首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Gamma-ray astronomy is devoted to study nuclear and elementary particle astrophysics and astronomical objects under extreme conditions of gravitational and electromagnetic forces, and temperature. Because signals from gamma rays below 1 TeV cannot be recorded on ground, observations from space are required. The photoelectric effect is dominant <100 keV, Compton scattering between 100 keV and 10 MeV, and electron–positron pair production at energies above 10 MeV. The sun and some gamma ray burst sources are the strongest gamma ray sources in the sky. For other sources, directionality is obtained by shielding / masks at low energies, by using the directional properties of the Compton effect, or of pair production at high energies. The power of angular resolution is low (fractions of a degree, depending on energy), but the gamma sky is not crowded and sometimes identification of sources is possible by time variation. The gamma ray astronomy time line lists Explorer XI in 1961, and the first discovery of gamma rays from the galactic plane with its successor OSO-3 in 1968. The first solar flare gamma ray lines were seen with OSO-7 in 1972. In the 1980’s, the Solar Maximum Mission observed a multitude of solar gamma ray phenomena for 9 years. Quite unexpectedly, gamma ray bursts were detected by the Vela-satellites in 1967. It was 30 years later, that the extragalactic nature of the gamma ray burst phenomenon was finally established by the Beppo–Sax satellite. Better telescopes were becoming available, by using spark chambers to record pair production at photon energies >30 MeV, and later by Compton telescopes for the 1–10 MeV range. In 1972, SAS-2 began to observe the Milky Way in high energy gamma rays, but, unfortunately, for a very brief observation time only due to a failure of tape recorders. COS-B from 1975 until 1982 with its wire spark chamber, and energy measurement by a total absorption counter, produced the first sky map, recording galactic continuum emission, mainly from interactions of cosmic rays with interstellar matter, and point sources (pulsars and unidentified objects). An integrated attempt at observing the gamma ray sky was launched with the Compton Observatory in 1991 which stayed in orbit for 9 years. This large shuttle-launched satellite carried a wire spark chamber “Energetic Gamma Ray Experiment Telescope” EGRET for energies >30 MeV which included a large Cesium Iodide crystal spectrometer, a “Compton Telescope” COMPTEL for the energy range 1–30 MeV, the gamma ray “Burst and Transient Source Experiment” BATSE, and the “Oriented Scintillation-Spectrometer Experiment” OSSE. The results from the “Compton Observatory” were further enlarged by the SIGMA mission, launched in 1989 with the aim to closely observe the galactic center in gamma rays, and INTEGRAL, launched in 2002. From these missions and their results, the major features of gamma ray astronomy are:
  • Diffuse emission, i.e. interactions of cosmic rays with matter, and matter–antimatter annihilation; it is found, “...that a matter–antimatter symmetric universe is empirically excluded....”
  • Nuclear lines, i.e. solar gamma rays, or lines from radioactive decay (nucleosynthesis), like the 1.809 MeV line of radioactive 26Al;
  • Localized sources, i.e. pulsars, active galactic nuclei, gamma ray burst sources (compact relativistic sources), and unidentified sources.
  •   相似文献   

    2.
    We calculate the spectrum of the diffuse cosmic gamma ray in the single and double leaky box models for several galactic distribution laws of cosmic rays and hdydrogen. The results show that LI Ti-pei's distribution law for the cosmic rays is the best and that the number of interstellar hydrogen molecules should be less than Gordon's value divided by 1.7. The observed spectrum of gamma rays can be reproduced by a suitable choice of the galactic distributions within certain ranges.  相似文献   

    3.
    本文利用几种典型的银河系宇宙线分布律和星际氢分布律计算单漏模式和双漏模式中的弥散宇宙γ射线谱。结果表明,几种典型的宇宙线分布中,李惕碚的分布律优于其他作者的分布律;星际氢分子数量的取值应当比Gordon值除以1.7更小;只要适当地选择宇宙线分布和氢分布就可得到与观测γ谱相近的理论谱,宇宙线分布和氢分布均可在一定范围里选取。  相似文献   

    4.
    Gamma-ray background counting rates encountered in astronomy observations are calculated for a double Compton scatter telescope. Backgrounds not eliminated by the usual growth curve could be produced by albedo neutrons and/or cosmic ray protons interacting with the carbon and/or hydrogen of the detector. They are the albedo neutron-carbon interaction gamma-rays, cosmic ray proton interaction delayed gamma rays and the moderated albedo neutron-proton photocapture gamma rays. It is decisive to know the contribution of these backgrounds, because they must be subtracted before the cosmic diffuse flux can be determined. Estimates of the neutron induced background events in a Compton telescope show that they might contribute a considerable fraction of the counting rate. In the near future the calculations will be checked with a calibrated neutron beam.  相似文献   

    5.
    使用最近期的GRO库中EGRET的γ射线数据,研究了逆康普顿散射对中等银纬区银河弥漫γ射线的贡献。采用了两种分析方法:其一为本文的新分析方法,其中银河宇宙与星际气体相互作用的γ射线的发射率q/4π由γ射线数据本身确定;其二为通常的分析方法,即q/4π由使用了局部银河宇宙线强度的观测值的理论估计给出。通过分析,我们获得了两种方法中逆康普顿散射的贡献与能量的依赖关系。结果表明,逆康普顿散射的贡献是大的。  相似文献   

    6.
    7.
    We investigate the problem of transition from galactic cosmic rays to extragalactic ultra-high energy cosmic rays. Using the model for extragalactic ultra-high energy cosmic rays and observed all-particle cosmic ray spectrum, we calculate the galactic spectrum of iron nuclei in the energy range 108–109 GeV. The flux and spectrum predicted at lower energies agree well with the KASCADE data. The transition from galactic to extragalactic cosmic rays is distinctly seen in spectra of protons and iron nuclei, when they are measured separately. The shape of the predicted iron spectrum agrees with the Hall diffusion.  相似文献   

    8.
    After observation of hundreds of Thunderstorm Ground Enhancements (TGEs) we measure energy spectra of particles originated in clouds and directed towards Earth. We use these “beams” for calibration of cosmic ray detectors located beneath the clouds at an altitude of 3200 m at Mount Aragats in Armenia. The calibrations of particle detectors with fluxes of TGE gamma rays are in good agreement with simulation results and allow estimation of the energy thresholds and efficiencies of numerous particle detectors used for studying galactic and solar cosmic rays.  相似文献   

    9.
    The propagation of galactic cosmic rays in heliospheric magnetic fields is studied. An approximate solution to the cosmic ray transport equation has been derived on the basis of a method that takes into account the small value of anisotropy of particle angular distribution. The spatial and energy distributions of the cosmic ray intensity and anisotropy have been investigated, and estimates of cosmic ray energy flux have been carried out.  相似文献   

    10.
    We consider effects on an (ultra)relativistic jet and its ambient medium caused by high-energy cosmic rays accelerated at the jet side boundary. As illustrated by simple models, during the acceleration process a flat cosmic ray distribution can be created, with gyro-radii for the highest particle energies reaching scales comparable to the jet radius or energy density comparable to the pressure of the ambient medium . In the case of efficient radiative losses, a high-energy bump in the spectrum can dominate the cosmic ray pressure. In extreme cases, the cosmic rays are able to push the ambient medium off, providing a 'cosmic ray cocoon' separating the jet from the surrounding medium. The considered cosmic rays provide an additional jet braking force and lead to a number of consequences for the jet structure and its radiative output. In particular, the dynamic and acceleration time-scales involved are in the range observed in variable active galactic nuclei.  相似文献   

    11.
    The process of heliospheric modulation of intensity of galactic cosmic rays is investigated by solving the transport equation. The spatial-energetic distribution of cosmic rays in the present epoch and in the past is analyzed. It is demonstrated that the particle density and the energy density of cosmic rays in the Solar System in the distant past were much lower than the corresponding current values. The cosmic ray intensity modulation in the early heliosphere was especially strong in the case of low-energy particles.  相似文献   

    12.
    The presence of a significant population of relic relativistic electrons - created at an early epoch of the Universe - has been invoked to explain the diffuse EUV emission excess observed in a number of galaxy clusters. While the postulated inverse Compton scattering of the 3° K background radiation by cosmic ray electrons might indeed be utilized as an important diagnostic tool for the physical nature of the intracluster cosmic rays, it is shown here that continuous generation plus reacceleration would be necessary if the conditions on the observed energy spectral distribution and energy supply rate are to be met in the case of clusters with large radio halos. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

    13.
    We calculated the absorption of gamma rays of Cygnus X — 3 by the ambient X — ray photons through photon-photon pair production and inverse Compton scattering. Differences in the gamma ray spectrum between the X — ray high state and low state indicate the presence of this absorption.  相似文献   

    14.
    A simple model of cosmic ray propagation is proposed from which the major experimental results can be derived: The model reproduces the observed nuclear abundances and accounts for the observed changes of nuclear composition with energy, the high degree of isotropy of cosmic ray flux at all energies, and the high degree of its constancy throughout the history of the Solar System. It is consistent with the observed size distribution of extensive airshowers, the intensity and energy distribution of the electron component, and the diffuse emission of γ-rays and radio waves. The model is characterized by the two basic assumptions: (1) that cosmic rays have been injected at an unchanging rate by sources located in the galactic spiral arms and (2) that a large-scale magnetic field retains all particles in our galaxy, where they interact with interstellar gas, so that all complex nuclei are finally fragmented and their energy dissipated in meson production and electro-magnetic interactions.  相似文献   

    15.
    弥散宇宙γ射线产生于初级宇宙线的传播过程,本文利用宇宙线传播的“双漏模式”得出与实验观测谱接近的银河系弥散宇宙γ射线谱。  相似文献   

    16.
    17.
    The propagation of radioactive nuclei of cosmic rays in a flat diffusion galactic model (sources and the main gaseous mass are concentrated in the galactic disc) is considered. The corresponding results are not reducible to the results of a simple homogeneous model. It is shown that the recent data on the Be10 nuclei abundance in cosmic rays do not contradict the occurrence of a large cosmic ray halo.  相似文献   

    18.
    We have obtained a simple representation to the observed invariant cross-section for the production of neutral pions in proton-proton collisions. Making use of this representation, we have calculated the differential and integral production spectra of gamma rays in the Galaxy from interactions of cosmic ray nuclei with interstellar gas. It is shown that the uncertainties in deducing interstellar proton spectrum by demodulating the observed spectrum do not affect very much the gamma ray spectrum. We have also determined the gamma ray production spectrum through bremsstrahlung process for a typical interstellar electron spectrum derived from the radio spectrum in the Galaxy. From these, the total gamma ray production spectrum resulting from the interaction of cosmic rays with interstellar matter is compared with the observed gamma ray spectrum in the Galaxy and some inferences have been obtained. We also point out the possible uncertainty in the present calculation and suggest the improvements needed.  相似文献   

    19.
    宇宙线发现百年以来,宇宙线起源仍然是一个谜.研究宇宙线起源主要在甚高能(VHE)伽马射线天文学和宇宙线物理学两个领域交叉展开.新一代高海拔宇宙线观测站(LHAASO)拥有高海拔、全天候和大规模优势,利用多种探测手段对宇宙线开展联合观测,大幅提升对伽马射线和宇宙线的鉴别能力.LHAASO将开展全天区伽马源扫描搜索以大量发现新伽马源,将获得30TeV以上伽马射线探测的最高灵敏度,将在宽达5个数量级的能量范围内精确测量宇宙线分成份能谱,为揭开宇宙线起源谜团给出重要判据.系统介绍了LHAASO的探测器结构、性能优势和科学目标.  相似文献   

    20.
    The effect of high-speed recurrent solar wind streams from coronal holes on the galactic cosmic rays intensity is investigated. The distribution of galactic cosmic rays for different solar cycles is considered based on the data of the world network of neutron monitors. Within the inhomogeneous model, which includes a homogeneous background and regions of high-speed streams (HSS’s), the transport equation has been solved and the effect of HSS’s on the spatial distribution of galactic cosmic rays is estimated. It is shown that theoretical calculations are agreed with the experimental results obtained for 2000–2014 under different assumptions about the mean free path of cosmic rays in the corresponding period of HSS’s.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号