首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
挡土墙地震被动土压力的拟动力分析   总被引:5,自引:0,他引:5  
杨剑 《地震学刊》2012,(3):365-371
对地震土压力的研究是地震区挡土墙安全设计的一项重要课题。地震条件下,目前的研究主要是给出了土压力的近似拟静力解析解。本文采用可考虑动力荷载下的周期和纵波及横波效应的拟动力方法,对挡土墙后的地震被动土压力进行分析。在挡土墙后平面滑裂面假设的基础上,考虑了水平和垂直向地震加速度、纵波速度、横波速度、挡土墙摩擦角、填土内摩擦角、填土坡角对地震被动土压力的影响。与Mononobe-Okabe理论的拟静力法不同的是,用本方法得出了沿墙身地震被动土压力是非线性变化的结果,这更符合地震条件下土压力的变化规律。  相似文献   

2.
Prediction of the seismic rotational displacements of retaining wall under passive condition is an important aspect of design in earthquake prone region. In this paper, the pseudo-dynamic method is used to compute the rotational displacements of rigid retaining wall supporting cohesionless backfill under seismic loading for the passive earth pressure condition. The proposed method considers time, phase difference and effect of amplification in shear and primary waves propagating through both the backfill and the retaining wall. The influence of ground motion characteristics on rotational displacement of the wall is evaluated. Also the effects of variation of parameters like wall friction angle, soil friction angle, amplification factor, shear wave velocity, primary wave velocity, period of lateral shaking, horizontal and vertical seismic accelerations on the rotational displacements are studied. The rotational displacement of the wall increases substantially with increase in amplification of both shear and primary waves, time of input motion, period of lateral shaking and decreases with increase in soil friction angle, wall friction angle. The rotational displacements of the wall also increase when the effect of wall inertia is taken into account. Results are provided in graphical form.  相似文献   

3.
In earthquake prone areas, understanding of the seismic passive earth resistance is very important for the design of different geotechnical earth retaining structures. In this study, the limit equilibrium method is used for estimation of critical seismic passive earth resistance for an inclined wall supporting horizontal cohesionless backfill. A composite failure surface is considered in the present analysis. Seismic forces are computed assuming the backfill soil as a viscoelastic material overlying a rigid stratum and the rigid stratum is subjected to a harmonic shaking. The present method satisfies the boundary conditions. The amplification of acceleration depends on the properties of the backfill soil and on the characteristics of the input motion. The acceleration distribution along the depth of the backfill is found to be nonlinear in nature. The present study shows that the horizontal and vertical acceleration distribution in the backfill soil is not always in-phase for the critical value of the seismic passive earth pressure coefficient. The effect of different parameters on the seismic passive earth pressure is studied in detail. A comparison of the present method with other theories is also presented, which shows the merits of the present study.  相似文献   

4.
被动状态下位移预测是挡墙地震工程设计中的关键,而岸墙后回填土的孔隙水压力对墙体运动具有一定影响。采用拟静力法计算墙后部分浸水土体的被动动土压力,根据静力水压力理论近似计算土颗粒里的动水压力;同时考虑地震荷载和海啸力的作用,根据力矩极限平衡确定旋转门槛加速度系数,采用旋转块体方法计算岸墙被动旋转运动下的地震位移。探讨回填砂土内摩擦角、墙体与土间摩擦角、地震加速度系数、回填土地下水位、海啸波浪高度等参数对旋转位移的影响。  相似文献   

5.
Effectiveness of a new semiactive independently variable stiffness (SAIVS) device in reducing seismic response of sliding base isolated buildings is evaluated analytically and experimentally. Through analytical and experimental study of force—displacement behaviour of the SAIVS device, it is shown that the device can vary stiffness continuously and smoothly between minimum and maximum stiffness. Passive sliding base isolation systems reduce interstorey drifts and superstructure accelerations, but with increased base displacements, which is undesirable, under large velocity near fault pulse type earthquakes. It is a common practice to incorporate non‐linear passive dampers into the isolation system to reduce bearing displacements. Incorporation of passive dampers, however, may result in increased superstructure accelerations and drifts; while, properly designed passive dampers can be beneficial. A viable alternative is to use semiactive variable stiffness systems, which can vary the period of the sliding base isolated buildings in real time, to simultaneously reduce bearing displacements and superstructure responses further than the passive systems, which deserves investigation. This study investigates the performance of a 1:5 scaled smart sliding base isolated building model equipped with the SAIVS device analytically and experimentally, under near fault earthquakes, by developing a new moving average non‐linear tangential stiffness control algorithm for control of the SAIVS device. The SAIVS device reduces bearing displacements further than the passive cases, while maintaining isolation level forces and superstructure responses at the same level as the passive minimum stiffness case, indicating the significant potential of the SAIVS system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Seismic performance of natural slopes, earth structures and solid-waste landfills can be evaluated through displacement-based methods in which permanent displacements induced by earthquake loading are assumed to progressively develop along the critical sliding surface as a result of transient activation of plastic mechanisms within the soil mass. For sliding mechanisms of general shape the earthquake-induced displacements should be computed using a model that provides a closer approximation of sliding surface. When large permanent displacement are induced by seismic actions, due to substantial shear strength reduction, and significant changes in ground surface occur, an improved estimate of permanent displacement can be obtained using a model which accounts for shear strength reduction and mass transfer between adjacent portions of the slope resulting from geometry changes of ground surface during the seismic event.In this paper, a GLE-based model is proposed for seismic displacement analysis of slopes that accounts for shear strength degradation and for geometry rearrangement. Model accuracy is validated against experimental results obtained from shaking table tests carried out on small scale model slopes. Comparison of computed and experimental results demonstrates the capability of the proposed approach in capturing the main features of the observed seismic response of the model slopes.  相似文献   

7.
The M–O (Mononobe–Okabe) theory is used as a standard method to determine the seismic earth pressure. However, the M–O theory does not consider the influence of soil cohesion, and it cannot determine the nonlinear distribution of the seismic earth pressure. This paper presents a general solution for the nonlinear distribution of the seismic active earth pressure of cohesive-frictional soil using the slice analysis method. A new method is proposed to determine the critical failure angle of the backfill wedge under complex conditions, and an iterative calculation method is presented to determine the tension crack depth of the seismic active earth pressure. The considered parameters in the proposed method include the horizontal and vertical seismic coefficients, wall inclination angle, backfill inclination angle, soil friction angle, wall friction angle, soil cohesion, wall adhesion and uniform surcharge. The classical methods of the M–O and Rankine theories can be regarded as special cases of the proposed method. Furthermore, the proposed method is compared with the test results and previously existing solutions to validate the correctness of the results. Additionally, the parameters׳ effect on the critical failure angle, the resultant force, the application-point position, the tension crack depth and the nonlinear distribution of seismic active earth pressure are studied in graphical form.  相似文献   

8.
A review and quantitative comparison of existing deterministic sliding block methods for predicting permanent displacements of earth structures subjected to seismic loading is presented. The reviewed sliding block methods are divided into two main groups based on the characteristic earthquake parameters referenced in each method. One group uses the maximum horizontal ground acceleration and velocity, and the other uses the maximum horizontal ground acceleration and the predominant period of the acceleration spectrum. Displacement functions published by previous authors are reformulated to give common non-dimensionalized displacement functions of the critical acceleration ratio which are then used to compare the different methods for the estimate of permanent seismic displacement of soil structures. The results show that despite the fact that the different methods were formulated using a wide range of earthquake records and different characteristic seismic parameters, permanent displacement values predicted using these methods fall within a reasonably narrow band. Selected acceleration data from three recent earthquakes that occurred in California are used to evaluate and compare the accuracy of the reviewed displacement methods for practical applications.  相似文献   

9.
Pseudo-static analysis is commonly used to design earth structures. Most pseudo-static methods of analysis require a computer program. This paper presents a simple closed form solution of seismic stability analysis by extending Francais–Culmann's analysis. The analysis is valid for a slope with the most critical planar mechanism and under the influence of horizontal and vertical earthquake accelerations. The resulting permanent displacement is discussed and demonstrated using several real earthquake records. The simplicity of extended Francais–Culmann's solution allows it to be used for preliminary design and classroom instruction.  相似文献   

10.
In the design procedure for a retaining wall, the pseudo-static method has been widely used and dynamic earth pressure is calculated by the Mononobe–Okabe method, which is an extension of Coulomb’s earth pressure theory computed by force equilibrium. However, there is no clear empirical basis for treating the seismic force as a static force, and recent experimental research has shown that the Mononobe–Okabe method is quite conservative, and there exists a discrepancy between the assumed conditions and real seismic behavior during an earthquake. Two dynamic centrifuge tests were designed and conducted to reexamine the Mononobe–Okabe method and to evaluate the seismic lateral earth pressure on an inverted T-shape flexible retaining wall with a dry medium sand backfill. Results from two sets of dynamic centrifuge experiments show that inertial force has a significant impact on the seismic behavior on the flexible retaining wall. The dynamic earth pressure at the time of maximum moment during the earthquake was not synchronized and almost zero. The relationship between the back-calculated dynamic earth pressure coefficient at the time of maximum dynamic wall moment and the peak ground acceleration obtained from the wall base peak ground acceleration indicates that the seismic earth pressure on flexible cantilever retaining walls can be neglected at accelerations below 0.4 g. These results suggest that a wall designed with a static factor of safety should be able to resist seismic loads up to 0.3–0.4 g.  相似文献   

11.
To study the effectiveness of sliding supports in isolating structures from damaging earthquake ground motions, a mathematical model of a single degree of freedom structure supported on a sliding foundation and subjected to the N-S component of the El Centro 1940 earthquake is considered. Spectra for absolute accelerations, relative displacements, relative-to-ground displacements, sliding displacements and residual sliding displacements are evaluated for three mass ratios, four coefficients of friction and a damping of 5 per cent critical. It is observed that, for structures with periods less than 1-8 s, for the coefficients of friction considered, the suprema of relative-to-ground displacements, sliding displacements and residual sliding displacements are only of the order of 1–25 times the peak ground displacement. To study the response sensitivities, the spectra for absolute acceleration and sliding displacement of the 1949 Olympia earthquake (S86E component) are also presented. It is concluded that sliding supports can be quite effective in isolating structures from support excitations.  相似文献   

12.
性态设计是支挡结构工程抗震设计的前沿科学问题。以模块式加筋土挡墙为试验对象,通过振动台试验,探究模块式加筋土挡墙的变形模式;收集归纳挡土墙位移计算方法,分析不同破坏模式下屈服加速度系数分布规律;对比不同计算方法计算值与实测值的一致性。研究结果表明:挡墙的位移模式为平移与转动耦合,且以转动为主;不同破坏模式下安全系数法求解的屈服加速度系数均随输入加速度幅值增大而减小,简便方法和能量法所得屈服加速度系数为常数;将屈服加速度系数代入不同位移计算方法对比,提出在不同峰值加速度时,可分别采用Richards and Elms上限法(0.4g以下)、Cai and Bathurst平均上限法(0.4g~0.6g)、Newmark上限法(0.6g~0.8g)、Whitman and Liao平均拟合法(0.8g~1.0g)进行位移计算。最后,对模块式加筋土挡墙的抗震设计流程进行归纳。  相似文献   

13.
地震土压力评价是挡土墙抗震设计的关键问题之一.以往的研究结果表明,挡墙上地震土压力的大小及分布与墙体的侧向位移或者墙后填土的侧向变形密切相关.经典的物部-冈部地震土压力公式可计算填土处于主动与被动状态的极限平衡条件下的土压力,未考虑挡墙侧向位移或填土侧向变形对土压力的影响.在研究土压力系数随应变增量比变化规律的基础上,本文指出土压力系数与挡土墙位移量之间不存在唯一性关系,发现正常固结填土的土压力系数与以应变增量比表述的填土侧向应变约束条件之间具有良好的唯一性,揭示了压剪耦合效应是土压力形成的物理本质;基于上述的唯一性关系和中间土楔等概念,提出了可考虑填土侧向变形的地震土压力实用计算方法,并通过土压力模型试验结果初步验证了该方法的合理性.  相似文献   

14.
Newmark永久位移是评价边坡在地震时稳定性的一个重要指标,近年来广泛应用于地震边坡危险性评价中。传统Newmark永久位移法在计算临界加速度时假定其为常数,未考虑滑动面上抗剪强度参数的变化,过低估计了边坡的永久位移。为了解决这一问题,本文从岩土结构理论获得思路,详细分析滑块底面抗剪强度参数在地震中的变化过程,以边坡震动过程中黏聚力逐步丧失为基本思路,在黏聚力符合一定概率分布的基础上,提出了一种利用蒙特卡罗法模拟其动态减小过程从而实现临界加速度动态变化的计算方法。经过算例计算,黏聚力和临界加速度体现了地震过程中边坡滑块黏聚力和临界加速度的动态变化,位移大小符合地震边坡实际位移的常规数值。本文提出的蒙特卡罗法实现动态黏聚力和动态临界加速度的计算过程与地震时程相对应,不仅在一定程度上解决了抗剪强度参数的动态变化问题,还解决了传统Newmark位移计算中永久位移比实际位移偏小的问题。  相似文献   

15.
Seismic passive resistance with vertical seepage and surcharge   总被引:1,自引:0,他引:1  
Present paper focuses on the computation of the seismic passive earth pressure acting on a vertical rigid retaining wall by a soil mass subjected to vertical steady-state seepage and a uniform surcharge load. Based on the basic assumptions of Coulomb's theory and a pseudo-static method of analysis, a general solution for the passive earth pressure containing two coefficients is presented. In the solution, many parameters, such as unit weight of saturated soil, soil effective internal friction angle, soil/wall friction angle, water/soil unit weight ratio, surcharge intensity coefficient, horizontal and vertical seismic acceleration coefficients, Poisson's ratio of soil mass, hydraulic gradient, and coefficients of pore water pressure, are considered. The effects of hydraulic gradient and seismic forces on passive earth pressure coefficient and passive earth pressure distribution are investigated. The results indicate that passive earth pressure increases with increasing hydraulic gradient for downward water flow case, but decreases for upward water flow case, and that the presence of seismic forces induces a reduction in passive earth pressure.  相似文献   

16.
The static and seismic sliding limit equilibrium condition of retaining walls is investigated, and analytical solutions for the angle of the active slip surface, the critical acceleration coefficient and the coefficient of active earth pressure are provided for different surcharge conditions. In particular, walls retaining a horizontal backfill without surcharge, walls supporting an extended uniform surcharge applied at different distances from the wall and walls supporting a limited uniform surcharge or linear uniform surcharge parallel to the wall are considered in the analysis.The solutions have been derived in the framework of the limit equilibrium approach, considering the effect of the wall through its weight, and accounting for the shear resistance at the base of the wall and the inertia force arising in the wall under seismic conditions.For the wall without surcharge the effect of the vertical component of the seismic acceleration as well as the effects of the inclination of the wall internal face and of the soil–wall friction were also investigated.The angle of the slip plane, the critical seismic acceleration coefficient and the coefficient of active earth pressure are given as functions of dimensionless parameters and the boundary conditions for the applicability of each solution are specified. The influence of soil weight, surcharge conditions and inertia forces on the active earth pressure coefficient is analysed.  相似文献   

17.
Evaluation of seismic displacements of quay walls   总被引:2,自引:0,他引:2  
A new simplified dynamic analysis method is proposed to predict the seismic sliding displacement of quay walls by considering the variation of wall thrust, which is influenced by the excess pore pressure developed in backfill during earthquakes. The method uses the Newmark sliding block concept and the variable yield acceleration, which varies according to the wall thrust, to calculate the quay wall displacement.A series of 1 g shaking table tests were executed to verify the applicability of the proposed method, and a parametric study was performed. The shaking table tests verified that the proposed method properly predicts the wall displacement, and the parametric study showed that the evaluation of a realistic wall displacement is as important as the analysis of liquefaction potential for judging the stability of quay walls.  相似文献   

18.
In this paper the stability of a tied-back wall subjected to seismic loads is analysed for a predetermined mode of failure (rotation about the top of the wall) and the analysis is compared with data from tests on this type of wall using the seismic simulator at the State University of New York at Buffalo. We carried out a pseudo-static analysis of the problem using the Mononobe-Okabe earth pressure coefficients, wherein the dynamic effects due to the seismic loading are converted into equivalent static loads. The acceleration ratio at which the wall fails by rotation about the top was obtained by considering the moments due to the various lateral earth pressure resultants and the inertial forces induced in the soil due to the seismic loading. We found that the presence of wall friction on the passive side significantly enhances the stability of the flexible retaining wall under seismic loads. Thus, flexible retaining walls supporting dry cohesionless soil can be very efficient during earthquakes. Under moderate earthquakes, an increase in the depth of embedment increases the dynamic factor of safety significantly. However, beyond a certain acceleration ratio for a soil with a particular value of ø, any increase in the depth of emdedment has no effect in impeding failure, irrespective of any change in the geometry of the system. Seismic design charts are presented to evaluate the stability of, and to design, flexible retaining walls embedded in dry cohesionless soils under seismic loading.  相似文献   

19.
土工格栅加筋挡土墙是一种柔性挡土结构,目前尚未建立较严密的设计方法,作用在土工格栅加筋墙壁上的地震动土压力研究是抗震设计的重要内容之一。应用基于拉格朗日法的完全非线性动有限差分法研究整体面板式土工格栅加筋土挡壁在地震作用下各设计参数对挡壁动土压力的影响。采用弹塑性模型模拟填土,采用耦合弹性参数描述格栅与土接触界面特性,参数包括加筋间距、长度、刚度、地震强度和填土性质等,分析墙壁的动土压力沿墙身的分布特征,得出了影响地震动土压力的显著参数,证明了土工格栅加筋墙体的优异吸震能力,研究结果为整体面板式土工格栅加筋土挡墙抗震设计中的动土压力研究提供参考。  相似文献   

20.
Conventional methods of designing earth structures are based on pseudo-static stability analysis employing a horizontal seismic coefficient. This paper discusses the stability and permanent displacement of a slope subject to combined horizontal and vertical accelerations. A log-spiral failure mechanism is used. It is shown that seismic force has a significant effect on stability and permanent displacement of slopes. The parametric study reveals that vertical acceleration may play an important role on stability and permanent displacement if the corresponding horizontal acceleration is large. © 1997 John Wiley & Sons Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号