首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
古长江河口湾充填潮流作用机制的初步探讨   总被引:10,自引:0,他引:10  
朱玉荣 《海洋学报》1999,21(3):73-82
长江三角洲的发育是以古长江河日湾的充填来实现的.研究潮汐、潮流在古长江河口湾充填中所起的作用,可深入了解长江三角洲的形成发育过程.建立了渤海、黄海、东海的二维潮流数学模型,数值模拟了冰后期最大海侵,即现今长江三角洲地区为巨大河口湾时的M2潮汐、潮流.在此基础上,计算了古长江河口湾及其周围海域8种粒径泥沙的潮平均悬移与推移输沙率,并根据输沙率散度的正负,划分了海底冲刷区与淤积区.根据计算结果得出,冰后期最大海侵时,存在大致以古长江河口湾湾口中点为腹点、波腹线向海凸起的独特驻潮波波腹区.在其控制下,外海潮流大致以古长江河口湾湾口中点为顶点作辐聚、辐散运动.在古潮流场作用下,经历每一个潮周期后,古长江河口湾周围海域的泥沙均向河口湾内净输运,并在河口湾内淤积.古长江河口湾的充填是在长江带来大量泥沙,外海的潮汐、潮流又有利于泥沙向河口湾内净输运,且在河口湾内沉积的情况下实现的.外海的潮汐、潮流为古长江河口湾的充填、长江三角洲的发育提供了必要而又有利的水动力环境.  相似文献   

2.
A 2D Mathematical Model for Sediment Transport by Waves and Tidal Currents   总被引:12,自引:5,他引:12  
In this study, the combined actions of waves and tidal currents in estuarine and coastal areas are considered and a 2D mathematical model for sediment transport by waves and tidal currents has been established in orthogonal curvilinear coordinates. Non-equilibrium transport equations of suspended load and bed load are used in the model. The concept of background concentration is introduced, and the formula of sediment transport capacity of tidal currents for the Oujiang River estuary is obtained. The Dou Guoren formula is employed for the sediment transport capacity of waves. Sediment transport capacity in the form of mud and the intensity of back silting are calculated by use of Luo Zaosen' s formula. The calculated tidal stages are in good agreement with the field data, and the calculated velocities and flow directions of 46 vertical lines for 8 cross sections are also in good agreement with the measured data. On such a basis, simulations of back silting after excavation of the waterway with a sand bar under complicated boundary conditions in the navigation channel induced by suspended load, bed load and mud by waves and tidal currents are discussed.  相似文献   

3.
Sediment and hydrodynamics of the Tauranga entrance to Tauranga harbour   总被引:2,自引:2,他引:0  
To relate the textural characteristics of the bottom sediments of a tidal inlet to hydrodynamics, 45 sediment samples from the Tauranga Entrance to Tauranga Harbour were analysed for textural parameters, and tidal currents and waves were monitored. Tidal currents dominate sediment transport processes near the Tauranga Entrance although swell waves are significant on the ebb tidal delta, and wind waves may influence intertidal sediments within the harbour. The bulk of the sediment is probably derived from marine sand from the Bay of Plenty continental shelf, but tidal currents and waves have changed its textural character. In areas of swift tidal currents, particularly in the inlet channel itself, sediment is coarser, more poorly sorted, and more coarsely skewed than that in areas of slower currents.  相似文献   

4.
A field campaign was conducted to better understand the influence of wave action, in terms of turbulence and bed shear stress, on sediment resuspension and transport processes on a protected tidal flat. An H-frame was deployed in a tidal channel south of Gangwha Island for 6 tidal cycles during November 2006 with instrumentation including an Acoustic Doppler Velocimeter, an Acoustic Backscatter System, and an Optical Backscatter Sensor. During calm conditions, the current-induced shear was dominant and responsible for suspending sediments during the accelerating phases of flood and ebb. During the high-tide slack, both bed shear stress and suspended sediment concentration were reduced. The sediment flux was directed landward due to the scour-lag effect over a tidal cycle. On the other hand, when waves were stronger, the wave-induced turbulence appeared to keep sediments in suspension even during the high-tide slack, while the current-induced shear remained dominant during the accelerating phases of flood and ebb. The sediment flux under strong waves was directed offshore due to the sustained high suspended sediment concentration during the high-tide slack. Although strong waves can induce offshore sediment flux, infrequent events with strong waves are unlikely to alter the long-term accretion of the protected southern Gangwha tidal flats.  相似文献   

5.
Vast bay-type tidal inlets can be found along the coastal zones of China. They are generally suitable for deep water channels and large harbors because of the presence of large water depth and good mooring conditions. The deep channel, in front of the head of Caofeidian Island in Bohai Bay, China, is a typical bay-type tidal inlet system. The tidal current, a type of reverse flow, makes the key contribution to maintain the deep water depth. The co-action of waves and tidal currents is the main dynamic force for sediment motion. Waves have significant influence on the sediment concentration. Based on the characteristics of waves, tidal currents, sediment and seabed evolution in Caofeidian sea area, a 2D mathematical model for sediment transport under influence of waves and tidal currents is developed to study the development schemes of the Caofeidian Harbor. The model has been verified for spring and neap tides, in winter as well as in summer of 2006. The calculated tidal stages, flow velocities, flow directions and sediment concentrations at 15 stations are in good agreement with the observations. Furthermore, the calculated data on pattern and magnitude of sedimentation and erosion in the related area agree well with the observations. This model has been used to study the effects of the reclamation scheme for Caofeidian Harbor on the hydrodynamic environment, sediment transport and morphological changes. Attentions are paid to the project inducing changes of flow velocities and morphology in the deep channel at the south side of Caofeidian foreland, in the Laolonggou channel and in various harbor basins. The conclusions can provide the important foundation for the protection and use of bay-type tidal inlets and the development of harbor industry.  相似文献   

6.
Recognising the importance of understanding sediment dynamics to evaluate the status of a coastal lagoon environment, this work has been focused on the investigation of the hydrodynamic and sediment transport processes occurring in such basins. In order to describe the lagoon system, a modelling approach combining hydrodynamics, waves and sediment dynamics has been developed. The framework of the numerical model consists of a finite element hydrodynamic model, a third generation finite element spectral wave model and a sediment transport and morphodynamic model for both cohesive and non-cohesive sediments. The model adopts the finite element technique for spatial integration, which has the advantage to describe more accurately complicated bathymetry and irregular boundaries for shallow water areas. The developed model has been applied to test cases and to a very shallow tidal lagoon, the Venice Lagoon, Italy. Numerical results show good agreement with water level, waves and turbidity measurements collected in several monitoring stations inside the Lagoon of Venice. Such a model represents an indispensable tool in analysing coastal problems and assessing morphological impacts of human interference.  相似文献   

7.
In order to examine sedimentary processes acting on tidal flats, eighteen foot valves were “plumbed” into a small tidal cove in southern New Hampshire. Transport of suspended sediment was determined by comparing concentrations (determined by filtering) at 15 and 30 cm above the tidal flats throughout a tidal cycle. In general, sediment resuspension occurs more readily on the flood tide than the ebb. The concentration of suspended sediment follows the water mass distribution and is affected to a lesser degree by tidal currents and small amplitude waves. Deposition occurs during slack water shortly after high tide primarily in the bottom regime (15 cm); it is probably related to coarser particle sedimentation. The water mass distribution was not a simple rise and fall perpendicular to the bottom contours, but rather followed a slow clockwise gyre. The net effect on the suspended sediments was to impart a “longshore” component of drift to the suspended load during the tidal cycle.  相似文献   

8.
Sediment transport near the Tauranga entrance to Tauranga Harbour   总被引:2,自引:2,他引:0  
Abstract

Sediment transport at the Tauranga Entrance was studied in relation to tidal currents and waves. Bedforms resulting from tidal flow were investigated with scuba divers and echo‐soundings. The alignment and scale of bedforms indicated the direction and approximate rate of sediment transport. Sediment transport was measured directly using sediment traps, and results were compared with rates calculated by another method. Maximum sediment transport rates of 20 000–30 000 g.m?1 per half tidal cycle occur near the inlet gorge, but rates vary considerably in time and space, depending mainly upon power of tidal currents. A model of sediment transport for this inlet has been evolved based on tidal flow streamlines, bedform features, and the measured and calculated rates of sediment transport.  相似文献   

9.
A new instrumented tripod, the GEOPROBE system, has been constructed and used to collect time-series data on physical and geological parameters that are important in bottom sediment dynamics on continental shelves. Simultaneous in situ digital recording of pressure, temperature, light scattering, and light transmission, in combination with current velocity profiles measured with a near-bottom vertical array of electromagnetic current meters, is used to correlate bottom shear generated by a variety of oceanic processes (waves, tides, mean flow, etc.) with incipient movement and resuspension of bottom sediment. A bottom camera system that is activated when current speeds exceed preset threshold values provides a unique method to identify initial sediment motion and bed form development.

Data from a twenty day deployment of the GEOPROBE system in Norton Sound, Alaska, during the period September 24 – October 14, 1976 show that threshold conditions for sediment movement are commonly exceeded, even in calm weather periods, due to the additive effects of tidal currents, mean circulation, and surface waves.  相似文献   


10.
江苏北部(下称苏北)岸外辐射沙洲形态特殊,面积广大,是我国唯一、世界罕见的沉积动力地貌特征类型区。开展该区的调査和研究对苏北海岸带开发和海洋沉积动力学理论研究都具有非常重要的意义。近年来我国学者通过大量海洋水文、泥沙、海底地形和地貌调查研究,对苏北海岸的成因和岸外沙洲的演变提出了许多新的看法(王文清等,1982)。本文通过对历史资料和1958-1993年苏北海岸带调査资料、卫星照片等的对比分析,以及利用数值模拟方法的诊断,指出水动力是苏北海岸和岸外沙洲形成和演变的主要作用力。  相似文献   

11.
杭州湾庵东浅滩地貌演变规律   总被引:3,自引:0,他引:3  
杭州湾南岸庵东浅潍的地貌演变具有长周期、多年周期和年周期变化。浅滩舌部的进退、摆动,以及滩面高程和潮沟系统的变动,是周期性演变的主要表现。地貌过程各控制因素通过杭州湾湾口和湾顶两个高混浊带提供的输沙通道,以及浅滩输沙结构的调整,间接或直接影响浅滩的演变,出现各个层次的动力-地貌响应关系。其中长周期和多年周期响应与长江及钱塘江两河口系统的调整有关,枯水条件下河口系统上移,庵东浅滩供沙不足;丰水条件下,两输沙通道会于庵东浅滩,促进了浅滩的淤涨。在年周期的小尺度演变中,波浪条件具有重要的影响。  相似文献   

12.
An artificial sand wave on the Dutch shoreface of the North Sea has been studied in conditions with relatively strong tidal currents in the range of 0.5 to 1 m/s and sediments in the medium sand size range of 0.2 to 0.5 mm. The sand wave is perpendicular to the tidal current and has a maximum height and length of the order of 5 m and 1 km, respectively. The sand wave is dynamically active and shows migration rates of the order of a few metres per year. A numerical morphodynamic model (DELFT3D model) has been used to simulate the morphological behaviour of the sand wave in the North Sea. This model approach is based on the numerical solution of the three-dimensional shallow water equations in combination with a surface wave propagation model (wind waves) and the advection–diffusion equation for the sediment particles with online bed updating after each time step. The model results show that the sand wave grows in the case of dominant bed-load transport (weak tidal currents; relatively coarse sediment; small roughness height; low waves) and that the sand wave decays in the case of dominant suspended transport (strong currents, relatively fine sediment, large roughness height; storm waves).  相似文献   

13.
A two-dimensional finite difference numerical model, capable of predicting depth-averaged tidal flow fields in coastal and estuarine waters, has been extended to include tide-induced non-cohesive sediment transport processes. The partial differential equations governing the conservation of mass, momentum and suspended sediment in an incompressible turbulent flow are included in a depth-integrated form in the model. For the representation of the processes of erosion and deposition of sediment from the bed an empirically based source-sink term was refined, based on the results of three mobile bed flume studies. The model has been tested by simulating tidal flows and suspended sediment fluxes in two estuaries, with particular application to the Humber estuary in the U.K. The model was calibrated and found to produce an encouraging degree of agreement between the numerical predictions and corresponding field measurements for this estuary. Furthermore, the predicted gross deposition and erosion features of the estuary were found to be in close agreement with interpretations from Eulerian tidal residual predictions.  相似文献   

14.
Field measurements were conducted in Mont-Saint-Michel Bay, a megatidal embayment (spring tidal range of 15 m), in order to monitor, over the course of a tidal cycle, sediment transport variability due to waves and tides on the upper part of a tidal flat characterised by shallow water depths. Sensors used to measure currents, water depth and turbidity were installed just above the bed (0.04 m). Two experiments were conducted under contrasting hydrodynamic conditions. The results highlight wave activity over the tidal flat even though observed wind waves were largely dissipated due to the very shallow water depths. Very high suspended sediment concentrations (up to 6 kg/m3) were recorded in the presence of wave activity at the beginning of the local flood, when significant sediment transport occurred, up to 7 times as much as under conditions of no wave activity. This influence may be attributed to the direct action of waves on bed sediments, to wave-induced liquefaction, and to the erosive action of waves on tidal channel banks. The sediment composition, comprising a clay fraction of 2-5%, may also enhance sediment transport by reducing critical shear stress through the sand lubrication effect. The results also show that antecedent meteorological conditions play an important role in suspended sediment transport on the tidal flat. Total sediment flux directions show a net transport towards the inner part of the bay that contributes to deposition over the adjacent salt marshes, and this tendency also prevails during strong wave conditions. Such sediment transport is characterised by significant variability over the course of the tidal cycle. During fair and moderate weather conditions, 83% and 71% of the total flux was observed, respectively, over only 11% and 28% of the duration of the local tidal cycle and with water depths between 0.04 and 0.3 m. These results suggest that in order to improve our understanding of sediment budgets in this type of coastal environment, it is essential to record data just at the beginning and at the end of tidal submergence close to the bed.  相似文献   

15.
Based on the characteristics of waves, tidal currents, sediment and seabed evolution in the Caofeidian sea area in the Bohai Bay, a 2D sediment mathematical model of waves and tidal currents is employed to study the development schemes of the harbor. Verification of spring and neap tidal currents and sediment in the winter and summer of 2006 shows that the calculated values of tidal stages as well as flow velocities, flow directions and sediment concentration of 15 synchronous vertical lines are in good agreement with the measured data. Also, deposition and erosion of the sea area in front of Caofeidian ore terminal induced by suspended load under tidal currents and waves are verified; it shows that the calculated values of depth of deposition and erosion as well as their distribution are close to the measured data. Furthermore, effects of reclamation scheme of island in front of the land behind Caofeidian harbor on the hydrodynamic environment are studied, including changes of flow velocities in the deep channels at the south side of Caofeidian foreland and Laolonggou and in various harbor basins, as well as changes of deposition and erosion of seabed induced by the project.  相似文献   

16.
This study briefly investigated sediment transport by tidal currents in Gomso Bay, on the mid-west coast of Korea during the summer season. Hydrodynamic measurements with benthic tripods (TISDOSs) show that near-bed suspended sediments are transported toward the bay mouth along the low-water line of tidal flats in the southern part of the bay, while they are directed offshore in front of the major tidal channel at the bay mouth according to tidal asymmetry. However, suspended sediments in the main body of sea water, observed from transect and anchor-site measurements, indicate a consistent incoming toward the uppermost tidal flats. A brief episode of relatively strong winds from the west and southeast displays that wind waves can yield the near-bed suspended sediment concentrations (SSC) overwhelming the SSC by tidal currents alone in the remaining duration.  相似文献   

17.
Large Eddy Simulation for Plunge Breaker and Sediment Suspension   总被引:1,自引:1,他引:1  
BAI  Yuchuan 《中国海洋工程》2002,16(2):151-164
Breaking waves are a powerful agent for generating turbulence that plays an important role in many fluid dynamical processes, particularly in the mixing of materials. Breaking waves can dislodge sediment and throw it into suspension, which will then be carried by wave-induced steady current and tidal flow. In order to investigate sediment suspension by breaking waves, a numerical model based on large-eddy-simulation (LES) is developed. This numerical model can be used to simulate wave breaking and sediment suspension. The model consists of a free-surface model using the surface marker method combined with a two-dimensional model that solves the flow equations. The turbulence and the turbulent diffusion are described by a large-eddy-simulation (LES) method where the large turbulence features are simulated by solving the flow equations, and a subgrid model represents the small-scale turbulence that is not resolved by the flow model. A dynamic eddy viscosity subgrid scale stress model has been used for the  相似文献   

18.
Morphology evolution and hydro-sedimentological interactions in muddy coastal environments are long term processes. These processes are closely related to suspended sediment transport driven by waves and tidal currents. In the traditional calibration/verification methodology for cohesive sediment transport models, time-series data of suspended sediment concentration (SSC) measured during one or several tidal periods are commonly used as major validation references. But the disadvantage of this approach includes that it cannot filter the noises caused by the stochastic nature of short term hydrodynamics induced by waves and the varying properties of bottom sediments; besides a phase-lag phenomenon is often observed between sediment transport and hydrodynamics in the short term. On the contrary, a stable relationship between sedimentation and hydrodynamics is usually found in the long term. For a specific weather, the SSC values often agree well with local wave heights for muddy coasts. Therefore, in this paper a conceptual quantity defined as “representative SSC” was brought forward, and a model validation concept, including calibration and verification approaches, was proposed, in which calibration is performed against yearly-representative SSC values and the long term transport trend, and verification by using representative SSC values corresponding to different wave conditions. A numerical simulation was set up, and a real-life engineering application, Lianyungang Harbor, China, was executed to elaborate the proposed validation concept. Finally, the characteristics of SSC distribution around Lianyungang Harbor were discussed.  相似文献   

19.
The objective of this study was to investigate that the effects of different hydrodynamic conditions on sediment resuspension on a tidal mudflat in the Yellow River Estuary. A field experiment was conducted on an intertidal flat of the Yellow River Delta, China. The sediment resuspension concentrations and hydrodynamic conditions were obtained in the field from September 2–7, 2013. The resuspended sediment concentrations induced by wave loading were compared with those induced by coupled wave–current actions in Yellow River Delta. The results were as follows: (1) when the wave height was higher than 10?cm and the shear stress induced by the waves was greater than the critical stress of the seabed sediments, the surface seabed was eroded and sediment was resuspended. In addition, 60% of the significant wave heights were larger than 10?cm on the intertidal flat of the Yellow River Delta. (2) The contribution of waves to sediment resuspension was greater than 30% when the significant wave height is higher than 10?cm, and the average contribution of waves to sediment resuspension was 51%. The mechanism of wave-induced sediment resuspension and processes of sediment resuspension were described in this paper.  相似文献   

20.
Internal tides and sediment movement on Horizon Guyot,Mid-Pacific Mountains   总被引:2,自引:0,他引:2  
Internal tidal currents are the likely cause of erosional features such as current ripples, sand waves, and truncated bedding horizons on the sediment cap of Horizon Guyot. Current meter data obtained over a 9 month period in 1983–1984 at about 213 m above the guyot show that the tidal currents are anomalously strong for mid-oceanic depths, probably the result of topographically induced generation of internal tidal waves. An analysis of the initiation of motion of the foraminiferal sand by the internal tidal currents indicates that these currents, particularly during the months of March–May, are likely to transport the surficial sediment and generate the observed bedforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号