸展,随着后侧下沉气流的加强,低层涡旋旋转增强,当低层中气旋旋转速度超过22m·s-1(强中气旋)且直径紧缩至1.5km以内时,龙卷即将触地,龙卷涡旋特征(TVS)和龙卷碎片特征(TDS)出现是龙卷触地的主要特征,龙卷发生在反射率弱回波空洞、TVS和TDS附近。  相似文献   

11.
利用灾情调查、常规观测和雷达资料对比分析2018年6月8日佛山南海龙卷和2016年8月18日湛江雷州微下击暴流两次强风天气过程。结果表明:南海龙卷强度为F1级和EF1级,雷州微下击暴流强度为F2级和EF2级,且导致风灾的气流具有多尺度性以及时空尺度小的特征。两次过程均发生在低层辐合、高层辐散和中低层急流汇合有利的环流背景,但龙卷发生在台风环流内部,而微下击暴流发生在台风外围。环境参数表现为弱的条件不稳定、对流抑制能量小和抬升凝结高度低,但龙卷过程的0—1 km风垂直切变较强。导致风灾的风暴单体均伴有中气旋,但形成龙卷的微超级单体具有明显的钩状回波特征,低层存在中等强度中气旋,中气旋尺度较微下击暴流过程的小得多,底高较低,龙卷出现前中气旋底高降低,直径缩小。形成微下击暴流的为一椭圆形的β中尺度风暴单体,低层存在强中气旋,中气旋为辐散性气旋,底高较高,直径逐渐增大,垂直剖面图上存在中层径向速度辐合、强反射率因子核心下降特征。  相似文献   

12.
利用葵花8号(Himawari-8)卫星资料、沈阳SC天气雷达数据、ERA5再分析资料及常规天气观测资料, 分析了2019年7月3日辽宁开原强龙卷的卫星云图、雷达回波演变及大气环流特征。结果表明: 此次开原强龙卷发生在东北冷涡底部, 低层850 hPa有明显的暖湿气流, 形成了“下湿上干”的垂直结构。3日17:00龙卷初生地0—6 km有22.8 m·s-1、0—1 km有7.6 m·s-1强垂直风切变。龙卷生成之前, 初生地西侧比东侧气温偏高, 存在2—5 ℃地面温度差。生成后, 移动路径东侧形成明显冷池, 最低温度19 ℃, 与西侧温差最大达11 ℃。龙卷生成时可见光云图上对流风暴的云砧水平尺度明显增大, 云顶升高、亮温降低。雷达回波演变特征表明, 龙卷对流风暴的发展经历了由多单体非强风暴发展到多单体强风暴再发展到超级单体风暴三个阶段, 龙卷在最强等级时有对流单体的合并。开原龙卷风暴在三个阶段都有中气旋, 17:11中气旋向下伸展到低层, 反射率因子出现指状回波。  相似文献   

13.
台风龙卷的环境背景和雷达回波结构分析   总被引:7,自引:4,他引:7  
利用NCEP再分析资料、常规观测和地面加密观测资料及多普勒雷达资料,对10次台风龙卷过程的环境背景和其中F2~F3级以上龙卷过程的回波结构演变特征进行了详细分析,主要结果如下:(1)台风龙卷所处环境基本为弱对流有效位能(200~1000 J·kg-1)和风随高度强烈顺转的强低空风的垂直切变环境,0~1 km风的垂直切变超过10-2s-1,风暴的相对螺旋度很大,台前龙卷环境的粗理查孙数很小,平均在40以下。台风龙卷大多数出现在台风前进方向的东北侧,位于0~1 km风切变和相对风暴螺旋度大值区。龙卷主要产生于台风外围螺旋雨带上,台前龙卷往往产生前地面已存在风向切变和风速的辐合,但温度梯度不大。(2)在台风影响环境下导致龙卷的风暴属于微超级单体风暴,有水平尺度2~4 km的中气旋;垂直涡度限制在4 km以下;风暴单体的质心在2 km左右,风暴伸展高度在5~7 km。  相似文献   

14.
本文利用新一代多普勒天气雷达资料、逐5分钟自动站资料、常规观测和NCEP(1°×1°)再分析资料等,对2021年6月25日发生在内蒙古太仆寺旗的一次强龙卷过程进行分析研究。结果表明,龙卷发生在前倾槽背景下,出现在低层的西南气流当中。龙卷发生的环境场特征为上干冷下暖湿的不稳定大气层结;地面辐合线及干线为强对流提供了触发条件;低抬升凝结高度、强低层垂直风切变和大的对流有效位能为龙卷提供了有利条件。此次龙卷过程由多个超级单体风暴相互作用造成的,雷达回波资料分析显示超级单体出现明显的钩状回波,“V”型缺口,回波悬垂、旁瓣回波的特征,雷达距离龙卷发生地超过100 km,未识别出龙卷涡旋特征,但识别出了中气旋,中气旋最大转动速度达到了15 m/s,为弱到中等中气旋;龙卷发生前基于单体的垂直累积液态水和最大反射率回波顶高有明显的跃增。  相似文献   

15.
利用常规地面和探空资料、珠海S波段双偏振多普勒天气雷达和珠海横琴X波段相控阵雷达资料对2021年6月1日发生在珠江口的水龙卷过程进行分析。研究表明:此次水龙卷过程发生在高层强辐散、中层短波槽影响、低层西南风的背景场下;极低的抬升凝结高度、较大的0~1 km风矢量差、超过超级单体发生阈值的风暴相对螺旋度,为龙卷的发生提供了较好的动力条件。两部雷达均观测到超级单体结构特征,最强反射率因子超过65 d BZ。X波段相控阵雷达资料能够清晰展现水龙卷超级单体风暴精细化演变特征,0.9°仰角首先出现风切变,随后风切变出现高度逐渐增高,并加强为中气旋,切变最高高度达到17.1°仰角,随后高度逐渐降低,龙卷减弱。三维反射率因子图清楚地反映了龙卷母体风暴穹窿结构形成过程,以及强反射率因子区向上延伸,变细加强,龙卷触及水面后变粗的过程。S波段雷达探测到在龙卷发生前,出现ZDR低值眼区和ρHV弧,这对于预报员提前预警以及识别龙卷具有一定帮助。  相似文献   

16.
利用常规观测、地面自动气象站、多普勒天气雷达、现场灾调及互联网视频等资料,对2018年6月8日发生在广东省佛山市南海区大沥镇的1804号“艾云尼”台风龙卷天气过程进行分析。结果表明:龙卷发生在台风“艾云尼”登陆后前进方向的右后侧,强度为EF1级。高层辐散抽吸、中低空强劲的东南风急流叠加和地面中尺度辐合线的抬升触发作用是其有利的环流背景。对流参数表现为弱的对流有效位能和对流抑制能量、强低层风垂直切变、低抬升凝结高度和大的风暴相对螺旋度。产生龙卷的风暴为低质心微超级单体风暴,龙卷出现在钩状回波的弱回波区内。速度图上中气旋提前龙卷约30 min,临近龙卷发生时中气旋旋转速度增至最强,尺度缩小,底高降至最低,对龙卷预警有一定指示作用。  相似文献   

17.
2015年10月4日佛山龙卷过程的观测分析   总被引:4,自引:0,他引:4  
受1522号台风彩虹外围螺旋云带影响,2015年10月4日15时28分—16时(北京时)广东佛山出现了EF3级强龙卷并造成严重灾害。为了综合分析龙卷发生的多尺度环境背景场和龙卷的结构及强度变化等特点,进行了灾情调研,航拍龙卷灾情路径,走访龙卷目击者,确认龙卷路径及灾情级别,再结合多渠道获取的龙卷视频照片等资料以及观测资料进行分析研究,结果表明:(1)产生此次龙卷的超级单体存在于台风彩虹外围螺旋云带内;龙卷向西北偏北方向移动,触地时长为32 min,受灾路径长度为31.7 km,最大受灾直径为577 m,平均速度约为60 km/h,具有“移动速度快,影响范围广,破坏力强”的特点,其移动速度快慢似与超级单体强度和地面的粗糙度有关。(2)佛山地区中高层受偏南气流控制,水汽充足,地面有弱冷空气;珠三角喇叭口地形有利于气流的辐合与局地涡旋的产生;抬升凝结高度低,风垂直切变大,有利于龙卷的生成。(3)地面自动气象站气象要素表现出受龙卷环流影响的特征。3 s极大风速的大值带和3 s最低气压的低值带以及1 h累计降水大值中心呈现出与龙卷走向一致的东南—西北向带状分布;龙卷到来时其周围自动气象站气温和气压明显降低,风速明显增大,风向明显改变;降水在龙卷靠近前5—10分钟就开始明显增大,其大值中心位于龙卷路径的西侧。龙卷离开后气压比龙卷来临前有所升高,但气温较前降低。(4)龙卷出现在钩状回波前进方向的右后侧;降水大值区与雷达组合反射率大值区基本一致。地面风场的辐合中心与龙卷触地的位置基本一致,并且钩状回波的入流区与地面偏东风区相对应。龙卷风暴单体发展高度在4 km左右,具有低重心对流的特点。其前部存在回波悬垂,一条很窄的向西北倾斜的回波大值带可能与龙卷漏斗云墙有关。对应径向速度剖面图上为一条向西北倾斜的正、负速度交界区,构成一个逆时针旋转的涡旋带,切向剖面图上存在较强的辐合。(5)龙卷发展过程中伴随着龙卷风暴顶和风暴底的逐渐下降以及单体质心的下降,中气旋与龙卷涡旋特征的顶和底也随之逐渐下降。龙卷风涡旋特征的顶高和底高都略低于中气旋,并在龙卷触地时降至最低。龙卷涡旋的切变值远大于中气旋的切变值,且在龙卷强度最强时最大。   相似文献   

18.
金步圣  邱语林 《气象》1991,17(6):46-48
本文对一次强热带风暴与西风带系统结合时再度加强并引起特大暴雨和强龙卷的个例,进行了综合分析。分析表明,强对流天气发生前,就已存在明显的能量锋区,当热带风暴移近时,在它前进方向的两侧,形成一较强的垂直环流圈,强对流天气就发生在该环流圈右侧的强辐合上升区域中。另外,通过对比分析,找出了一些有无热带风暴龙卷的特殊点。  相似文献   

19.
中国龙卷时空分布及其环境物理量特征   总被引:6,自引:2,他引:6  
利用2004—2012年《中国气象灾害年鉴》和CFSR再分析资料,研究中国龙卷的时空分布以及三个龙卷频发区的环流背景场和环境物理量特征,并比较他们之间的区域差异。结果表明:中国龙卷多发生于春夏季,午后傍晚较多,江苏和广东等平原地区出现龙卷概率最高。龙卷临近时,“江苏及其邻近地区”位于500 hPa槽前,850 hPa上有西南急流,造成了较强的低层垂直风切变;“广东及其邻近地区”在龙卷发生前地面对流有效位能均值达997.3 J/kg,0~1 km螺旋度均值达91 m2/s2,层结不稳定,动力抬升强;“东北地区”受深厚东北冷涡控制,整层水汽含量低,中低层比湿均值小于10 g/kg。通过比较环境物理量平均场的分布特征发现:螺旋度、垂直风切变、能量螺旋度指数和强龙卷参数对分析龙卷发生有很好的指示意义。“东北地区”对流有效位能和比湿均值远低于“江苏及其邻近地区”和“广东及其邻近地区”,但高低空的温度直减率大、中低层的垂直风切变强,该地区也会产生龙卷。   相似文献   

20.
利用多种常规和非常规高时空分辨率的观测资料,对2015年通榆县两次龙卷过程(5月31日和6月8日,分别简称为"531"龙卷和"608"龙卷)形成机制进行详细对比分析。结果表明:直接影响系统均为东北冷涡前部的次天气尺度短波槽或切变线,强对流层中层偏西急流使700—500 hPa温差大值区东移,低空西南急流使低层湿区显著北伸,叠加在温差大值区之下,龙卷发生在湿舌边缘多尺度系统叠加区附近;但"531"龙卷急流风速、700—500 hPa温差及925 hPa露点温度均明显高于"608"龙卷,且850 hPa切变线和负变压区的存在导致辐合上升运动更强,龙卷强度更强。两次龙卷过程发生前对流有效位能均超过1 500 J·kg~(-1),低层存在逆温,抬升凝结高度较低,但湿层较薄,辐合切变线或冷锋是龙卷直接触发机制,且"531"龙卷辐合线两侧有明显风速辐合,为对流风暴发展提供了强入流。两次过程中"531"龙卷过程为强水平风垂直切变下的超级单体龙卷,"608"龙卷过程为弱水平风垂直切变下的非超级单体龙卷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号