首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
An analytical solution for scattering of plane P waves by a semi-cylindrical hill was derived by using the wave function expansion method, and convergence of the solution and accuracy of truncation were verified. The effect of incident frequency and incident angle on the surface motion of the hill was discussed, and it was shown that a hill greatly amplifies incident plane P waves, and maximum horizontal displacement amplitudes appear mostly at the inclined incidence of waves, which are located at the half-space; and maximum vertical displacement amplitudes emerge mostly at the vertical incidence of waves, which are situated at the hill.  相似文献   

2.
Abstract

A model based on analytical development and numerical solution is presented for estimating the cumulative distribution function (cdf) of the runoff volume and peak discharge rate of urban floods using the joint probability density function (pdf) of rainfall volume and duration together with information about the catchment's physical characteristics. The joint pdf of rainfall event volume and duration is derived using the theory of copulas. Four families of Archimedean copulas are tested in order to select the most appropriate to reproduce the dependence structure of those variables. Frequency distributions of runoff event volume and peak discharge rate are obtained following the derived probability distribution theory, using the functional relationship given by the rainfall–runoff process. The model is tested in two urban catchments located in the cities of Chillán and Santiago, Chile. The results are compared with the outcomes of continuous simulation in the Storm Water Management Model (SWMM) and with those from another analytical model that assumes storm event duration and volume to be statistically independent exponentially distributed variables.

Citation Zegpi, M. & Fernández, B. (2010) Hydrological model for urban catchments – analytical development using copulas and numerical solution. Hydrol. Sci. J. 55(7), 1123–1136.  相似文献   

3.
IntroductionThe site effect of local inhomogeneity and irregularity on seismic wave propagation is one of the most attractive topics in seismology. The problem may be resolved by either analytical method or numerical method. Here, the analytical method is the wave function expansion method; numerical methods include the finite difference, finite element, boundary integration equation, and discrete wave number method, etc. Although these numerical methods can be applied for sites of arbitrary s…  相似文献   

4.
Diffraction of a two-dimensional (2D) semi-circular cavity in a half-space under incident SH-waves is studied using the classic wave function expansion method with a new de-coupling technique. This so-called “improved cosine halfrange expansion” algorithm exhibits an excellent performance in reducing displacement residual errors at two rim points of concern. The governing equations are developed in a manner that minimizes the residues of the boundary conditions. Detailed derivation and analysis procedures as well as truncation of infinite linear governing equations are presented. The semi-circular cavity model presented in this paper, due to its simple profile, is expected to be used in seismic wave propagation studies as a benchmark for examining the accuracies of various analytical or numerical methods for mixed-boundary wave propagation problems.  相似文献   

5.
Seismic pounding between adjacent frames in multiple-frame bridges and girder ends in multi-span simply supported bridges has been commonly observed in several recent earthquakes. The consequences of pounding include damage to piers, abutments, shear keys, bearings and restrainers, and possible collapse of deck spans. This paper investigates pounding in bridges from an analytical perspective. A simplified nonlinear model of a multiple-frame bridge is developed including the effects of inelastic frame action and nonlinear hinge behavior, to study the seismic response to longitudinal ground motion. Pounding is implemented using the contact force-based Kelvin model, as well as the momentum-based stereomechanical approach. Parameter studies are conducted to determine the effects of frame period ratio, column hysteretic behavior, energy dissipation during impact and near source ground motions on the pounding response of the bridge. The results indicate that pounding is most critical for highly out-of-phase frames and is not significant for frame period ratios greater than 0.7. Impact models without energy dissipation overestimate the displacement and acceleration amplifications due to impact, especially for elastic behavior of the frames. Representation of stiffness degradation in bridge columns is cssential in capturing the accurate response of pounding frames subjected to far field ground motion. Finally, it is shown that strength degradation and pounding can result in significant damage to the stiffer frames of the bridge when subjected to large acceleration pulses from near field ground motion records.  相似文献   

6.
Earthquake geotechnical engineering has been recognised as an important branch of earthquake engineering. The analysis of soil–structure interaction may also be crucial when structural design problems are involved. Soil–structure interaction is a complex problem and needs to be analysed by physical and numerical modelling. Two physical models, consisting of a shallow foundation resting on a sand deposit, are tested on a shaking table to analyse soil–foundation interaction. The physical models are monitored, recording the time-histories of accelerations and displacements in the soil deposit and on the foundation. FEM codes are then employed to numerically model the resulting behaviour, using specific constitutive models and a new hand-made code based on the characteristic-line method. Simplified analytical approaches, still preferred in engineering, are discussed and developed. A comparison is made between the numerical and analytical results and they are also compared with the experimental results to validate the numerical modelling and analytical approaches and, in the new light of the Performance-Based-Design, evaluate their ability to predict foundation displacements (SLE) and bearing capacity (SLU). Finally, interesting aspects regarding the seismic behaviour of the shallow foundation on the sand deposit have been observed and noted.  相似文献   

7.
A closed-form analytical solution is presented for the dynamic response of a SDOF oscillator, supported by a flexible composite foundation embedded in an elastic half-space, and excited by plane SH waves. The solution is obtained by the wave function expansion method. The solution is verified for the two limiting cases of a rigid–flexible composite foundation and a homogeneous flexible foundation by comparison with published results. The model is used to investigate the effect of the foundation flexibility variation on the system response. The results show that the effect is significant for both foundation response and structural relative response. For a system with larger foundation flexibility variation, the peak of the foundation effective input motion is smaller, while the amplitude of structural relative response less changes. When foundation flexibility variation decreases, system frequency will shift to lower frequency, and the shift value is also highly dependent on the foundation flexibility variation.  相似文献   

8.
Particles on soil-mantled hillslopes are subject to downslope transport by erosion processes and vertical mixing by bioturbation. Both are key processes for understanding landscape evolution and soil formation, and affect the functioning of the critical zone. We show here how the depth–age information, derived from feldspar-based single grain post-infrared infrared stimulated luminescence (pIRIR), can be used to simultaneously quantify erosion and bioturbation processes along a hillslope. In this study, we propose, for the first time, an analytical solution for the diffusion–advection equation to calculate the diffusivity constant and erosion–deposition rates. We have fitted this model to age–depth data derived from 15 soil samples from four soil profiles along a catena located under natural grassland in the Santa Clotilde Critical Zone Observatory, in the south of Spain. A global sensitivity analysis was used to assess the relative importance of each model parameter in the output. Finally, the posterior probability density functions were calculated to evaluate the uncertainty in the model parameter estimates. The results show that the diffusivity constant at the surface varies from 11.4 to 81.9 mm2 a-1 for the hilltop and hill-base profile, respectively, and between 7.4 and 64.8 mm2 a-1 at 50 cm depth. The uncertainty in the estimation of the erosion–deposition rates was found to be too high to make a reliable estimate, probably because erosion–deposition processes are much slower than bioturbation processes in this environment. This is confirmed by a global sensitivity analysis that shows how the most important parameters controlling the age–depth structure in this environment are the diffusivity constant and regolith depth. Finally, we have found a good agreement between the soil reworking rates proposed by earlier studies, considering only particle age and depth, and the estimated diffusivity constants. The soil reworking rates are effective rates, corrected for the proportion of particles actually participating in the process. © 2019 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Two global analytical models of the main magnetic field of the Earth (MFE) have been used to determine their potential in deriving an anomalous MFE from balloon magnetic surveys conducted at altitudes of ~30 km. The daily mean spherical harmonic model (DMSHM) constructed from satellite data on the day of balloon magnetic surveys was analyzed. This model for the day of magnetic surveys was shown to be almost free of errors associated with secular variations and can be recommended for deriving an anomalous MFE. The error of the enhanced magnetic model (EMM) was estimated depending on the number of harmonics used in the model. The model limited by the first 13 harmonics was shown to be able to lead to errors in the main MFE of around 15 nT. The EMM developed to n = m = 720 and constructed on the basis of satellite and ground-based magnetic data fails to adequately simulate the anomalous MFE at altitudes of 30 km. To construct a representative model developed to m = n = 720, ground-based magnetic data should be replaced by data of balloon magnetic surveys for altitudes of ~30 km. The results of investigations were confirmed by a balloon experiment conducted by Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences and the Moscow Aviation Institute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号