首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A joint analysis of down-hole (DH) and multichannel analysis of surface waves (MASW) measurements offers a complete evaluation of shear wave velocity profiles, especially for sites where a strong lateral variability is expected, such as archeological sites. In this complex stratigraphic setting, the high “subsoil anisotropy” (i.e., sharp lithological changes due to the presence of anthropogenic backfill deposits and/or buried man-made structures) implies a different role for DH and MASW tests. This paper discusses some results of a broad experimental program conducted on the Palatine Hill, one of the most ancient areas of the city of Rome (Italy). The experiments were part of a project on seismic microzoning and consisted of 20 MASW and 11 DH tests. The main objective of this study was to examine the difficulties related to the interpretation of the DH and MASW tests and the reliability limits inherent in the application of the noninvasive method in complex stratigraphic settings. As is well known, DH tests provide good determinations of shear wave velocities (Vs) for different lithologies and man-made materials, whereas MASW tests provide average values for the subsoil volume investigated. The data obtained from each method with blind tests were compared and were correlated to site-specific subsurface conditions, including lateral variability. Differences between punctual (DH) and global (MASW) Vs measurements are discussed, quantifying the errors by synthetic comparison and by site response analyses. This study demonstrates that, for archeological sites, VS profiles obtained from the DH and MASW methods differ by more than 15 %. However, the local site effect showed comparable results in terms of natural frequencies, whereas the resolution of the inverted shear wave velocity was influenced by the fundamental mode of propagation.  相似文献   

2.
埋入源多道面波分析(MASW)中最小偏移距的估计方法   总被引:1,自引:0,他引:1       下载免费PDF全文
多道面波分析(MASW)法是一种被广泛使用的浅层地震勘探方法.为解决埋入源近场效应对MASW法应用的影响,本文分析了埋入源产生的Rayleigh波传播机制,探讨了MASW法的排列参数对地震记录的影响,提出了确定最小偏移距的经验公式.通过对实际地质模型的有限元模拟,验证了经验公式的合理性.在以经验公式为指导的野外实测中,利用多种方法提取了相对可靠的频散曲线,采用基阶和高阶面波联合反演,所得的一维速度结构与钻孔资料具有很强的相关性,表明本文发展的最小偏移距估计方法具有一定的实际应用价值.  相似文献   

3.
用瞬态多道瑞利波法,对夏垫隐伏断裂附近的浅层速度结构进行了调查研究,利用f-k域分析方法提取瑞利波频散曲线,分别用遗传算法和半波长方法反演,得到断裂附近的横波速度结构和瑞利波相速度分布剖面。反演结果与钻孔资料的对比表明,瞬态瑞利波法对于探测上断点埋深较浅的隐伏断裂是有效和可靠的。  相似文献   

4.
The phenomenon of earthquake‐induced structural pounding has attracted the researchers' attention for several years now. The aim of this paper is to show the results of two experiments concerning interactions between elements made of different building materials, such as steel, concrete, timber and ceramic. The first experiment was conducted by dropping balls from different height levels onto a rigid surface, whereas the second one was focused on pounding‐involved response of two tower models excited on a shaking table. The results of the impact experiment show that the value of the coefficient of restitution depends substantially on the prior‐impact velocity as well as on the material used. Based on these results, the appropriate formulations have been suggested to be applied in the numerical simulations. The results of the shaking table tests show a considerable influence of the material used for colliding elements on the behaviour of structures during earthquakes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Multichannel analysis of surface wave method with the autojuggie   总被引:2,自引:0,他引:2  
The shear (S)-wave velocity of near-surface materials and its effect on seismic-wave propagation are of fundamental interest in many engineering, environmental, and groundwater studies. The multichannel analysis of surface wave (MASW) method provides a robust, efficient, and accurate tool to observe near-surface S-wave velocity. A recently developed device used to place large numbers of closely spaced geophones simultaneously and automatically (the ‘autojuggie’) is shown here to be applicable to the collection of MASW data. In order to demonstrate the use of the autojuggie in the MASW method, we compared high-frequency surface-wave data acquired from conventionally planted geophones (control line) to data collected in parallel with the automatically planted geophones attached to steel bars (test line). The results demonstrate that the autojuggie can be applied in the MASW method. Implementation of the autojuggie in very shallow MASW surveys could drastically reduce the time required and costs incurred in such surveys.  相似文献   

6.
在进行长输埋地管道振动台试验的过程中,针对数据信息的采集量测以及传感器的布置位置进行了研究。采用三维数值模拟的方法对管-土相互作用体系进行了地震反应分析,内容包括埋地管道结构纵、横向在非一致地震动作用下的地震响应及受力变形特征。根据计算结果确定了主观测断面及辅助观测断面的位置及观测断面上传感器布置的位置,在满足基本信息采集要求的前提下,对可供采用的信息采集通道进行了优化分配,由此确定本次试验的观测断面以及传感器的具体测量部位与数目。成果对试验获得成功起到了保障作用,可为同类试验提供参考。  相似文献   

7.
The use of MASW method in the assessment of soil liquefaction potential   总被引:4,自引:0,他引:4  
The multi-channel analysis of surface wave (MASW) method is a non-invasive method recently developed to estimate shear wave velocity profile from surface wave energy. Unlike conventional SASW method, multi-station recording permits a single survey of a broad depth range and high levels of redundancy with a single field configuration. An efficient and unified wavefield transform technique is introduced for dispersion analysis and on site data quality control. The technique was demonstrated in the assessment of soil liquefaction potential at a site in Yuan Lin, Taiwan. The shear wave velocity and liquefaction potential assessments based on MASW method compares favorable to that based on SCPT shear wave measurements. Two-dimensional shear wave velocity profiles were estimated by occupying successive geophone spreads at several sites in central western Taiwan, at some of which sand boils or ground cracks occurred during 1999 Chi Chi earthquake. Liquefaction potential analysis based on MASW imaging was shown to be effective for estimating the extent of potential liquefaction hazard.  相似文献   

8.
Forced vibration field tests and finite-element studies were conducted on the Shahid Rajaee concrete arch dam in Northern Iran to determine the dynamic properties of the dam–reservoir–foundation system. The first forced vibration tests on the dam were performed with two different types of exciter units, with a limited maximum force, bolted on the dam crest for alternative in-phase and out-of-phase sequencing. Because of an insufficient number of recording sensors, two arrangements of sensors were used to cover sufficient points on the dam crest and one gallery during tests. Two kinds of vibration tests, on–off and frequency sweeping, were carried out on the dam. The primary natural frequencies of the coupled system for both symmetric and anti-symmetric vibration modes were approximated during on–off tests in two types of sequencing of exciters, in phase and out-of-phase, with a maximum frequency of 14 Hz. The principal forced vibration tests were performed at precise resonant frequencies based on the results of the on–off tests in which sweeping around the approximated frequencies at 0.1 Hz increments was performed. Baseline correction and suitable bandpass filtering were applied to the test records and then signal processing was carried out to compute the auto power, cross power and coherence spectra. Nine middle modes of vibration of the coupled system and corresponding damping ratios were estimated. The empirical results are compared against the results from calibrated finite-element modeling of the system using former ambient vibration tests, considering the dam–reservoir–foundation interaction effects. Good agreement is obtained between experimental and numerical results for eight middle modes of the dam–reservoir–foundation system.  相似文献   

9.
‘Mapping the Underworld’ is a UK-based project, which aims to create a multi-sensor device that combines complementary technologies for remote buried utility service detection and location. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics, and techniques for detecting buried infrastructure, in particular plastic water pipes, are being investigated. One of the proposed techniques involves excitation of the pipe at some known location with concurrent vibrational mapping of the ground surface in order to infer the location of the remainder of the pipe. In this paper, measurements made on a dedicated pipe rig are reported. Frequency response measurements relating vibrational velocity on the ground to the input excitation were acquired. Contour plots of the unwrapped phase revealed the location of the pipe to within 0.1-0.2 m. Magnitude contour plots revealed the excitation point and also the location of the pipe end. By examining the unwrapped phase gradients along a line above the pipe, it was possible to identify the wave-type within the pipe responsible for the ground surface vibration. Furthermore, changes in the ground surface phase speed computed using this method enabled the location of the end of the pipe to be confirmed.  相似文献   

10.
A new target-oriented parameterization scheme, named the object-based model, is suggested to represent man-made or natural targets as regular shapes embedded in a two-dimensional resistivity background. The numerical values of the target parameters (size, depth, location and resistivity) are estimated in three steps consisting of conventional regularized inversion, exclusion of anomalous regions and delineation of target bodies. The method produces sharp edges and sharp variation in intrinsic resistivity between the targets and background.The number of target objects is decided by the visual inspection of the 2D resistivity section derived from the application of a conventional cell-based regularized inversion. The 2D background is also extracted from the same section. A genetic algorithm approach is used at the final stage to test a large number of distinct models. Each test model consists of the same number of objects buried in the 2D background. The size, depth, location and resistivity of the targets are estimated from a class of models generated by the application of biological rules. The derived images of buried bodies have sharp edges and can then be understood by engineers and archeologists. However, if the hypothesis about the ‘conceptual model’ is very different from the geometry of the subsurface, the proposed approach will not be able to produce satisfactory results.  相似文献   

11.
Recent field tests illustrate the accuracy and consistency of calculating near-surface shear (S)-wave velocities using multichannel analysis of surface waves (MASW). S-wave velocity profiles (S-wave velocity vs. depth) derived from MASW compared favorably to direct borehole measurements at sites in Kansas, British Columbia, and Wyoming. Effects of changing the total number of recording channels, sampling interval, source offset, and receiver spacing on the inverted S-wave velocity were studied at a test site in Lawrence, Kansas. On the average, the difference between MASW calculated Vs and borehole measured Vs in eight wells along the Fraser River in Vancouver, Canada was less than 15%. One of the eight wells was a blind test well with the calculated overall difference between MASW and borehole measurements less than 9%. No systematic differences were observed in derived Vs values from any of the eight test sites. Surface wave analysis performed on surface data from Wyoming provided S-wave velocities in near-surface materials. Velocity profiles from MASW were confirmed by measurements based on suspension log analysis.  相似文献   

12.
The accuracy and resolution of surface wave dispersion results depend on the parameters used for acquiring data in the field. The optimized field parameters for acquiring multichannel analysis of surface wave (MASW) dispersion images can be determined if preliminary information on the phase velocity range and interface depth is available. In a case study on a fill slope in Hong Kong, the optimal acquisition parameters were first determined from a preliminary seismic survey prior to a MASW survey. Field tests using different sets of receiver distances and array lengths showed that the most consistent and useful dispersion images were obtained from the optimal acquisition parameters predicted. The inverted S-wave velocities from the dispersion curve obtained at the optimal offset distance range also agreed with those obtained by using direct refraction survey.  相似文献   

13.
针对探测山前隐伏断裂复杂困难的特点,以巍山—长山南坡断裂为例,采用浅层地震勘探和高密度电法勘探等地球物理方法并结合钻孔联合地质剖面资料,对巍山—长山南坡断裂的隐伏段的准确位置和活动性进行研究,确定断层的准确位置和产状等。研究结果表明,巍山—长山南坡断裂在唐山市区的隐伏段为S倾的正断层,倾角约78°,断距约3 m,上断点埋深约19 m;该断裂在市区的隐伏段为中更新世断裂,晚更新世以来不活动。  相似文献   

14.
虽然MASW技术已经广泛地应用于地基检测中,但由于缺少大量理论指导,特别是数值模拟方面的研究,其应用受到限制.本文基于有限元软件LS-DYNA,通过数值模拟研究了四种典型地层(递增型地层、含软弱下伏层地层、含软弱夹层地层和硬夹层地层)由MASW方法提取的瑞雷波频散曲线的“之”字型特征.发现对于递增型地层,频散曲线不会出现“之”字型,对于其他三种地层,频散曲线则会出现不同类型的“之”字型,其中含软弱夹层地层“之”字型的位置和尺寸与软夹层的位置和层厚有较好的对应关系.本文的研究结果为实际工程中利用瑞雷波频散曲线的形状判定地层类型和软弱夹层位置提供了重要参考.  相似文献   

15.
The multichannel analysis of surface wave (MASW) method has been effectively used to determine near-surface shear- (S-) wave velocity. Estimating the S-wave velocity profile from Rayleigh-wave measurements is straightforward. A three-step process is required to obtain S-wave velocity profiles: acquisition of a multiple number of multichannel records along a linear survey line by use of the roll-along mode, extraction of dispersion curves of Rayleigh waves, and inversion of dispersion curves for an S-wave velocity profile for each shot gather. A pseudo-2D S-wave velocity section can be generated by aligning 1D S-wave velocity models. In this process, it is very important to understand where the inverted 1D S-wave velocity profile should be located: the midpoint of each spread (a middle-of-receiver-spread assumption) or somewhere between the source and the last receiver. In other words, the extracted dispersion curve is determined by the geophysical structure within the geophone spread or strongly affected by the source geophysical structure. In this paper, dispersion curves of synthetic datasets and a real-world example are calculated by fixing the receiver spread and changing the source location. Results demonstrate that the dispersion curves are mainly determined by structures within a receiver spread.  相似文献   

16.
The seismic hazard and risk analysis for the onshore Groningen gas field requires information about local soil properties, in particular shear-wave velocity (VS). A fieldwork campaign was conducted at 18 surface accelerograph stations of the monitoring network. The subsurface in the region consists of unconsolidated sediments and is heterogeneous in composition and properties. A range of different methods was applied to acquire in situ VS values to a target depth of at least 30 m. The techniques include seismic cone penetration tests (SCPT) with varying source offsets, multichannel analysis of surface waves (MASW) on Rayleigh waves with different processing approaches, microtremor array, cross-hole tomography and suspension P-S logging. The offset SCPT, cross-hole tomography and common midpoint cross-correlation (CMPcc) processing of MASW data all revealed lateral variations on length scales of several to tens of metres in this geological setting. SCPTs resulted in very detailed VS profiles with depth, but represent point measurements in a heterogeneous environment. The MASW results represent VS information on a larger spatial scale and smooth some of the heterogeneity encountered at the sites. The combination of MASW and SCPT proved to be a powerful and cost-effective approach in determining representative VS profiles at the accelerograph station sites. The measured VS profiles correspond well with the modelled profiles and they significantly enhance the ground motion model derivation. The similarity between the theoretical transfer function from the VS profile and the observed amplification from vertical array stations is also excellent.  相似文献   

17.
在化探定位的基础上,通过浅层地震勘探、钻探地质剖面和新地层年代学等多手段探测研究,首次查明了聊考隐伏断裂晚第四纪以来的位错量和最新一期活动时代,厘定了断裂位错上断点达地表20m以下,最新一期活动在全新世早期,属浅埋的隐伏活动断裂。断裂第四纪以来的平均位错速率为0.12mm/a,在中国东部属中等倔强的一类隐伏活动断裂。  相似文献   

18.
Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity–stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10–16% when the frequency is above 10 Hz due to the velocity dispersion of P and S waves.  相似文献   

19.
The integration of geological, geophysical, and geotechnical interpretation at the southern part of 15th of May City, have been used to evaluate the subsurface stratigraphy, especially the clay layer which may cause serious danger to construction. Those techniques have been used to delineate the subsurface structures as normal faults, which play a critical role on the stability of buildings. Geological setting of the area has been evaluated through the construction of a geological map from different geological sections and samples obtained from more than 30 observation points. Geophysical tools such as vertical electrical soundings (12 VESs), 2-D dipole–dipole array (7 sections), P-wave shallow seismic refraction (31 profiles) and multiple channel analysis of surface waves (31 MASW profiles) have been carried out to image the subsurface situation. Geotechnical evaluation using 26 boreholes, samples, laboratory tests and geotechnical parameters has been done at the area of interest. The geological setting demonstrates that the city had been constructed on the second and third members of Qurn Formation (Upper Eocene) composed of argillaceous limestone, marl and shale. Two normal faults are passing through the area were observed. The resistivity (VES and dipole–dipole) and seismic (P-waves and MASW) results reflect the presence of the two normal faults cross the study area, affecting the obtained section of marl, clayey marl and limestone layers. The geotechnical information indicate the presence of the normal faults and the existence of clay layer with swelling ability reaching 140%, which may cause cracks in the upper layers and/or subsidence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号