首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decoupled seismic analysis of an earth dam   总被引:2,自引:0,他引:2  
The seismic stability of an earth dam is evaluated via the decoupled displacement analysis using the accelerograms obtained by ground response analysis to compute the earthquake-induced displacements. The response analysis of the dam is carried out under both 1D and 2D conditions, incorporating the non-linear soil behaviour through the equivalent linear method. Ten artificial and five real accelerograms were used as input motions and four different depths were assumed for the bedrock.1D and 2D response analyses were in a fair agreement with the exception of the top third of the dam where only a 2D modelling of the problem could ensure that the acceleration field is properly described. The acceleration amplification ratio obtained in the 2D analyses was equal to about 2 in all the cases considered, consistently with data from real case histories.The maximum permanent displacements computed by the sliding block analysis were small, being less than 10% of the service freeboard; a satisfactory performance of the dam can then be envisaged for any of the seismic scenarios considered in the analyses.  相似文献   

2.
The dynamic response of a wind turbine on monopile is studied under horizontal and vertical earthquake excitations. The analyses are carried out using the finite element program SAP2000. The finite element model of the structure is verified against the results of shake table tests, and the earthquake response of the soil model is verified against analytical solutions of the steady‐state response of homogeneous strata. The focus of the analyses in this paper is the vertical earthquake response of wind turbines including the soil‐structure interaction effects. The analyses are carried out for both a non‐homogeneous stratum and a deep soil using the three‐step method. In addition, a procedure is implemented which allows one to perform coupled soil‐structure interaction analyses by properly tuning the damping in the tower structure. The analyses show amplification of the ground surface acceleration to the top of the tower by a factor of two. These accelerations are capable of causing damage in the turbine and the tower structure, or malfunctioning of the turbine after the earthquake; therefore, vertical earthquake excitation is considered a potential critical loading in design of wind turbines even in low‐to‐moderate seismic areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
冶勒沥青混凝土心墙堆石坝最大坝高为124.5m,坝址区地震烈度高,地质条件复杂。大坝上布设了9台强震仪组成的强震监测台阵,自2005年12月开始投入运行至2014年12月底共获得有效记录57次,其中包括汶川地震、攀枝花地震和芦山地震记录。对典型强震记录进行时域分析和频谱分析,初步总结了冶勒大坝的动力反应特性。研究结果表明,大坝坝顶部位的动力反应主要以放大为主,并且随着底部PGA的减小,坝体放大倍数明显增大;由于地震动本身震源特性、传播途径的差异,大坝在不同地震中动力反应的频谱特性明显不同,但多次记录均显示土石坝体有较为明显的滤波作用。  相似文献   

4.
An analysis of the influence that reservoir levels and bottom sediment properties (especially on the degree of saturation) have on the dynamic response of arch dams is carried out. For this purpose, a Boundary Element Model developed by the authors that allows the direct dynamic study of problems that incorporate scalar (dammed up water), viscoelastic (dam and soil site) and poroelastic media (bottom sediments in the reservoir) is used. All of the regions are discretized using boundary elements, later formulating equations of compatibility and equilibrium that allow their interaction to be rigorously established. The seismic excitation consists in plane longitudinal waves (P waves) and shear waves (S waves) impinging the dam site with an angle of vertical incidence. The analysis is carried out in the frequency domain, and the time response is obtained, for synthesized artificial accelerograms defined in terms of the elastic response spectrum taken from Eurocode 8, using a FFT algorithm. The variables used to characterize the response are: Amplitude of the complex-valued frequency-response function, acceleration response spectra and the integral of velocity of points located at the structure. These variables clearly indicate the importance that the factors analyzed have on the dynamic response.  相似文献   

5.
Stability of earth dams during earthquakes has been a major concern for geotechnical engineers in seismic active regions. Liquefaction induced slope failure occurred at the upstream slope of a major earth dam in the suburb of Beijing, China, during the 1976 Tangshan Earthquake. The gravelly soil with loose initial condition liquefied under relatively small ground vibration. In recent years, a major seismic rehabilitation project was carried out on a similar earth dam nearby using dumped quarry stone. Seismic stability analysis was carried out using model test, finite element simulation, and pseudo-static slope stability program after taking into account the influence of excess pore pressure.  相似文献   

6.
Soil shear wave velocity has been recognized as a governing parameter in the assessment of the seismic response of slopes. The spatial variability of soil shear wave velocity can influence the seismic response of sliding mass and seismic displacements. However, most analyses of sliding mass response have been carried out by deterministic models. This paper stochastically investigates the effect of random heterogeneity of shear wave velocity of soil on the dynamic response of sliding mass using the correlation matrix decomposition method and Monte Carlo simulation(MCS). The software FLAC 7.0 along with a Matlab code has been utilized for this purpose. The influence of statistical parameters on the seismic response of sliding mass and seismic displacements in earth slopes with different inclinations and stiffnesses subject to various earthquake shakings was investigated. The results indicated that, in general, the random heterogeneity of soil shear modulus can have a notable impact on the sliding mass response and that neglecting this phenomenon could lead to underestimation of sliding deformations.  相似文献   

7.
Linear finite element analyses are commonly used to simulate the behaviour of gravity dam—foundation systems. However, the foundation is generally unable to develop any significant tensile stresses. Therefore any tension occurring in the vicinity of the dam—foundation interface is largely fictitious. Moreover, the traditional overturning and sliding stability criteria have little meaning in the context of the oscillatory response of dams during earthquakes. In this study, time domain analyses using non-linear contact elements located at the dam—foundation interface have been used to determine the dynamic sliding and uplifting response of gravity dam monoliths considering various elastic foundation properties. The magnitudes of the relative interface displacements, of the percentage of base not in contact (PBNC) and of the compressive stresses at the heel or toe of the dam have been used to monitor the seismic stability. The numerical results have shown that the non-linear behaviour of the dam—foundation interface reduces the seismic response of the system, indicating the possibility of more rational and economical designs. The PBNC was identified as the critical seismic stability response parameter for all analyses except for very flexible foundation conditions where the maximum values of relative interface displacements need to be considered.  相似文献   

8.
This paper includes an analysis of the influence of soil plasticity on the seismic response of micropiles. Analysis is carried out using a global three-dimensional modeling in the time domain. The soil behavior is described using the non-associated Mohr–Coulomb criterion. Both the micropiles and the superstructure are modeled as three-dimensional beam elements. Proper boundary conditions are used to ensure waves transmission through the lateral boundaries of the soil mass. Analyses are first conducted for harmonic loadings and then for real earthquake records. They show that plasticity could have a significant influence on the seismic response of the soil–micropiles–structure systems. This influence depends on the amplitude of the seismic loading and the dominant frequencies of both the input motion and the soil–piles–structure system.  相似文献   

9.
Fragility curves constitute the cornerstone in seismic risk evaluations and performance-based earthquake engineering. They describe the probability of a structure to experience a certain damage level for a given earthquake intensity measure, providing a relationship between seismic hazard and vulnerability. In this paper a numerical approach is applied to derive fragility curves for tunnel shafts built in clays, a component that is found in several critical infrastructure such as urban metro networks, airport facilities or water and waste water projects. The seismic response of a representative tunnel shaft is assessed using tridimensional finite difference non-linear analyses carried out with the program FLAC3D, under increasing levels of seismic intensity. A hysteretic model is used to simulate the soil non-linear behavior during the seismic event. The effect of soil conditions and ground motion characteristics on the soil-structure system response is accounted for in the analyses. The damage is defined based on the exceedance of the concrete wall shaft capacity due to the developed seismic forces. The fragility curves are estimated in terms of peak ground acceleration at a rock or stiff soil outcrop, based on the evolution of damage with increasing earthquake intensity. The proposed fragility models allows the characterization of the seismic risk of a representative tunnel shaft typology and soil conditions considering the associated uncertainties, and partially fill the gap of data required in performing a risk analysis assessment of tunnels shafts.  相似文献   

10.
This study deals with the seismic fragility of elastic structural systems equipped with single concave sliding (friction pendulum system (FPS)) isolators considering different soil conditions. The behavior of these systems is analyzed by employing a two-degree-of-freedom model, whereas the FPS response is described by means of a velocity-dependent model. The uncertainty in the seismic inputs is taken into account by considering artificial seismic excitations modelled as timemodulated filtered Gaussian white noise random processes of different intensity within the power spectral density method. In particular, the filter parameters, which control the frequency content of the random excitations, are calibrated to describe stiff, medium and soft soil conditions. The sliding friction coefficient at large velocity is also considered as a random variable modelled through a uniform probability density function. Incremental dynamic analyses are developed in order to evaluate the probabilities of exceeding different limit states related to both the reinforced concrete (RC) superstructure and isolation level, defining the seismic fragility curves within an extensive parametric study carried out for different structural system properties and soil conditions. The abovementioned seismic fragility curves are useful to evaluate the seismic reliability of base-isolated elastic systems equipped with FPS and located in any site for any soil condition.  相似文献   

11.
土石坝(超)深厚覆盖层地基中的深埋细粒土抗地震残余变形能力较差,尤其是在土层厚度较大时,覆盖层地基连同坝体在强震作用下可能会产生较大的地震沉陷。针对我国西部某大型土石坝工程,对超深厚覆盖层地基中深埋粉砂层土的地震残余变形特性进行三轴试验研究。研究表明:试验土料级配曲线与相应土层各钻孔平均级配曲线很接近,试验土料的颗粒级配对实际土层的颗粒组成特性具有代表性;试验土料的地震残余变形特性主要受土体密度、固结条件和围压力条件等控制,尤其是固结比对土体地震残余变形特性影响较大;各因素对土体残余体积变形特性和轴向变形特性的影响规律有所差异。  相似文献   

12.
Rockfill buttressing resting on the downstream face of masonry or concrete gravity dam is often considered as a strengthening method to improve the stability of existing dam for hydrostatic and seismic loads. Simplified methods for seismic stability analysis of composite concrete-rockfill dams are discussed. Numerical analyses are performed using a nonlinear rockfill model and nonlinear dam-rockfill interface behavior to investigate the effects of backfill on dynamic response of composite dams. A typical 35 m concrete gravity dam, strengthened by rockfill buttressing is considered. The results of analyses confirm that backfill can improve the seismic stability of gravity dams by exerting pressure on the dam in opposition to hydrostatic loads. According to numerical analyses results, the backfill pressures vary during earthquake base excitations and the inertia forces of the backfill are the main source for those variations. It is also shown that significant passive (or active) pressure cannot develop in composite dams with a finite backfill width. A simplified model is also proposed for dynamic analysis of composite dam by replacing the backfill with by a series of vertical cantilever shear beams connected to each other and to the dam by flexible links.  相似文献   

13.
The nonlinear response of structures is usually evaluated by considering two accelerograms acting simultaneously along the orthogonal directions. In this study, the infl uence of the earthquake direction on the seismic response of building structures is examined. Three multi-story RC buildings, representing a very common structural typology in Italy, are used as case studies for the evaluation. They are, respectively, a rectangular plan shape, an L plan shape and a rectangular plan shape with courtyard buildings. Nonlinear static and dynamic analyses are performed by considering different seismic levels, characterized by peak ground acceleration on stiff soil equal to 0.35 g, 0.25 g and 0.15 g. Nonlinear dynamic analyses are carried out by considering twelve different earthquake directions, and rotating the direction of both the orthogonal components by 30° for each analysis(from 0° to 330°). The survey is carried out on the L plan shape structure. The results show that the angle of the seismic input motion signifi cantly infl uences the response of RC structures; the critical seismic angle, i.e., the incidence angle that produces the maximum demand, provides an increase of up to 37% in terms of both roof displacements and plastic hinge rotations.  相似文献   

14.
The seismic response of a dam is strongly influenced by its interaction with the water reservoir and the foundation. The hydrodynamic forces in the reservoir are in turn affected by radiation of waves towards infinity, wave absorption at the reservoir bottom, and cross-coupling between the foundation below the dam and the reservoir bottom. The fluid–foundation interaction effect, i.e. the wave absorption along the reservoir bottom, can be accounted for by using either an approximate one-dimensional (1D) wave propagation model or a rigorous analysis of interaction between the flexible soil along the base and the water. The rigorous approach requires enormous computational effort because of (a) cross-coupling between the foundation of the dam and the soil below the reservoir and (b) frequency dependence of the boundary condition along the fluid-foundation interface. The analysis can be simplified by ignoring the cross-coupling and by using the approximate 1D wave propagation model. The effects of each of these two simplifications on the accuracy and computational efficiency of the procedure used for the seismic response analysis of a dam are examined. Analytical results are presented for the complex frequency-response functions as well as the time histories of the response of Pine Flat dam to Taft and E1 Centro ground motions.  相似文献   

15.
In this paper the seismic response of a well-documented Chinese rockfill dam, Yele dam, is simulated and investigated employing the dynamic hydro-mechanically (HM) coupled finite element (FE) method. The objective of the study is to firstly validate the numerical model for static and dynamic analyses of rockfill dams against the unique monitoring data on the Yele dam recorded before and during the Wenchuan earthquake. The initial stress state of the dynamic analysis is reproduced by simulating the geological history of the dam foundation, the dam construction and the reservoir impounding. Subsequently, the predicted seismic response of the Yele dam is analysed, in terms of the deformed shape, crest settlements and acceleration distribution pattern, in order to understand its seismic behaviour, assess its seismic safety and provide indication for the application of any potential reinforcement measures. The results show that the predicted seismic deformation of the Yele dam is in agreement with field observations that suggested that the dam operated safely during the Wenchuan earthquake. Finally, parametric studies are conducted to explore the impact of two factors on the seismic response of rockfill dams, i.e. the permeability of materials comprising the dam body and the vertical ground motion.  相似文献   

16.
Most offshore platforms are supported on long and large-diameter piles with variable wall-thickness along the length, and soil properties varying with depth. The design and analyses of these piles are made by modelling the soil-pile system with a beam-on-Winkler foundation. Therefore, evaluation of appropriate soil-pile springs for use in such analyses is a matter of concern. Fundamental characteristics of dynamic lateral load-deflection relationships for piles were studied analytically considering the soil-pile-structure interaction under seismic loading conditions. The soil layer was assumed homogeneous, linearly elastic with hysteretic type material damping, and overlying a rigid base. A superstructure with multi-degrees of freedom was supported by a single vertical pile hinged at the rigid base. Parametric studies were carried out to identify the influence of the system parameters on the behaviour of the dynamic lateral load-deflection relationships of piles. The lateral load-deflection relationships vary considerably with depth and are influenced not only by the dynamic properties of soil but also by the structural properties of a pile and loading conditions. These lateral load-deflection relationships can be used to define the soil-pile springs for the seismic response analysis of a soil-pile-structure system, and the results can be extended to problems with soil profiles with layering and non-linearity.  相似文献   

17.
Conventional seismic analysis of gravity dams assumes that the behaviour of the dam–water–soil system can be represented using a 2‐D model since dam vertical contraction joints between blocks allow them to vibrate independently from each other. The 2‐D model assumes the reservoir to be infinite and of constant width, which is not true for certain types of reservoirs. In this paper, a boundary element method (BEM) model in the frequency domain is used to investigate the influence of the reservoir geometry on the hydrodynamic dam response. Important conceptual conclusions about the dam–reservoir system behaviour are obtained using this model. The results show that the reservoir shape influences the seismic response of the dam, making it necessary to account for 3‐D effects in order to obtain accurate results. In particular, the 3‐D pressure and displacement responses can be substantially larger than those computed with the 2‐D model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
This purpose of this paper is to study the dynamic characteristics of the Fei-Tsui arch dam using the seismic response data and the ambient vibration data. For the identification of dam properties from seismic response data, the multiple inputs from the abutment of the dam to represent the nonuniform excitations of seismic input motion are considered, and the ARX model is applied using the discrete-time linear filtering approach with least-squares approximation to identify the dynamic characteristics of the dam. The system modal dampings, natural frequencies and frequency response functions are identified. A comparison of the identified modal parameters is made among different seismic events. Post-earthquake safety evaluation of the dam can be made based on the identified model. Finally, the ambient vibration test of the dam is performed to identify the mode shapes along the dam crest.  相似文献   

19.
Uncertainties in structural engineering are often arising from the modeling assumptions and errors, or from variability in input loadings. A practical approach for dealing with them is to perform sensitivity and uncertainty analysis in the framework of stochastic and probabilistic methods. These analyses can be statically and dynamically performed through nonlinear static pushover and IDA techniques, respectively. Of the existing structures, concrete gravity dams are infrastructures which may encounter many uncertainties. In this research, probabilistic analysis of the seismic performance of gravity dams is presented. The main characteristics of the nonlinear tensile behavior of mass concrete, along with the intensity of earthquake excitations are considered as random variables in the probabilistic analysis. Using the tallest non‐overflow monolith of the Pine Flat gravity dam as a case study, its response under static and dynamic situations is reliably examined utilizing different combinations of parameters in the material and the seismic loading. The sensitivity analysis reveals the relative importance of each parameter independently. It will be shown that the undamaged modulus of elasticity and tensile strength of mass concrete have more significant roles on the seismic resistance of the dam than the ultimate inelastic tensile strain. In order to propagate the parametric uncertainty to the actual seismic performance of the dam, probabilistic simulation methods such as Monte Carlo simulation with Latin hypercube sampling, and approximate moment estimation techniques will be used. The final results illustrate the possibility of using a mean‐parameter dam model to estimate the mean seismic performance of the dam. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
通过对水口水电站重力坝强震反应台站在古田地震中获取的强震反应观测资料进行信噪比、反应谱和功率谱分析,得到如下结论:①大坝在0.7~15 Hz频率段的振动特性较为可信;②坝基和自由场输入地震动富于高频,峰值加速度反应谱存在较大差异;③坝基输入地震动存在差异性,建议今后此类大坝抗震设计时考虑多点地震动输入;④单个卓越频率携带的能量对反应谱影响不大,反应谱是和输入地震动总能量相关的;⑤坝体刚度较大,此次地震中还处于线弹性状态。初步了解了强震记录的地震动特性和大坝结构的抗震性能,对认识水库地震近场地震动特性和重力坝地震反应有一定的参考意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号