首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The results of a laboratory experimental program aimed at better understanding the scour around and burial of heavy cylindrical objects under oscillating flow on a sandy bed are described. This study was motivated by its application to the dynamics of isolated cobbles/mines on a sandy floor under nonlinear progressive waves, such as that occur in shallow coastal waters beyond the wave-breaking region. In the experiments, nonlinear progressive waves were generated in a long wave tank of rectangular cross-section with a bottom slope. Model mines (short cylinders) were placed on the sandy bottom and the temporal evolution of the bed profile and the velocity field in the near field of the object were observed. Experiments were conducted at relatively high Reynolds numbers for a range of flow conditions, which can be characterized by the Keulegan–Carpenter number and Shields parameter. Depending on the values of these parameters, four different scour regimes around the cylinder including periodical burial of cylinder under migrating sand ripples were observed; they were classified as: (i) no scour/burial, (ii) initial scour, (iii) expanded scour, and (iv) periodic burial cases. A scour regime diagram was developed and the demarcation criteria between different regimes were deduced. Semi-empirical formulae that permit estimation of the scour depth with time, the equilibrium maximum scour depth and length, and conditions necessary for the burial of the cylinder as a function of main external parameters are also proposed.  相似文献   

2.
Several experiments to measure postimpact burial of seafloor mines by scour and fill have been conducted near the Woods Hole Oceanographic Institution's Martha's Vineyard Coastal Observatory (MVCO, Edgartown, MA). The sedimentary environment at MVCO consists of a series of rippled scour depressions (RSDs), which are large scale bedforms with alternating areas of coarse and fine sand. This allows simultaneous mine burial experiments in both coarse and fine sand under almost identical hydrodynamic forcing conditions. Two preliminary sets of mine scour burial experiments were conducted during winters 2001-2002 in fine sand and 2002-2003 in coarse sand with a single optically instrumented mine in the field of view of a rotary sidescan sonar. From October 2003 to April of 2004, ten instrumented mines were deployed along with several sonar systems to image mine behavior and to characterize bedform and oceanographic processes. In fine sand, the sonar imagery of the mines revealed that large scour pits form around the mines during energetic wave events. Mines fell into their own scour pits, aligned with the dominant wave crests and became level with the ambient seafloor after several energetic wave events. In quiescent periods, after the energetic wave events, the scour pits episodically infilled with mud. After several scour and infilling events, the scour pits were completely filled and a layer of fine sand covered both the mines and the scour pits, leaving no visible evidence of the mines. In the coarse sand, mines were observed to bury until the exposed height above the ripple crests was approximately the same as the large wave orbital ripple height (wavelengths of 50-125 cm and heights of 10-20 cm). A hypothesis for the physical mechanism responsible for this partial burial in the presence of large bedforms is that the mines bury until they present roughly the same hydrodynamic roughness as the orbital-scale bedforms present in coarse sand.  相似文献   

3.
A simple parameterized model for wave-induced burial of mine-like cylinders as a function of grain-size, time-varying, wave orbital velocity and mine diameter was implemented and assessed against results from inert instrumented mines placed off the Indian Rocks Beach (IRB, FL), and off the Martha's vineyard coastal observatory (MVCO, Edgartown, MA). The steady flow scour parameters provided by Whitehouse (1998) for self-settling cylinders worked well for predicting burial by depth below the ambient seabed for (0.5 m) diameter mines in fine sand at both sites. By including or excluding scour pit infilling, a range of percent burial by surface area was predicted that was also consistent with observations. Rapid scour pit infilling was often seen at MVCO but never at IRB, suggesting that the environmental presence of fine sediment plays a key role in promoting infilling. Overprediction of mine scour in coarse sand was corrected by assuming a mine within a field of large ripples buries only until it generates no more turbulence than that produced by surrounding bedforms. The feasibility of using a regional wave model to predict mine burial in both hindcast and real-time forecast mode was tested using the National Oceanic and Atmospheric Administration (NOAA, Washington, DC) WaveWatch 3 (WW3) model. Hindcast waves were adequate for useful operational forcing of mine burial predictions, but five-day wave forecasts introduced large errors. This investigation was part of a larger effort to develop simple yet reliable predictions of mine burial suitable for addressing the operational needs of the U.S. Navy.  相似文献   

4.
The paper presents an experimental investigation of seabed evolution behavior around a submarine pipeline and the hydrodynamic forces on the pipeline under regular waves. Unlike the previous flume tests that have largely used beds with median sands, this study focuses on fine sediments such as sandy silt and silt. The primary objective of the study was to investigate: (i) the scour process under different wave conditions and with different sediments and (ii) the influence of the bedform evolution on the hydrodynamic forces experienced by the pipeline. In terms of scour and ripple formation, four distinct regimes of the near-field bed evolution behavior are identified which are: (I) no scour, (II) scour without ripples, (III) scour with small ripples and (IV) scour with large ripples. The influence of bedform evolution on wave forces was found to vary significantly in different regimes. In regime I, the wave forces were quite stable; in regime II and III, the wave forces underwent a gradual reduction before reaching their equilibrium values at fairly early stages of the scour process; in regime IV, the wave forces were significantly affected by the migrating ripples and can be rather unsteady throughout the testing period.  相似文献   

5.
The wavelet transform (WT) has been successfully implemented in many fields such as signal and image processing, communication theory, optics, numerical analysis, and fluid mechanics. However, the application of WT to describe bedform morphology in coastal areas, oceans, and rivers is rare. The present study demonstrates the capability of WT analysis to fully represent the space–frequency characteristics of signals describing bed topography generated in marine and river environments. In this study WT is used to examine the morphological characteristics of bedforms generated in two separate laboratory facilities: a wave tank and a meandering channel. In the wave tank a set of ripples superimposed upon large wave ripples were generated; while in the meandering channel, 2D and 3D migrating ripples and dunes were observed. The WT proved to be a useful tool in detecting the complex variability of the generated bedform structures. The size distribution of the bottom features such as ripples, large wave ripples and sandbars were first examined along a 2D bed profile. Later analysis studied the variability of features in the transverse direction by using the power Hovmöller. Experiments in the wave tank were conducted for a mobility number of ψ=(10, 28), and a Reynolds wave number of Rew=(17,500, 83,500) which correspond to waves alone (WA) and to combined flow (CF) scenarios, respectively. Experiments in the meandering channel were conducted under a morphological regime that produced mainly migrating sandbars.  相似文献   

6.
The motion of large bottom particles (cobbles/mines) was studied in the laboratory under simulated surf conditions. A series of experiments was conducted in a large wave tank, 32×0.9×1.8 m, equipped with a computer-controlled wave maker and a sloping beach. As a first step, a solid impermeable beach with artificial roughness was used in the experiments. Cobbles of different size were placed along the floor and their evolution with time was studied and compared with the model predictions. Onshore and offshore mean motions of cobbles, as well as steady oscillations with zero mean displacement, were observed for different conditions. To explain the results of observations a theoretical model was advanced. The model takes into account all main governing parameters (size and density of cobbles, bottom slope, dynamic and static friction at the bottom, background flow characteristics, etc.). Standard parameterizations were used for a pressure accelerating term, drag, lift and other nonlinear forces. For the range of parameters used in the experiments, satisfactory agreement between the measured and calculated values of the cobble displacements as a function of time was obtained. The model is practically insensitive to the vertical accelerating pressure term but sensitive to the dynamic and static friction. One of the most important variables in the model, which is known with the least accuracy, is the virtual mass coefficient for disk-shaped cobbles moving with variable velocity along a solid boundary.  相似文献   

7.
The morphological characteristics of small-scale bedforms were measured by means of an acoustic profiling sonar on the Dafeng tidal flat,Jiangsu,in 2009,and in the Jiulong Estuary,Xiamen,in 2010,respectively.The "multi-threshold value" method was utilized to reveal the morphological undulations along which bedforms were present.Analyses of the datasets obtained show that:(1) sand ripples can have irregular shapes,and(2) changes in bedform morphology are small within a single tidal cycle but may be significant over several tidal cycles.Fractal and variogram analyses of the seabed roughness revealed the existence of a significant relationship between current speed and the fractal dimension of the seabed roughness.As current speed increases,seabed roughness increases with a trend of smaller-scale bottom structures being replaced by larger-scale structures.Furthermore,the surface of the larger-scale bottom structures can either become smooth due to the absence of smaller-scale features or become rougher due to the presence of superimposed smaller-scale structures.  相似文献   

8.
The formation of offshore ripples in the zone under irregular waves   总被引:1,自引:0,他引:1  
In this article, results obtained from an experimental investigation conducted to determine the wave-induced geometric characteristics of offshore ripples and bars are presented. The experiments were performed using irregular waves. Natural beach sand was used in the study, where the mean diameter was 0.35 mm and the specific gravity was 2.63. The initial slope of the beach was 1:5. Different wave groups were generated over the initially flat beach, and a number of characteristics were determined. These include the ripple number, individual and average ripple heights, individual and average ripple lengths and the length of the offshore bar. The results of the experimental study were evaluated and empirical expressions based on the results were formulated.  相似文献   

9.
Abstract

Lower Cook Inlet in Alaska has high‐ tidal currents that average 3–4 knots and normally reach a peak of 6–8 knots. The bottom has an average depth of about 60–70 m in the central part of the inlet that deepens toward the south. Several types of bedforms, such as sand waves, dunes, ripples, sand ribbons, and lag deposits form a microtopography on the otherwise smooth seafloor. Each bedform type covers a small field, normally a few hundred to a few thousand meters wide, and usually several kilometers long parallel to the tidal flow. High‐resolution seismic systems, side‐scan sonar and bottom television were used to study these bedforms. Large sand waves with wavelengths over 300 m and wave heights up to 10 m were observed. Fields of ebb‐oriented or flood‐oriented asymmetric bedforms commonly grade into more symmetric shapes. Several orders of smaller sand waves and dunes cover the flanks of the very large bedforms. The crest directions of both size groups are normally parallel, but deviations of up to 90° have been observed; local deviations may occur where smaller forms approach the crests of the larger sand waves. Bottom television observations demonstrated active bedload transport in a northerly direction on crests and midflanks of southward asymmetric large sand waves, but not in their troughs. Movement of bedload occurs in the form of small ripples. Although the asymmetry of the large bedforms suggests that migration has taken place in the ebb or flood directions, the very low surface angles (2.5°‐8°) of these bedforms do not indicate regular movements. The large bedforms are probably relict features, or they migrate only under severe conditions, whereas active sand transport by ripples and smaller sand waves and dunes moves bedload back and forth with the tides. An understanding of such movements is essential for determining design criteria for offshore installations and in benthic‐faunal studies.  相似文献   

10.
利用1个海洋沉积动力过程原位监测系统在北部湾南部浅海陆架海域采集了18个潮周期的波浪、潮流、悬浮沉积物浓度、底床变化数据,分析了悬沙浓度变化特征,计算了近底悬沙通量并分析了潮流和波浪对底床演变的影响,结果表明:观测期间近底悬沙浓度的变化主要受水位波动、潮流的共同影响,波浪作用较弱;悬沙浓度的异常高值可能是上游沙波表面的泥沙滑落沉降所致;观测期间悬沙通量的波动规律与近底潮流速度变化一致,潮周期和涨落潮之间的悬沙通量有显著差别;在潮流作用下观测期间悬沙向西的净输运量约为15 158 kg/m,向北净悬沙通量为2 934 kg/m,东西向净通量远大于南北向净通量;近东西向波谷地形对南北向悬沙输运的限制作用可能导致了输运通量的显著差异;底床高程的变化在潮周期之间有差异,变化值在0.8~16.7 cm之间波动,厘米级底床高程的快速变化主要是由潮流流速的大小及往复潮流的不对称性造成的。这种变化可能与沙纹的运移有关,沉积物向下游方向的运移以及沙纹剖面形态的改变可以较合理地解释底床高程的变化特点。  相似文献   

11.
海南岛西部岸外沙波的高分辨率形态特征   总被引:12,自引:1,他引:12  
利用SIMRAD-EM3000多波束探测系统和DGPS定位系统,对海南岛东方岸外的沙波沙脊区进行了高精度探测,分析结果表明:从海岸到陆架底形具有明显的分带性,依次出现弱侵蚀底形段、沙波沙脊底形段和平坦底形段。沙波仅发育于沙波沙脊段,介于水深20~50 m之间,沙波形态有二维与三维两种,沙波波高多为0.7~2.5 m,波长20~70 m,沙波指数(L/H)为20~60,对称指数为1~3;沙波沙脊区沉积物的搬运方向有明显的规律性,在沙脊的西侧,沉积物主要向北搬运;在沙脊的东侧,沉积物主要向南搬运;沙波的形成和发育主要受潮流场控制,热带风暴对其有改造作用。  相似文献   

12.
Boundary roughness and bedforms in the surf zone   总被引:1,自引:0,他引:1  
Hydrodynamical models of the nearshore system frequently assume that a single friction coefficient is sufficient to represent flow conditions at a point in the surf zone. Furthermore, models attempting to relate bed configuration to surf zone flows have relied primarily upon the wave orbital velocity as an indicator of potential bedforms, and thus as the control on boundary roughness. The data presented here point out potential errors arising from either of these approaches. The results of a field experiment conducted at Wendake Beach, Ontario, show that at a single location in an active surf zone, the Darcy-Weisbach friction coefficient, f, varied by approximately 250% (in this case between 0.016 and 0.041).

It is also shown that existing bedform models, based upon primary wave motions alone, do not accurately predict conditions at this study site. For a relatively constant wave orbital velocity and velocity asymmetry, it is found that changes in bed roughness, as a result of bedform development, are reflected mainly in the vertical profile of the long-shore current velocity. A sequence of bedforms, from oscillatory ripples through flat bed, is inferred from the data, and found to be supported by diver observations and preserved primary sedimentary structures.  相似文献   


13.
Self-burial processes of finite-length cylinders under oscillatory flows and waves plus currents were examined with the following two different experimental facilities: a large oscillating water-sediment tunnel (LOWST) and a large wave-current tank. More than 130 experiments, with different model cylinders, were conducted within both facilities. The burial mechanisms studied include burial due to local scour and bedform migration. Burial due to fluidization in the tunnel was also explored, but only in a qualitative way. In the case of experiments with LOWST, the equilibrium burial depth was found to be a power function of the shields parameter (thetas). In the wave-current tank, the equilibrium burial depth was also found to be a function of the Shields parameter, albeit with larger scatter. The experimental observations made in both facilities have similar trends but different magnitudes. For equivalent values of the Shields parameter, smaller equilibrium burial depths were observed in the wave flume when compared to the ones in LOWST. After burial induced by local scour takes place, bedform (ripples and sandwaves) formation and evolution play a strong and, in some cases, dominant role on the equilibrium burial depth of the cylinders. Depending on how the vertical dimensions of bedforms compare to the specimen's diameter, cyclical covering and uncovering of the object may take place due to the passage of the migrating sandwaves. In such case, burial depth Bd no longer coincides with the vertical displacement (Vd) of the object as in the case when the burial process is dominated by local scour.  相似文献   

14.
Oscillation ripples form on subaqueous sand beds when wave-generated, near-bottom water motions are strong enough to move sand grains. The threshold of grain motion is the lower bound of the regime of oscillation ripples and the onset of sheet flow is the upper bound. Based on the relation between ripple spacing and orbital diameter, three types of symmetrical ripples occur within the ripple regime. In the lower part of the ripple regime (orbital ripples), spacing is proportional to orbital diameter; in the upper part (anorbital ripples) spacing is independent of orbital diameter. Between these regions occurs a transitional region (suborbital ripples).

Oscillation ripples develop on a sandy tidal flat in Willapa Bay, Washington, as a result of waves traversing the area when it is submerged. Because wave energy is usually low within the bay, the ripples are primarily orbital in type. This means that their spacing should respond in a systematic way to changes in wave conditions. During the high-water parts of some tidal cycles, ripples near the beach decrease in spacing during the latter stage of the ebb tide while ripples farther offshore do not change. Observations made over several tidal cycles show that the zone of active ripples shifts on- or offshore in response to different wave conditions.

Detailed bed profiles and current measurements taken during the high-water part of spring tides show the manner in which the oscillation ripples change with changes in orbital diameter. Changes in ripple spacing at the study site could be correlated with changes in orbital diameter in the manner suggested by the criterion for orbital ripples. However, there appeared to be a lag time between a decrease in orbital diameter and the corresponding decrease in ripple spacing. Absence of change during a tidal cycle could be attributed to orbital velocities below the threshold for grain motion that negated the effects of changes in orbital diameter.

Because changes in sand-flat ripples depend both upon changes in orbital diameter and upon the magnitude of the orbital velocity, exposed ripples were not necessarily produced during the preceding high tide. In fact, some ripples may have been just produced, while others, farther offshore, may have been produced an unknown number of tides earlier. Therefore, when interpreting past wave conditions over tidal flats from low-tide ripples, one must remember that wave periods have to be short enough to produce velocities greater than the threshold velocity for the orbital diameters calculated from the observed ripple spacings.  相似文献   


15.
We present new quantitative data on the sorting of sediments on a sandy seabed under standing waves. Starting from a flat bed composed of a homogeneous mixture of a coarse and a fine sand with mean diameters 0.11 and 0.21 mm, we observed simultaneous ripple and sand bar formation and sand sorting on the seabed. Over days of wave action, sand bars formed with crests beneath the surface wave nodes and flat plateaus flanked by mounds beneath the antinodes. Bar crests were composed of sand coarser on average than 0.21 mm, while the flat plateaus were covered by sand finer on average than 0.11 mm. Comparison with two experiments involving sand beds of more homogeneous size distributions shows that the mounds are characteristic of the motion of fine suspensions.  相似文献   

16.
Quantification of nearshore morphology based on video imaging   总被引:1,自引:0,他引:1  
The Argus network is a series of video cameras with aerial views of beaches around the world. Intensity contrasts in time exposure images reveal areas of preferential breaking, which are closely tied to underlying bed morphology. This relationship was further investigated, including the effect of tidal elevation and wave height on the presence of wave breaking and its cross-shore position over sand bars. Computerized methods of objectively extracting shoreline and sand bar locations were developed, allowing the vast quantity of data generated by Argus to be more effectively examined. Once features were identified in the images, daily alongshore mean values were taken to create time series of shoreline and sand bar location, which were analyzed for annual cycles and cross-correlated with wave data to investigate environmental forcing and response.These data extraction techniques were applied to images from four of the Argus camera sites. A relationship between wave height and shoreline location was found in which increased wave heights resulted in more landward shoreline positions; given the short lag times over which this correlation was significant, and that the strong annual signal in wave height was not replicated in the shoreline time series, it is likely that this relationship is a result of set-up during periods of large waves. Wave height was also found to have an effect on sand bar location, whereby an increase in wave height resulted in offshore bar migration. This correlation was significant over much longer time lags than the relationship between wave height and shoreline location, and a strong annual signal was found in the location of almost all observed bars, indicating that the sand bars are migrating with changes in wave height. In the case of the site with multiple sand bars, the offshore bars responded more significantly to changes in wave height, whereas the innermost bar seemed to be shielded from incident wave energy by breaking over the other bars. A relationship was also found between a site's mean wave height and inner sand bar location; sites with the highest wave heights tended to have sand bars farther from shore than those with relatively low wave heights.  相似文献   

17.
西地中海加的斯湾、埃布罗湾、巴塞罗那岸外和利翁湾等外陆架和陆坡上部分布大片的砂质水下沙丘、沙带、沙脊以及沙席等砂质底形。沙丘长为150~760m,最长为3km;高一般为0.1~5.0m,最高为20m。背流坡指向SW,丘长与丘高相关斜率为H=0.934L0.006 3,低于1978年世界标准的F氏斜率线;沙脊长为4~24km,宽为1~2.3km,高出海底10~30m。砂层厚约12~30m,其成因与冰消期古岸线相关。以水深350m的直布罗陀海峡为中心,大西洋低盐水团和地中海高盐水团相交换而形成的地中海环流是导致海底砂质底形发育的主要动力,陆架外侧普遍分布的垂岸沟谷及顺谷流也起一定作用。据14C年代测定,大型沙丘沙脊形成于距今13~11ka的冰消期,当时海面波动式趋稳。现代洋流只能在暴风浪期间、底流速较大时才能带动泥沙运动且进行局部修饰、破坏和蚀低原砂质底形。  相似文献   

18.
浅海海床发育着不同尺度的活动性砂体,在大型活动性砂体上常叠加发育着大量小尺度沙波(纹),分析这些小尺度沙波(纹)有助于揭示活动性砂体的成因机制。但它们的尺度较小,常规分析方法往往将其作为高频噪声滤除,难以对该尺度海底沙波(纹)进行分离量化研究。为了解决这个问题,本文设计并实现了一种基于小波分析的小尺度海底沙波地形分解方法,并以台湾浅滩典型区域的高精度近底原位观测数据为例,实现了小尺度海底沙波地形的分解和定量分析,分解出背景地形、小型沙波和沙波纹(波长小于0.6 m)3种地貌类型。本文提出的小尺度海底沙波地形分解量化方法,可广泛应用于浅海高活动性地貌发育演化和海底边界层沉积动力过程研究,对评估海洋工程的稳定性也具有一定的实用价值。  相似文献   

19.
1 IntroductionIn coastal areas a ubiquitous phenomenon is theformation of ripples in the seabed. It is now widelyaccepted that the flow and sediment transport overseabed are vital in relation to erosion, surface wavedissipation and pollution dispersion et…  相似文献   

20.
The distribution and character of small-scale and mesoscale bedforms on the surface of a large tide-built sand ridge have been observed. Sand waves, class 1 and class 2 megaripples, and ripples are abundant. A histogram of bedform spacing is strongly bimodal, indicating that megaripples and sand waves comprise discrete populations. Ripples probably also comprise a discrete population, but the limit of resolution of the side-scan sonar system arbitrarily truncates the distribution; hence a third mode cannot be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号