首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multifractal behaviour of interevent time sequences is investigated for the earthquake events in the NW Himalaya, which is one of the most seismically active zones of India and experienced moderate to large damaging earthquakes in the past. In the present study, the multifractal detrended fluctuation analysis (MF-DFA) is used to understand the multifractal behaviour of the earthquake data. For this purpose, a complete and homogeneous earthquake catalogue of the period 1965–2013 with a magnitude of completeness M w 4.3 is used. The analysis revealed the presence of multifractal behaviour and sharp changes near the occurrence of three earthquakes of magnitude (M w ) greater than 6.6 including the October 2005, Muzaffarabad–Kashmir earthquake. The multifractal spectrum and related parameters are explored to understand the time dynamics and clustering of the events.  相似文献   

2.
A complete and homogeneous magnitude earthquake catalogue spanning the period 1900 to 2010 was created. The catalogue covers the area 29° to 37.5° N and 39° to 48° E. Entries in the new earthquake catalogue were cross checked and additions made from various sources of earthquake records to ensure that repetitions are not included in this analysis. Events were considered duplicates if they had a time difference of 10 s or less and space origin difference of 0.5° or less. In a given set of duplicate events, an event, which had a magnitude and International Seismological Center source, was retained as the record of the event. The unified magnitude scale, the moment magnitude (M w), was applied throughout the catalogue. The M w for 18 events was reported. The M w for other events was estimated using empirical relations between m b, M s, M L, and M w. Magnitude of completeness, M c, was estimated using the maximum curvature. It was 4.3 M w. Finally, a list of 213 events from 1900 to 2010 with M w?≥?4.3 is presented. The list is considered complete for the period from 1962 to 2010.  相似文献   

3.

Multifractal behaviour of interevent time sequences is investigated for the earthquake events in the NW Himalaya, which is one of the most seismically active zones of India and experienced moderate to large damaging earthquakes in the past. In the present study, the multifractal detrended fluctuation analysis (MF-DFA) is used to understand the multifractal behaviour of the earthquake data. For this purpose, a complete and homogeneous earthquake catalogue of the period 1965–2013 with a magnitude of completeness M w 4.3 is used. The analysis revealed the presence of multifractal behaviour and sharp changes near the occurrence of three earthquakes of magnitude (M w ) greater than 6.6 including the October 2005, Muzaffarabad–Kashmir earthquake. The multifractal spectrum and related parameters are explored to understand the time dynamics and clustering of the events.

  相似文献   

4.
The Maule, Chile, (Mw 8.8) earthquake on 27 February 2010 triggered deformation events over a broad area, allowing investigation of stress redistribution within the upper crust following a mega-thrust subduction event. We explore the role that the Maule earthquake may have played in triggering shallow earthquakes in northwestern Argentina and Chile. We investigate observed ground deformation associated with the Mw 6.2 (GCMT) Salta (1450 km from the Maule hypocenter, 9 h after the Maule earthquake), Mw 5.8 Catamarca (1400 km; nine days), Mw 5.1 Mendoza (350 km; between one to five days) earthquakes, as well as eight additional earthquakes without an observed geodetic signal. We use seismic and Interferometric Synthetic Aperture Radar (InSAR) observations to characterize earthquake location, magnitude and focal mechanism, and characterize how the non-stationary, spatially correlated noise present in the geodetic imagery affects the accuracy of our parameter estimates. The focal mechanisms for the far-field Salta and Catamarca earthquakes are broadly consistent with regional late Cenozoic fault kinematics. We infer that dynamic stresses due to the passage of seismic waves associated with the Maule earthquake likely brought the Salta and Catamarca regions closer to failure but that the involved faults may have already been at a relatively advanced stage of their seismic cycle. The near-field Mendoza earthquake geometry is consistent with triggering related to positive static Coulomb stress changes due to the Maule earthquake but is also aligned with the South America-Nazca shortening direction. None of the earthquakes considered in this study require that the Maule earthquake reactivated faults in a sense that is inconsistent with their long-term behavior.  相似文献   

5.
In this study, the seismicity rate changes that can represent an earthquake precursor were investigated along the Sagaing Fault Zone (SFZ), Central Myanmar, using the Z value technique. After statistical improvement of the existing seismicity data (the instrumental earthquake records) by removal of the foreshocks and aftershocks and man-made seismicity changes and standardization of the reported magnitude scales, 3574 earthquake events with a M w ≥ 4.2 reported during 1977–2015 were found to directly represent the seismotectonic activities of the SFZ. To find the characteristic parameters specifically suitable for the SFZ, seven known events of M w ≥ 6.0 earthquakes were recognized and used for retrospective tests. As a result, utilizing the conditions of 25 fixed earthquake events considered (N) and a 2-year time window (T w), a significantly high Z value was found to precede most of the M w ≥ 6.0 earthquakes. Therefore, to evaluate the prospective areas of upcoming earthquakes, these conditions (N = 25 and T w = 2) were applied with the most up-to-date seismicity data of 2010–2015. The results illustrate that the vicinity of Myitkyina and Naypyidaw (Z = 4.2–5.1) cities might be subject to strong or major earthquakes in the future.  相似文献   

6.
The Mw 7.7 earthquake that struck SE Pakistan on 24 September 2013 at 11.29.48 UTC was a sinistral strike-slip event on a branch of the Ornach-Nal-Chaman fault system which hereabouts separates the Eurasian Plate from the Indian Plate. Although the focus was at a depth of 15 km and 400 km inland the earthquake was accompanied by the emergence of an island off the Makran coast and the generation of a tsunami with a peak amplitude of 27 cm at Muscat (Oman) and 20 cm at Chah Bahar (Iran). At DART marine buoy 23228 in the Indian Ocean 500 km to the south a series of seismic Rayleigh waves about 4 min after the main shock was followed 54 min later by a tsunami with a peak amplitude of 1 cm. The Rayleigh series is here attributed to seafloor vibration during accelerated subduction of the Arabian Plate beneath the Eurasian Plate, and the tsunami to the development or reactivation of one or more reverse faults on the seaward portion of the Makran imbricate fan. As in the 2010.2.27 Mw 8.8 Maule (Chile), the 2004.12.26 Mw 9.2 Sumatra–Andaman, the 2005.3.28 Mw 8.7 Nias (Indonesia) and the 2011.3.11 Mw 9.0 Tohoku (Japan) earthquakes, the link between tsunami generation and slip on the megathrust is thus very indirect, to the detriment of attempts to mitigate coastal hazards using teleseismic data when nearshore seafloor monitoring would probably prove more effective.  相似文献   

7.
A probabilistic seismic hazard assessment is developed here using maximum credible earthquake magnitude statistics and earthquake perceptibility hazard. Earthquake perceptibility hazard is defined as the probability a site perceives ground shaking equal to or greater than a selected ground motion level X, resulting from an earthquake of magnitude M, and develops estimates for the most perceptible earthquake magnitude, M P(max). Realistic and usable maximum magnitude statistics are obtained from both whole process and part process statistical recurrence models. These approaches are extended to develop relationships between perceptible earthquake magnitude hazard and maximum magnitude recurrence models that are governed by asymptotic and finite return period properties, respectively. Integrated perceptibility curves illustrating the probability of a specific level of perceptible ground motion due to all earthquakes over the magnitude range extending from ?∞ to a magnitude M i are then developed from reviewing site-specific magnitude perceptibility. These lead on to achieving site-specific annual probability of exceedance hazard curves for the example cities of Sofia and Thessaloniki for both horizontal ground acceleration and ground velocity. Both the maximum credible earthquake magnitude M 3 and the most perceptible earthquake magnitude M P(max) are of importance to the earthquake engineer when approaching anti-seismic building design. Both forms of hazard are illustrated using contoured hazard maps for the region bounded by 39°–45°N, 19°–29°E. Patterns are observed for these magnitude hazard estimates—especially M P(max) specific to horizontal ground acceleration and horizontal ground velocity—and compared to inferred patterns of crustal deformation across the region. The full geographic region considered is estimated to be subject to a maximum credible earthquake magnitude M 3—estimated using cumulative seismic moment release statistics—of 7.53 M w, calculated from the full content of the adopted earthquake catalogue, while Bulgaria’s capital, Sofia, is estimated a comparable value of 7.36 M w. Sofia is also forecast most perceptible earthquake magnitudes for the lowest levels considered for horizontal ground acceleration of M PA(50) = 7.20 M w and horizontal ground velocity of M PV(5) = 7.23 M w for a specimen focal depth of 15 km.  相似文献   

8.
Static stress changes caused by megathrust slip of the 2011 Mw 9.0 Tohoku-Oki earthquake considerably affected the seismicity patterns in inland areas, resulting in the occurrence of numerous earthquakes along several active faults in Japan. On June 30, 2011, the Mj 5.4 central Nagano earthquake occurred at a shallow depth of 5 km, indicating the reactivation of the Gofukuji fault in Central Japan. This study was undertaken to elucidate spatial and temporal changes of 3He/4He ratios around a source region before and after an inland earthquake using both existing and new and helium isotope data from hot spring and drinking water wells. Gas samples near the Gofukuji fault and its surrounding active faults are characterized by an increase in postseismic 3He/4He ratios. In contrast, the postseismic ratios decreased by up to about 30% away from the mainshock epicenter. Episodic faulting could either release stored crustal (radiogenic) helium from host rocks, or enhance the transfer of mantle volatiles through permeable fault zones, such that subsequent fluid flow near to the source region could then explain the spatio-temporal variations in 3He/4He ratios.  相似文献   

9.
To better understand the role the Zipingpu Reservoir may have played in triggering the 2008 Ms8 (Mw7.9) Wenchuan earthquake in China, this study evaluates changes of Coulomb failure stress (ΔCFS) and assesses their role in local seismicity and their potential impact on the Wenchuan earthquake. In addition, key aspects associated with reservoir-triggered earthquake (RTS), including mechanisms of stress triggering and permeability of fault zones, is briefly reviewed. ΔCFS was calculated at the faults involved in the Wenchuan earthquake due to the combined effects of gravitational loading and pore-pressure diffusion from the impoundment history of the reservoir. ΔCFS on the major source fault is larger than 0.1 MPa in the upper 10 km below the reservoir and reached a few tens of kPa at the focal depth. Such levels of ΔCFS are large enough to modulate the secular stress buildup of a few kPa/yr in the Longmen-shan thrust zone. Based on detailed analysis of numerical results and local seismicity, the author suggests that it is not proper to rule out the possibility of the Wenchuan earthquake being a RTS only based on very limited knowledge from a few cases of historical RTS so far.  相似文献   

10.
In this study, we accurately relocate 360 earthquakes in the Sikkim Himalaya through the application of the double-difference algorithm to 4?years of data accrued from a eleven-station broadband seismic network. The analysis brings out two major clusters of seismicity??one located in between the main central thrust (MCT) and the main boundary thrust (MBT) and the other in the northwest region of Sikkim that is site to the devastating Mw6.9 earthquake of September 18, 2011. Keeping in view the limitations imposed by the Nyquist frequency of our data (10?Hz), we select 9 moderate size earthquakes (5.3????Ml????4) for the estimation of source parameters. Analysis of shear wave spectra of these earthquakes yields seismic moments in the range of 7.95?×?1021 dyne-cm to 6.31?×?1023 dyne-cm and corner frequencies in the range of 1.8?C6.25?Hz. Smaller seismic moments obtained in Sikkim when compared with the rest of the Himalaya vindicates the lower seismicity levels in the region. Interestingly, it is observed that most of the events having larger seismic moment occur between MBT and MCT lending credence to our observation that this is the most active portion of Sikkim Himalaya. The estimates of stress drop and source radius range from 48 to 389?bar and 0.225 to 0.781?km, respectively. Stress drops do not seem to correlate with the scalar seismic moments affirming the view that stress drop is independent over a wide moment range. While the continental collision scenario can be invoked as a reason to explain a predominance of low stress drops in the Himalayan region, those with relatively higher stress drops in Sikkim Himalaya could be attributed to their affinity with strike-slip source mechanisms. Least square regression of the scalar seismic moment (M 0) and local magnitude (Ml) results in a relation LogM 0?=?(1.56?±?0.05)Ml?+?(8.55?±?0.12) while that between moment magnitude (M w ) and local magnitude as M w ?=?(0.92?±?0.04)Ml?+?(0.14?±?0.06). These relations could serve as useful inputs for the assessment of earthquake hazard in this seismically active region of Himalaya.  相似文献   

11.
Seismicity of Gujarat   总被引:2,自引:2,他引:0  
Paper describes tectonics, earthquake monitoring, past and present seismicity, catalogue of earthquakes and estimated return periods of large earthquakes in Gujarat state, western India. The Gujarat region has three failed Mesozoic rifts of Kachchh, Cambay, and Narmada, with several active faults. Kachchh district of Gujarat is the only region outside Himalaya-Andaman belt that has high seismic hazard of magnitude 8 corresponding to zone V in the seismic zoning map of India. The other parts of Gujarat have seismic hazard of magnitude 6 or less. Kachchh region is considered seismically one of the most active intraplate regions of the World. It is known to have low seismicity but high hazard in view of occurrence of fewer smaller earthquakes of M????6 in a region having three devastating earthquakes that occurred during 1819 (M w7.8), 1956 (M w6.0) and 2001 (M w7.7). The second in order of seismic status is Narmada rift zone that experienced a severely damaging 1970 Bharuch earthquake of M5.4 at its western end and M????6 earthquakes further east in 1927 (Son earthquake), 1938 (Satpura earthquake) and 1997 (Jabalpur earthquake). The Saurashtra Peninsula south of Kachchh has experienced seismicity of magnitude less than 6.  相似文献   

12.
In this paper, we report that the ratio of broadband energy (0.01?C2?Hz) to high-frequency energy (0.3?C2?Hz), E r, estimated from regional seismograms of India, might be a useful parameter in estimating tsunami potential of earthquakes in the Sumatra?CAndaman region. E r is expected to be sensitive to the depth as well as to the source characteristics of an earthquake. Since a shallow and slow earthquake has a greater tsunamigenic potential, E r may be a useful diagnostic parameter. We base our analysis on broadband seismograms of the great earthquakes of Sumatra?CAndaman (2004, M w?~?9.2) and Nias (2005, M w 8.6), 41 of their aftershocks, and the earthquakes of north Sumatra (2010, M w 7.8) and Nicobar (2010, M w 7.4) recorded at VISK, a station located on the east coast of India. In the analysis, we also included the two recent, great strike-slip earthquakes of north Sumatra (2012, M w 8.6, 8.2) recorded at VISK and three south Sumatra earthquakes (2007, M w 8.5; 2007, M w 7.9; 2010, M w 7.8) recorded at PALK, a station in Sri Lanka. We find that E r is a function of depth; shallower earthquakes have higher E r values than the deeper ones. Thus, E r may be indicative of tsunamigenic potential of an earthquake. As M w and E r increase so does the tsunami potential. In addition to the parameter E r, the radiated seismic energy, E s, may be estimated from the regional seismograms in India using empirical Green??s function technique. The technique yields reliable E s for the great Sumatra and Nias earthquakes. E r and E s computed from VISK data, along with M w and focal mechanism, may be useful in estimating tsunami potential along the east coast of India from earthquakes in the Sumatra?CAndaman region in less than ~20?min.  相似文献   

13.
Earthquakes in Kenya are common along the Kenya Rift Valley because of the slow divergent movement of the rift and hydrothermal processes in the geothermal fields. This implies slow but continuous radiation of seismic energy, which relieves stress in the subsurface rocks. On the contrary, the NW-SE trending rift/fault zones such as the Aswa-Nyangia fault zone and the Muglad-Anza-Lamu rift zone are the likely sites of major earthquakes in Kenya and the East African region. These rift/fault zones have been the sites of a number of strong earthquakes in the past such as the M w = 7.2 southern Sudan earthquake of 20 May 1990 and aftershocks of M w = 6.5 and 7.1 on 24 May 1990, the 1937 M s = 6.1 earthquake north of Lake Turkana close to the Kenya-Ethiopian border, and the 1913 M s = 6.0 Turkana earthquake, among others. Source parameters of the 20 May 1990 southern Sudan earthquake show that this earthquake consists of only one event on a fault having strike, dip, and rake of 315°, 84°, and ?3°. The fault plane is characterized by a left-lateral strike slip fault mechanism. The focal depth for this earthquake is 12.1 km, seismic moment M o = 7.65 × 1019 Nm, and moment magnitude, M w = 7.19 (?7.2). The fault rupture started 15 s earlier and lasted for 17 s along a fault plane having dimensions of ?60 km × 40 km. The average fault dislocation is 1.1 m, and the stress drop, , is 1.63 MPa. The distribution of historical earthquakes (M w ≥ 5) from southern Sudan through central Kenya generally shows a NW-SE alignment of epicenters. On a local scale in Kenya, the NW–SE alignment of epicenters is characterized by earthquakes of local magnitude M l ≤ 4.0, except the 1928 Subukia earthquake (M s = 6.9) in central Kenya. This NW–SE alignment of epicenters is consistent with the trend of the Aswa-Nyangia Fault Zone, from southern Sudan through central Kenya and further southwards into the Indian Ocean. We therefore conclude that the NW–SE trending rift/fault zones are sites of strong earthquakes likely to pose the greatest earthquake hazard in Kenya and the East African region in general.  相似文献   

14.
The Van earthquake (M W 7.1, 23 October 2011) in E-Anatolia is typical representative of intraplate earthquakes. Its thrust focal character and aftershock seismicity pattern indicate the most prominent type of compound earthquakes due to its multifractal dynamic complexity and uneven compressional nature, ever seen all over Turkey. Seismicity pattern of aftershocks appears to be invariably complex in its overall characteristics of aligned clustering events. The population and distribution of the aftershock events clearly exhibit spatial variability, clustering-declustering and intermittency, consistent with multifractal scaling. The sequential growth of events during time scale shows multifractal behavior of seismicity in the focal zone. The results indicate that the extensive heterogeneity and time-dependent strength are considered to generate distinct aftershock events. These factors have structural impacts on intraplate seismicity, suggesting multifractal and unstable nature of the Van event. Multifractal seismicity is controlled by complex evolution of crustal-scale faulting, mechanical heterogeneity and seismic deformation anisotropy. Overall seismicity pattern of aftershocks provides the mechanism for strain softening process to explain the principal thrusting event in the Van earthquake. Strain localization with fault weakening controls the seismic characterization of Van earthquake and contributes to explain the anomalous occurrence of aftershocks and intraplate nature of the Van earthquake.  相似文献   

15.
Paper describes triggered seismicity to 200?km distance and for a decade due to the 2001 M w7.7 Bhuj earthquake. The Kachchh region is seismically one of the most active intraplate regions of the World due to the occurrence of two large earthquakes 1819 (M w7.8) and 2001 (M w7.7). Though, it has high hazard but was known to have low seismicity in view of the occurrence of fewer smaller shocks. However, the status seems to have changed after 2001. Besides the strong aftershock activity for over a decade, seismicity has spread to nearby faults in Kachchh peninsula and at several places southward for 200?km distance in Saurashtra peninsula. Beyond the rupture zone of the 2001 Bhuj earthquake, more than 40 mainshocks of M w?~?3?C5 have occurred at 20 different locations, which is unusual. The increased seismicity is inferred to be caused by stress perturbation due to the 2001 Bhuj earthquake by viscoelastic process. In Saurashtra, over and above the viscoelastic stress increase, the transient stress increase by water table rise in monsoons seems to be affecting the timing of mainshocks and associated sequences of earthquakes.  相似文献   

16.
The 1511 Western Slovenia earthquake (M = 6.9) is the largest event occurred so far in the region of the Alps–Dinarides junction. Though it strongly influences the regional seismic hazard assessment, the epicenter and mechanism are still under debate. The complexity of the active tectonics of the Alps–Dinarides junction is reflected by the presence of both compressional and transpressional deformations. This complexity is witnessed by the recent occurrence of three main earthquake sequences, the 1976 Friuli thrust faulting events, the 1998 Bovec–Krn Mountain and the 2004 Kobarid strike-slip events. The epicenters of the 1998 and 2004 strike-slip earthquakes (Ms = 5.7 and Ms = 4.9, respectively) lie only 50 km far from the 1976 thrust earthquake (Ms = 6.5).We use the available macroseismic data and recent active tectonics studies, to assess a possible epicenter and mechanism for the 1511 earthquake and causative fault. According with previous works reported in the literature, we analyze both a two-and a single-event case, defining several input fault models. We compute synthetic seismograms up to 1 Hz in an extended-source approximation, testing different rupture propagations and applying a uniform seismic moment distribution on the fault segments. We extract the maximum horizontal velocities from the synthetics and we convert them into intensities by means of an empirical relation. A rounded-to-integer misfit between observed and computed intensities is performed, considering both a minimized and a maximized databases, built to avoid the use of half-degree macroseismic intensity data points. Our results are consistent with a 6.9 magnitude single event rupturing 50 km of the Idrija right-lateral strike-slip fault with bilateral rupture propagation.  相似文献   

17.
The 2004 Mw9.2 Sumatra and 2012 Mw8.6 Wharton Basin (WB) earthquakes provide the unprecedented opportunity to investigate stress transfer from a megathrust earthquake to the subducting plate. Comprehensive analyses of this study revealed that the 2004 earthquake excited widespread seismicity in the WB, especially in regions of calculated stress increase greater than 0.3 bars. The 2004 earthquake stressed all three rupture planes of the 2012 Mw8.6 strike‐slip mainshock and the largest Mw8.2 aftershock with mean values of Coulomb stress between 0.3 and 2.1 bars. For the 77 Mw ≥ 4 regional events since 2012, at least one nodal plane for 95% of the events, and both nodal planes for 72% of the events experienced stress increase due to the 2004 earthquake. Results of the analyses also revealed that the regional stress directions in the WB may have controlled the sub‐fault orientations of the 2012 Mw8.6 strike‐slip earthquake.  相似文献   

18.
We investigated the detailed three-dimensional (3-D) isotropic and anisotropic structures of the crust and upper mantle under the NE Japan forearc region using a large number of P and S wave arrival-time data from onshore and offshore earthquakes. The suboceanic earthquakes used in this study are well relocated using the sP depth phases. We also determined the 3-D distribution of Poisson’s ratio, crack density and saturation rate using the 3-D P and S wave velocity model obtained by this study. The relatively complex anisotropic structures in the megathrust zone may reflect the complex geological structures, lithological variations and fluids in the accretional prism under the forearc region. The tomographic images reflect strong lateral heterogeneities in the megathrust zone under the Tohoku forearc. Areas with low velocity, high Poisson’s ratio, high crack density and high saturation rate may be due to entrapment of fluid-filled, unsolidated sediments on the plate interface close to the Japan Trench. Most of the large megathrust earthquakes since 1900 (M  6.0) and the large 2011 Tohoku-oki earthquakes (M 6.0–9.0) are located in areas with high velocity, high Poisson’s ratio, low crack density and high saturation rate, which may represent strongly-coupled asperities in the megathrust zone resulting from the subducted oceanic ridges and/or seamounts. In contrast, the areas with high Poisson’s ratio may indicate that the fluids have infiltrated into the strongly coupled patches. We think that the great Tohoku-oki earthquakes were caused by not only the stress concentration but also the in situ structural heterogeneities in the megathrust zone.  相似文献   

19.
Like the tsunamis that accompanied the 2010 Maule (Chile) and the 2004 Sumatra-Andaman and 2005 Nias earthquakes, the tsunamis associated with the Tōhoku, Japan (Mw 9.0), earthquake of 11 March 2011 may owe more to slip on superficial faults on the sea floor than to the megathrust itself. The pattern of shallow aftershocks during the 24 h immediately following the main shock suggests that the crucial structures include faults in the upper plate, in the accretionary wedge landwards of the trench and on the outer rise. Seafloor geodetic observation could thus usefully contribute routinely to local hazard preparedness.  相似文献   

20.
In this paper, we present a seismic hazard scenario for the Garhwal region of the north-western Himalayan range, in terms of the horizontal Peak Ground Acceleration. The scenario earthquake of moment magnitude M w 8.5 has a 10% exceedance probability over the next 50 years. These estimates, the first for the region, were calculated through a stepwise process based on:
  • An estimation of the Maximum Credible Earthquake from the seismicity of the region and Global Seismic Hazard Assessment Program considerations, and
  • four seismotectonic parameters abstracted from near field weak-motion data recorded at five stations installed in Chamoli District of the Garhwal region in the aftermath of the 1999 Chamoli earthquake. The latter include
  • The frequency dependent power law for the shear wave quality factor, Q S
  • the site amplification at each station using horizontal-to-vertical-spectral ratio and generalized inversion technique
  • source parameters of various events recorded by the array and application of the resulting relations between the scalar seismic moment M 0 (dyne-cm) and moment magnitude M w and the corner frequency, ? c (Hz) and moment magnitude M w to simulate spectral acceleration due to higher magnitude events corresponding to the estimated Maximum Credible Earthquake, and
  • regional and site specific local spectral attenuation relations at different geometrically central frequencies in the low, moderate and high frequency bands.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号