首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The kinetics of aggregation of riverine colloidal iron have been examined using a stopped-flow technique which probes the first few seconds of mixing between river and sea water end members. A significant fraction, up to 80%, of the colloidal iron is aggregated during the first 1–2 s of mixing, indicating that the aggregation process is much faster than previously thought. Most of the aggregation induced by seawater results from the divalent cations Mg2+ and Ca2+, with the overall ionic strength having little influence. At equal concentrations of 27 mM, the rate of aggregation by alkaline earth cations increased with ionic size Mg2+ < Ca2+ < Sr2+ < Ba2+. The aggregation rates were indifferent to the anion (Cl or SO42−) present. Very high aggregation rates were also induced by the common water treatment coagulant Al2(SO4)3 at concentrations in the range 20–30 µM Al(III), several orders of magnitude lower that those used for the seawater cations. Our results support the view that specific chemical interactions between the cations and the colloid particle surface, rather than simple electrical effects, control the colloid stability.  相似文献   

2.
Benthic fluxes of dissolved inorganic nitrogen (NO3 and NH4+), dissolved organic nitrogen (DON), N2 (denitrification), O2 and TCO2 were measured in the tidal reaches of the Bremer River, south east Queensland, Australia. Measurements were made at three sites during summer and winter. Fluxes of NO3 were generally directed into the sediments at rates of up to −225 μmol N m−2 h−1. NH4+ was mostly taken up by the sediments at rates of up to −52 μmol N m−2 h−1, its ultimate fate probably being denitrification. DON fluxes were not significant during winter. During summer, fluxes of DON were observed both into (−105 μmol m−2 h−1) and out of (39 μmol m−2 h−1) the sediments. Average N2 fluxes at all sampling sites were similar during summer (162 μmol N m−2 h−1) and winter (153 μmol N m−2 h−1). Denitrification was fed both by nitrification within the sediment and NO3 from the water column. Sediment respiration rates played an important role in the dynamics of nitrification and denitrification. NO3 fluxes were significantly related to TCO2 fluxes (p<0.01), with a release of NO3 from the sediment only occurring at respiration rates below 1000 μmol C m−2 h−1. Rates of denitrification increased with respiration up to TCO2 fluxes of 1000 μmol C m−2 h−1. At sediment respiration rates above 1000 μmol C m−2 h−1, denitrification rates increased less rapidly with respiration in winter and declined during summer. On a monthly basis denitrification removed about 9% of the total nitrogen and 16% of NO3 entering the Bremer River system from known point sources. This is a similar magnitude to that estimated in other tidal river systems and estuaries receiving similar nitrogen loads. During flood events the amount of NO3 denitrified dropped to about 6% of the total river NO3 load.  相似文献   

3.
The concentration and distribution of dissolved nitrogenous compounds was studied in the Greenland Sea in June 1991. Dissolved organic (DON) and inorganic nitrogen (DIN) were determined in seawater of different origin and depth. Dissolved organic matter was isolated on XAD-2 resin and fractionated into its non-humic hydrophilic (H1), and so-called humic components (hydrophobic acid, HbA, and hydrophobic neutral, HbN). From all fractions the DON content was subsequently determined. Total DON concentrations were about 5 μmol Ni−1 in the surface and 3 μmol NI−1 below depths of 150–200 m. DIN varied between 1.5 and 1.6 μmol NI−1. There was a highly significant inverse correlation (r = −0.75) between DON and DIN suggesting a close coupling in the uptake and release of the different forms of nitrogen. The mean DON concentrations of the XAD-fractions were for HI = 2.3 μmol Ni−1, for HbA = 0.8 μmol NI and for HbN = 1.0 μmol NI−1. The average percentage contributions were, respectively, 56%, 19% and 25%. This means that about 56% of the total DON does not belong to the ‘humic fraction’. The HbN fraction was evenly distributed in the water column, without any obvious relationship with water masses, depth, or nutrient status. In contrast, the HbA fraction showed a significant correlation with total DON.  相似文献   

4.
The effect of a sudden increase in salinity from 10 to 37 in porewater concentration and the benthic fluxes of ammonium, calcium and dissolved inorganic carbon were studied in sediments of a small coastal lagoon, the Albufera d'Es Grau (Minorca Island, Spain). The temporal effects of the changes in salinity were examined over 17 days using a single diffusion-reaction model and a mass-balance approach. After the salinity change, NH4+-flux to the water and Ca-flux toward sediments increased (NH4+-flux: 5000–3000 μmol m−2 d−1 in seawater and 600/250 μmol m−2 d−1 in brackish water; Ca-flux: −40/−76 meq m−2 d−1 at S=37 and −13/−10 meq m−2 d−1 at S=10); however, later NH4+-flux decreased in seawater, reaching values lower than in brackish water. In contrast, Ca-flux presented similar values in both conditions. The fluxes of dissolved inorganic carbon, which were constant at S=10 (55/45 mmol m−2 d−1), increased during the experiment at S=37 (from 30 mmol m−2 d−1 immediately after salinity increase to 60 mmol m−2 d−1 after 17 days).In brackish conditions, NH4+ and Ca2+ fluxes were consistent with a single diffusion-reaction model that assumes a zero-order reaction for NH4+ production and a first-order reaction for Ca2+ production. In seawater, this model explained the Ca-flux observed, but did not account for the high initial flux of NH4+.The mass balance for 17 days indicated a higher retention of NH4+ in porewater in the littoral station in seawater conditions (9.5 mmol m−2 at S=37 and 1.6 mmol m−2 at S=10) and a significant reduction in the water consumption at both sites (5 mmol m−2 at S=37; 35/23 mmol m−2 at S=10). In contrast, accumulation of dissolved inorganic carbon in porewater was lower in seawater incubations (−10/−1 meq m−2 at S=37; 50/90 meq m−2 at S=10) and was linked to a higher efflux of CO2 to the atmosphere, because of calcium carbonate precipitation in water (675/500 meq m−2). These results indicate that increased salinity in shallow coastal waters could play a major role in the global carbon cycle.  相似文献   

5.
Monthly seawater pH and alkalinity measurements were collected between January 1996 and December 2000 at 10°30′N, 64°40′W as part of the CARIACO (CArbon Retention In A Colored Ocean) oceanographic time series. One key objective of CARIACO is to study temporal variability in Total CO2 (TCO2) concentrations and CO2 fugacity (fCO2) at this tropical coastal wind-driven upwelling site. Between 1996 and 2000, the difference between atmospheric and surface ocean CO2 concentrations ranged from about − 64.3 to + 62.3 μatm. Physical and biochemical factors, specifically upwelling, temperature, primary production, and TCO2 concentrations interacted to control temporal variations in fCO2. Air–sea CO2 fluxes were typically depressed (0 to + 10 mmol C m 2 day 1) in the first few months of the year during upwelling. Fluxes were higher during June–November (+ 10 to 20 mmol C m 2 day 1). Fluxes were generally independent of the slight changes in salinity normally seen at the station, but low positive flux values were seen in the second half of 1999 during a period of anomalously heavy rains and land-derived runoff. During the 5 years of monthly data examined, only two episodes of negative air–sea CO2 flux were observed. These occurred during short but intense upwelling events in March 1997 (−10 mmol C m 2 day 1) and March 1998 (− 50 mmol C m 2 day 1). Therefore, the Cariaco Basin generally acted as a source of CO2 to the atmosphere in spite of primary productivity in excess of between 300 and 600 g C m 2 year 1.  相似文献   

6.
Rates of net nitrification were calculated for four large (13 m3) estuarine-based microcosms that had been subjected to inorganic nutrient enrichment. Calculated rates were based on two years of weekly nitrate and nitrite measurements and ranged from a maximum of 0·55 μmol NO2+3 produced l−1 day−1 in the control tank (no enrichment) to over 13 μmol NO2+3 produced l−1 day−1 in the most enriched tank (receiving 18·6 μmol NH4 l−1 day−1). Almost all NO2+3 production was pelagic, little was benthic. Net NO3 production or net NO2 production dominated the net nitrification rates during different seasons. Good correlations were found between various oxidation rates and substrate concentrations. The calculated net nitrite production rates were 10 to 1000 times higher than previously reported rates for open ocean systems, demonstrating the potential importance of nitrification to estuarine systems.  相似文献   

7.
Sediment characteristics, sediment respiration (oxygen uptake and sulphate reduction) and sediment–water nutrient exchange, in conjunction with water column structure and phytoplankton biomass were measured at five stations across the western Irish Sea front in August 2000. The transition from thermally stratified (surface to bottom temperature difference of 2.3 °C) to isothermal water (14.3 °C) occurred over a distance of 13 km. The influence of the front on phytoplankton biomass was limited to a small region of elevated near surface chlorophyll (2.23 mg m−3; 50% > biomass in mixed waters). The front clearly marked the boundary between depositional sediments (silt/clays) with elevated sediment pigment levels (≈60 mg m−2) on the western side, to pigment impoverished (<5 mg m−2) sand, through to coarse sand and shell fragments on the eastern side. Maximal rates of sedimentary respiration on the western stratified side of the front e.g. oxygen uptake S2 (852 μmol O2 m−2 h−1) and sulphate reduction at S1 (149 μmol SO42− m−2 h−1), coupled to significant efflux of nitrate and silicate at the western stations indicate closer benthic–pelagic coupling in the western Irish Sea. Whether this simply reflects the input of phytodetritus from the overlying water column or entrapment and settlement of pelagic production from other regions of the Irish Sea cannot yet be resolved.  相似文献   

8.
The results of a potentiometric investigation (by ISE-H+, glass electrode) on the speciation of phytate ion (Phy12−) in an ionic medium simulating the major components (Na+, K+, Ca2+, Mg2+, Cl and SO42−) of natural seawater, at different salinities and t = 25 °C, are reported. The work was particularly aimed at determining the possible formation of mixed Ca2+–Mg2+–phytate ion pairs, and to establish how including the formation of these mixed species would affect the speciation modeling in seawater media. After testing various speciation models, that considering the formation of the MgCaH3Phy5−, MgCaH4Phy4−, Mg2CaH3Phy3− and Mg2CaH4Phy2− species was accepted, and corresponding stability constants were determined at two salinities (S = 5, 10). A discussion is reported both on the choice of the experimental conditions and on the possibility to extend these results to those typical of real seawater. A detailed procedure is also described to demonstrate that the stability of these species is higher than that statistically predicted. As reported in literature, a parameter, namely log X, has been determined in order to quantify this extra stability for the formation of each mixed species at various salinities. For example, at S = 10, log X113 = 2.67 and log X114 = 1.37 for MgCaH3Phy5− and MgCaH4Phy4− (statistical value is log Xstat = 0.60), and log X213 = 6.11 and log X214 = 2.15 for Mg2CaH3Phy3− and Mg2CaH4Phy2− (log Xstat = 1.43), respectively. Results obtained also showed that the formation of these species may occur even in conditions of low salinity (i.e. low concentration of alkaline earth cations) and low pH (i.e., more protonated ligand).  相似文献   

9.
In this paper SIT and Pitzer models are used for the first time to describe the interactions of natural and synthetic polyelectrolytes in natural waters. Measurements were made potentiometrically at 25 °C in single electrolyte media, such as Et4NI and NaCl (for fulvic acid 0.1 < I /mol L− 1 < 0.75), and in a multi-component medium simulating the composition of natural waters at a wide range of salinities (for fulvic and alginic acids: 5 < S < 45) with particular reference to sea water [Synthetic Sea Water for Equilibrium studies, SSWE]. In order to simplify calculations, SSWE was considered to be a “single salt” BA, with cation B and anion A representing all the major cations (Na+, K+, Mg2+, Ca2+) and anions (Cl, SO42−) in natural sea water, respectively. The ion pair formation model was also applied to fulvate and alginate in artificial sea water by examining the interaction of polyanions with the single sea water cation. Results were compared with those obtained from previous speciation studies of synthetic polyelectrolytes (polyacrylic and polymethacrylic acids of different molecular weights). Results indicate that the SIT, Pitzer and Ion Pairing formation models used in studies of low molecular weight electrolytes may also be applied to polyelctrolytes with a few simple adjustments.  相似文献   

10.
Wind-driven cyclonic eddies are hypothesized to relieve nutrient stress and enhance primary production by the upward displacement of nutrient-rich deep waters into the euphotic zone. In this study, we measured nitrate (NO3), particulate carbon (PC), particulate nitrogen (PN), their stable isotope compositions (δ15N-NO3, δ13C-PC and δ15N-PN, respectively), and dissolved organic nitrogen (DON) within Cyclone Opal, a mature wind-driven eddy generated in the lee of the Hawaiian Islands. Sampling occurred in March 2005 as part of the multi-disciplinary E-Flux study, approximately 4–6 weeks after eddy formation. Integrated NO3 concentrations above 110 m were 4.8 times greater inside the eddy (85.8±6.4 mmol N m−2) compared to the surrounding water column (17.8±7.8 mmol N m−2). Using N-isotope derived estimates of NO3 assimilation, we estimated that 213±59 mmol m−2 of NO3 was initially injected into the upper 110 m Cyclone Opal formation, implying that NO3 was assimilated at a rate of 3.75±0.5 mmol N m−2 d−1. This injected NO3 supported 68±19% and 66±9% of the phytoplankton N demand and export production, respectively. N isotope data suggest that 32±6% of the initial NO3 remained unassimilated. Self-shading, inefficiency in the transfer of N from dissolved to particulate export, or depletion of a specific nutrient other than N may have led to a lack of complete NO3 assimilation. Using a salt budget approach, we estimate that dissolved organic nitrogen (DON) concentrations increased from eddy formation (3.8±0.4 mmol N m−2) to the time of sampling (4.0±0.09 mmol N m−2), implying that DON accumulated at rate of 0.83±1.3 mmol N m−2 d−1, and accounted for 22±15% of the injected NO3. Interestingly, no significant increase in suspended PN and PC, or export production was observed inside Cyclone Opal relative to the surrounding water column. A simple N budget shows that if 22±15% of the injected NO3 was shunted into the DON pool, and 32±6% is unassimilated, then 46±16% of the injected NO3 remains undocumented. Alternative loss processes within the eddy include lateral exchange of injected NO3 along isopycnal surfaces, remineralization of PN at depth, as well as microzooplankton grazing. A 9-day time series within Cyclone Opal revealed a temporal depletion in δ15N-PN, implying a rapid change in the N source. A change in NO3 assimilation, or a shift from NO3 fueled growth to assimilation of a 15N-deplete N source, may be responsible for such observations.  相似文献   

11.
N2O Production, Nitrification and Denitrification in an Estuarine Sediment   总被引:1,自引:0,他引:1  
The mechanisms regulating N2O production in an estuarine sediment (Tama Estuary, Japan) were studied by comparing the change in N2O production with those in nitrification and denitrification using an experimental continuous-flow sediment–water system with15N tracer (15N-NO−3 addition). From Feburary to May, both nitrification and denitrification in the sediment increased (246 to 716 μmol N m−2 h−1and 214 to 1260 μmol N m−2 h−1, respectively), while benthic N2O evolution decreased slightly (1560 to 1250 nmol N m−2 h−1). Apparent diffusion coefficients of inorganic nitrogen compounds and O2at the sediment–water interface, calculated from the respective concentration gradients and benthic fluxes, were close to the molecular diffusion coefficients (0·68–2·0 times) in February. However, they increased to 8·8–52 times in May except for that of NO−2, suggesting that the enhanced NO−3 and O2supply from the overlying water by benthic irrigation likely stimulated nitrification and denitrification. Since the progress of anoxic condition by the rise of temperature from February to May (9 to 16 °C) presumably accelerated N2O production through nitrification, the observed decrease in sedimentary N2O production seems to be attributed to the decrease in N2O production/occurrence of its consumption by denitrification. In addition to the activities of both nitrification and denitrification, the change in N2O metabolism during denitrification by the balance between total demand of the electron acceptor and supply of NO−3+NO−2 can be an important factor regulating N2O production in nearshore sediments.  相似文献   

12.
The whole core squeezing method was used to simultaneously obtain profiles of nitrous oxide (N2O), nitrogenous nutrients, and dissolved oxygen in sediments of Koaziro Bay, Japan (coastal water), the East China Sea (marginal sea), and the central Pacific Ocean (open ocean). In the spring of Koaziro Bay, subsurface peaks of interstitial N2O (0.5–3.5 cm depth) were observed, at which concentrations were higher than in the overlying water. This was also true for nitrate (NO3) and nitrite (NO2) profiles, suggesting that the transport of oxic overlying water to the depth through faunal burrows induced in situ N2O production depending on nitrification. In the summer of Koaziro Bay, sediment concentrations of N2O, NO3 and NO2 were lower than in the overlying water. In most East China Sea sediments, both N2O and NO3 decreased sharply in the top 0.5–2 cm oxic layer (oxygen: 15–130 μM), which may have indicated N2O and NO3 consumption by denitrification at anoxic microsites. N2O peaks at subsurface depth (0.5–6.5 cm) implied in situ production of N2O and/or its supply from the overlying water through faunal burrows. However, the occurrence of the latter process was not confirmed by the profiles of other constituents. In the central Pacific Ocean, the accumulation of N2O and NO3 in the sediments likely resulted from nitrification. Nitrous oxide fluxes from the sediments, calculated using its gradient at the sediment–water interface and the molecular diffusion coefficient, were −45 to 6.9 nmolN m−2 h−1 in Koaziro Bay in the spring, −29 to −21 nmolN m−2 h−1 in the summer, −46 to 37 nmolN m−2 h−1 in the East China Sea, 0.17 to 0.23 nmolN m−2 h−1 in the equatorial Pacific, and <±0.2 nmolN m−2 h−1 in the subtropical North Pacific, respectively.  相似文献   

13.
The seasonal variability of leaf litter removal by crabs was observed from May 2006 to April 2007 in a Kandelia candel mangrove forest in Jiulongjiang Estuary, China. Daily average quantities of leaf fall ranged 0.85–3.86 gDW m−2 d−1, with high values in May, August, October and November. The whole-year's leaf fall was 6.48 t ha−1 yr−1 (1.81 gDW m−2 d−1). The standing stock of leaf litter on the forest floor was 7.78 gDW m−2 averaged from the whole year's data, with the lowest value in December (1.23 gDW m−2) and the highest in April (16.18 gDW m−2). Annually averaged removal (consumption on mangrove floor + burial in burrows) rate of leaf litter by crabs was 0.59 gDW m−2 d−1. High seasonal variability was observed in the removal rates of leaf litter by crabs. Removal rates in the winter months (December, January and February) were 0.07–0.09 gDW m−2 d−1, much lower than those in other months with values of 0.59–1.18 gDW m−2 d−1. Annually averaged percentage of leaf fall removed by crabs was 33%, with the highest values in September (reached 76%) and the lowest values in winter months. Of leaf litter removed by crabs, a large proportion was buried by crabs, and only 12% was consumed by crabs on the forest floor. Leaf litter removal rate, consumption rate on the forest floor, percentages of leaf fall and standing stock removed on the forest floor were significantly positively correlated with air temperature, indicating that leaf removal ability by crabs was higher in warm months than in cold months.  相似文献   

14.
We investigated microphytobenthic photosynthesis at four stations in the coral reef sediments at Heron Reef, Australia. The microphytobenthos was dominated by diatoms, dinoflagellates and cyanobacteria, as indicated by biomarker pigment analysis. Conspicuous algae firmly attached to the sand grains (ca. 100 μm in diameter, surrounded by a hard transparent wall) were rich in peridinin, a marker pigment for dinoflagellates, but also showed a high diversity based on cyanobacterial 16S rDNA gene sequence analysis. Specimens of these algae that were buried below the photic zone exhibited an unexpected stimulation of respiration by light, resulting in an increase of local oxygen concentrations upon darkening. Net photosynthesis of the sediments varied between 1.9 and 8.5 mmol O2 m−2 h−1 and was strongly correlated with Chl a content, which lay between 31 and 84 mg m−2. An estimate based on our spatially limited dataset indicates that the microphytobenthic production for the entire reef is in the order of magnitude of the production estimated for corals. Photosynthesis stimulated calcification at all investigated sites (0.2–1.0 mmol Ca2+ m−2 h−1). The sediments of at least three stations were net calcifying. Sedimentary N2-fixation rates (measured by acetylene reduction assays at two sites) ranged between 0.9 to 3.9 mmol N2 m−2 h−1 and were highest in the light, indicating the importance of heterocystous cyanobacteria. In coral fingers no N2-fixation was measurable, which stresses the importance of the sediment compartment for reef nitrogen cycling.  相似文献   

15.
To quantify recent sediment accumulation, carbon fluxes and cycling, three N.W. European Continental Margin transects on Goban Spur and Meriadzek Terrace were extensively studied by repeated box- and multicore sampling of bottom sediments. The recent sediment distribution and characteristics appear directly related to the near-bed hydrodynamic regime on the margin, which at the upper slope break on the Goban Spur results in along-slope and periodic off-slope directed transport of particles, possibly by entrainment of particles in a detached bottom or intermediate nepheloid layer. From the shelf to the abyssal plain the surface sediments on the Goban Spur change from terrigenous sandy shelf sediments into clayey silts. 210Pb activity decreases exponentially down core, reaching a stable background value at 10 cm (shallower stations) to 5 cm (deeper stations) sediment depth. 210Pb profiles of repeatedly sampled stations indicate negligible annual variability of mixing and flux. The 210Pbxs flux to the sediment shows a decreasing trend with increasing water depth. Below about 2000 m the average 210Pbxs flux is about 0.3 dpm cm−2 y−1, a third of the fluxes measured on the shelf and upper slope stations. Sediment mixing rates (Db) correlate with macro- and meiofaunal density changes and are within the normal oceanic ranges. Lower mixing rates on the lower slope likely reflect lower organic carbon fluxes there. Mass accumulation rates on Meriadzek Terrace are at maximum 80 g m−2 y−1, almost twice as high as at Goban Spur stations of comparable depth. A minimum accumulation rate of 16.6 g m−2 y−1 is found at the Goban Spur upper slope break. Organic carbon burial rates are low compared to other margins and range from a lowest value of 0.05 g m−2 y−1 at the upper slope break to 0.11 g m−2 y−1 downslope. A maximum organic carbon burial rate of 0.41 g m−2 y−1 is found on Meriadzek Terrace. Carbonate burial rates increase along the northern transect from the shelf (13 g m−2 y−1) via a low (9.3 g m−2 y−1) on the upper slope break to the deep sea (30.7 g m−2 y−1). Carbonate burial is highest on Meriadzek Terrace (44.5 g m−2 y−1). The N.W. European Margin at Goban Spur and Meriadzek Terrace cannot be considered a major carbon depocenter.  相似文献   

16.
We examined the effect of light on water column and benthic fluxes in the Pensacola Bay estuary, a river-dominated system in the northeastern Gulf of Mexico. Measurements were made during the summers of 2003 and 2004 on 16 dates distributed along depth and salinity gradients. Dissolved oxygen fluxes were measured on replicate sediment and water column samples exposed to a gradient of photosynthetically active radiation. Sediment inorganic nutrient (NH4+, NO3, PO43−) fluxes were measured. The response of dissolved oxygen fluxes to variation in light was fit to a photosynthesis–irradiance model and the parameter estimates were used to calculate daily integrated production in the water column and the benthos. The results suggest that shoal environments supported substantial benthic productivity, averaging 13.6 ± 4.7 mmol O2 m−2 d−1, whereas channel environments supported low benthic productivity, averaging 0.5 ± 0.3 mmol O2 m−2 d−1SE). Estimates of baywide microphytobenthic productivity ranged from 8.1 to 16.5 mmol O2 m−2 d−1, comprising about 16–32% of total system productivity. Benthic and water column dark respiration averaged 15.2 ± 3.2 and 33.6 ± 3.7 mmol O2 m−2 d−1, respectively Inorganic nutrient fluxes were generally low compared to relevant estuarine literature values, and responded minimally to light exposure. Across all stations, nutrient fluxes from sediments to the water column averaged 1.11 ± 0.98 mmol m−2 d−1 for NH4+, 0.58 ± 1.08 mmol m−2 d−1 for NO3, 0.01 ± 0.09 mmol m−2 d−1 for PO43−. The results of this study illustrate how light reaching the sediments is an important modulator of benthic nutrient and oxygen dynamics in shallow estuarine systems.  相似文献   

17.
Coastal upwelling systems are regions with highly variable physical processes and very high rates of primary production and very little is known about the effect of these factors on the short-term variations of CO2 fugacity in seawater (fCO2w). This paper presents the effect of short-term variability (<1 week) of upwelling–downwelling events on CO2 fugacity in seawater (fCO2w), oxygen, temperature and salinity fields in the Ría de Vigo (a coastal upwelling ecosystem). The magnitude of fCO2w values is physically and biologically modulated and ranges from 285 μatm in July to 615 μatm in October. There is a sharp gradient in fCO2w between the inner and the outer zone of the Ría during almost all the sampling dates, with a landward increase in fCO2w.CO2 fluxes calculated from local wind speed and air–sea fCO2 differences indicate that the inner zone is a sink for atmospheric CO2 in December only (−0.30 mmol m−2 day−1). The middle zone absorbs CO2 in December and July (−0.05 and −0.27 mmol·m−2 day−1, respectively). The oceanic zone only emits CO2 in October (0.36 mmol·m−2 day−1) and absorbs at the highest rate in December (−1.53 mmol·m−2 day−1).  相似文献   

18.
Rates of sediment accumulation and microbial mineralization were examined at three Kandelia candel forests spanning the intertidal zone along the south coastline of the heavily urbanized Jiulongljiang Estuary, Fujian Province, China. Mass sediment accumulation rates were rapid (range: 10–62 kg m−2 y−1) but decreased from the low- to the high-intertidal zone. High levels of radionuclides suggest that these sediments originate from erosion of agricultural soils within the catchment. Mineralization of sediment carbon and nitrogen was correspondingly rapid, with total rate of mineralization ranging from 135 to 191 mol C m−2 y−1 and 9 to 11 mol N m−2 y−1; rates were faster in summer than in autumn/winter. Rates of mineralization efficiency (70–93% for C; 69–92% for N) increased, as burial efficiency (7–30% for C; 8–31% for N) decreased, from the low-to the high-intertidal mangroves. Sulphate reduction was the dominant metabolic pathway to a depth of 1 m, with rates (19–281 mmol S m−2 d−1) exceeding those measured in other intertidal deposits. There is some evidence that Fe and Mn reduction-oxidation cycles are coupled to the activities of live roots within the 0–40 cm depth horizon. Oxic respiration accounted for 5–12% of total carbon mineralization. Methane flux was slow and highly variable when detectable (range: 5–66 μmol CH4 m−2 d−1). Nitrous oxide flux was also highly variable, but within the range (1.6–106.5 μmol N2O m−2 d−1) measured in other intertidal sediments. Rates of denitrification were rapid, ranging from 1106 to 3780 μmol N2 m−2 d−1, and equating to 11–20% of total sediment nitrogen inputs. Denitrification was supported by rapid NH4 release within surface deposits (range: 3.6–6.1 mmol m−2 d−1). Our results support the notion that mangrove forests are net accumulation sites for sediment and associated elements within estuaries, especially Kandelia candel forests receiving significant inputs as a direct result of intense human activity along the south China coast.  相似文献   

19.
Actinide speciation in aquatic systems   总被引:1,自引:0,他引:1  
Nuclear test explosions and reactor wastes have deposited an estimated 16 × 1015 Bq of plutonium into the world's aquatic systems. However, plutonium concentration in open ocean waters is on the order 10− 5 Bq/kg, indicating that most of the plutonium is quite insoluble in marine waters and has been incorporated into sediments. Actinide ions often are not in a state of thermodynamic equilibrium and their solubility and migration behavior is related to the form in which the nuclides were introduced into the aquatic system.Actinide solubility depends on such factors as the pH (hydrolysis), Eh (oxidation state), reaction with complexants (e.g., carbonate, phosphate, humic acid, etc.), sorption to surfaces of minerals and/or colloids etc., in the water. The most significant of these variables is the oxidation state of the metal ion. The simultaneous presence of more than one oxidation state for some actinides (e.g., plutonium) in a solution complicates actinide environmental behavior. Both Np(V)O2+ and Pu(V)O2+, the most significant states in natural, oxic waters are relatively noncomplexing and resistant to hydrolysis and subsequent precipitation. The solubility of NpO2+ can be as high as 10− 4 M while that of PuO2+ is limited by reduction to the insoluble tetravalent species, Pu(OH4), (pKsp = 56). The net solubility of hexavalent UO22+ in sea water is also limited by hydrolysis; however, it has a relatively high concentration due to formation carbonate complexes. The insoluble trivalent americium hydroxocarbonate, Am(CO)3(OH), is limiting species for the solubility of Am(III) in sea water. Thorium is found exclusively as the tetravalent species and its solubility is limited by the formation of quite insoluble Th(OH)4.The chemistry of actinide ions in the environment is reviewed to show the spectrum of reactions that can occur in natural waters which must be considered in assessing the environmental behavior of actinides. While much is understood about sorption of actinides on surfaces, the mode of migration of actinides in such waters and the potential effects of these radioactive species on marine bioto, much more is needed for a satisfactory understanding of the behavior of the actinides in the environment.  相似文献   

20.
Seasonal and diurnal reduced sulfur gas emissions were measured along a salinity gradient in Louisiana Gulf Coast salt, brackish and freshwater marshes. Reduced sulfur gas emission was strongly associated with habitat and salinity gradient. The dominant emission component was dimethyl sulfide (average: 57·3 μg S m−2 h−1) in saltmarsh with considerable seasonal (max: 144·03 μg S m−2 h−1; min: 1·47 μg S m−2 h−1) and diurnal (max: 83·58 μg S m−2 h−1; min: 69·59 μg S m−2 h−1) changes in flux rates. Hydrogen sulfide was dominant (average: 21·2 μg S m−2 h−1, max: 79·2 μg S m−2 h−1; min: 5·29 μg S m−2 h−1) form in brackishmarsh and carbonyl sulfide (average: 1·09 μg S m−2 h−1; max: 3·42 μg S m−2 h−1; min: 0·32 μg S m−2 h−1) was dominant form in freshwater marsh. A greater amount of H2S was evolved from brackishmarsh (21·22 μg S m−2 h−1) as compared to the saltmarsh (2·46 μg S m−2 h−1) and freshwater marsh (0·30 μg S m−2 h−1). Emission of total reduced sulfur gases decreased with decrease in salinity and distance inland from the coast. Emission of total reduced sulfur gases over the study averaged 73·3 μg S m−2 h−1 for the saltmarsh, 32·1 μg S m−2 h−1 for brackishmarsh and 2·76 μg S m−2 h−1 for the freshwater marsh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号