共查询到17条相似文献,搜索用时 171 毫秒
1.
鲁甸6.5级地震是川滇菱形块体南南东向运动在青藏高原东缘与华南地块相互作用边界变形带上发生的一次中等强度地震.尽管野外应急科学考察没有发现明显的地震地表破裂带,但云南昭通防震减灾局局域地震台网记录到的余震条带状分布、震后科学考察获得的地震烈度长轴方位和极震区地震裂缝等显示出发震断层为NW向包谷垴-小河断裂,左旋走滑性质,属大凉山断裂南端部组成部分;库仑应力计算表明,鲁甸地震可对周边活动断层系历史地震空段产生应力加载作用,其地震危险性不容忽视. 相似文献
2.
研究了我国青藏块体地区每一地震活跃幕里地震活动的主体地区、地震活动强度和地震活动持续时间,认为2008年四川汶川8.0级地震的发生可能意味着我国青藏块体自1995年或1997年开始的地震活跃幕已经进入后期,同时也意味着这一地区自1920年以来更长时间尺度里的地震活动期也进入了收尾阶段.未来几年青藏块体地震活动水平为7级... 相似文献
3.
4.
本文通过整理和分析青藏高原西北于田地区强震后,地震迁移的空间分布,迁移特征,同时整理和分析与迁移地震相关的青藏高原主要活动构造的结构和地震活动,分析两者之间的关系。得到以下结论:①迁移地震空间分布具有不均匀性,主要分布在活动地块边界,受大型活动构造带控制;②迁移路径主要有三条,第二条路径更为重要,主要沿着昆仑山脉向唐古拉山、巴颜喀拉山及阿尼玛卿山,在若尔盖盆地东北侧折向东南,向岷山、龙门山迁移;③未来5年内在青藏高原西北于田地区可能发生1~2次6.5级左右地震,在龙门山南段等地震空区内可能发生迁移强地震;④1900年以来发生的地震沿先前存在的地震空区分布。 相似文献
5.
6.
青藏高原北部地区弱震空间图像特征与中短期地震预测方法 总被引:2,自引:1,他引:2
通过对青藏高原北部地区31次地震的研究,确定了震前地震活动图像的中短期预测指标以及中期向短期过渡的异常判据及预测方法。研究结果表明,中强地震前普遍存在地震空区、弱震条带、前兆地震或震群、地震活动增强和平静等异常图像,所表现出的异常时间存在很大的差异。具有中短期特征的弱震空区(段)和条带一般出现在震前1~3a,平均持续时间1a,在空区解体后1~6个月发生地震。大多数前兆地震或震群活动属于短临异常,一般出现在震前几天至6个月,震级差为1.0~2.3,距离震中5~60km,空间上主要集中在祁连山地震带。地震活动增强以应力集中为主,属于短期异常特征。异常图像在时间上表现为中期阶段以孕震空区、弱震条带、地震活动增强和平静等异常,异常比较显著且不同步;短临阶段出现前兆地震和地震空区停止活动而形成的临震前的相对平静。异常图像在空间上具有较明显的分区性,与区域活动构造有一定的关系。 相似文献
7.
8.
9.
10.
通过分析青藏高原东南缘活动断裂带的活动特征和GPS资料显示的现今地壳形变场,辅以历史地震及地表破裂、震源机制解类型等资料,将青藏高原东南缘地区分成了11个次级块体.其中包括了西秦岭次级块体、阿坝次级块体、龙门山次级块体、藏东次级块体、雅江次级块体,香格里拉次级块体、滇中次级块体、保山次级块体、景谷次级块体、勐腊次级块体和西盟次级块体;并利用这些次级块体内的GPS站点速率计算出了这些块体现今运动情况及各块体之间断裂的滑动速率,分析认为各次级块体均受到了一种来自其相邻块体的主要应力作用而发生了旋转,其中保山次级块体、藏东次级块体、雅江次级块体、香格里拉次级块体、滇中次级块体的旋转尤为显著;同样,相邻块体之间的边界断裂带也呈现了相应的挤压或拉张活动特征,而藏东次级块体与雅江次级块体、雅江次级块体与滇中次级块体之间的挤压最为明显.利用上述结果,本文讨论了该地区的现今地壳形变特征,认为刚性块体的挤出作用与重力滑塌作用并存于该区域内,下地壳"管道流"的拖曳作用是该地区刚性块体挤出作用和重力滑塌的主要原因, 另外缅甸板块相对于自身的逆时针旋转作用在其北部引起的拉张作用也是重要因素之一. 相似文献
11.
MIGRATION OF LARGE EARTHQUAKES IN TIBETAN BLOCK AREA AND DISSCUSSION ON MAJOR ACTIVE REGION IN THE FUTURE 下载免费PDF全文
YUAN Dao-yang FENG Jian-gang ZHENG Wen-jun LIU Xing-wang GE Wei-peng WANG Wei-tong 《地震地质》1979,42(2):297-315
On the basis of summarizing the circulation characteristics and mechanism of earthquakes with magnitude 7 or above in continental China, the spatial-temporal migration characteristics, mechanism and future development trend of earthquakes with magnitude above 7 in Tibetan block area are analyzed comprehensively. The results show that there are temporal clustering and spatial zoning of regional strong earthquakes and large earthquakes in continental China, and they show the characteristics of migration and circulation in time and space. In the past 100a, there are four major earthquake cluster areas that have migrated from west to east and from south to north, i.e. 1)Himalayan seismic belt and Tianshan-Baikal seismic belt; 2)Mid-north to north-south seismic belt in Tibetan block area; 3)North-south seismic belt-periphery of Assam cape; and 4)North China and Sichuan-Yunnan area. The cluster time of each area is about 20a, and a complete cycle time is about 80a. The temporal and spatial images of the migration and circulation of strong earthquakes are consistent with the motion velocity field images obtained through GPS observations in continental China. The mechanism is related to the latest tectonic activity in continental China, which is mainly affected by the continuous compression of the Indian plate to the north on the Eurasian plate, the rotation of the Tibetan plateau around the eastern Himalayan syntaxis, and the additional stress field caused by the change of the earth's rotation speed.
Since 1900AD, the Tibetan block area has experienced three periods of high tides of earthquake activity clusters(also known as earthquake series), among which the Haiyuan-Gulang earthquake series from 1920 to 1937 mainly occurred around the active block boundary structural belt on the periphery of the Tibetan block region, with the largest earthquake occurring on the large active fault zone in the northeastern boundary belt. The Chayu-Dangxiong earthquake series from 1947 to 1976 mainly occurred around the large-scale boundary active faults of Qiangtang block, Bayankala block and eastern Himalayan syntaxis within the Tibetan block area. In the 1995-present Kunlun-Wenchuan earthquake series, 8 earthquakes with MS7.0 or above have occurred on the boundary fault zones of the Bayankala block. Therefore, the Bayankala block has become the main area of large earthquake activity on the Tibetan plateau in the past 20a. The clustering characteristic of this kind of seismic activity shows that in a certain period of time, strong earthquake activity can occur on the boundary fault zone of the same block or closely related blocks driven by a unified dynamic mechanism, reflecting the overall movement characteristics of the block. The migration images of the main active areas of the three earthquake series reflect the current tectonic deformation process of the Tibetan block region, where the tectonic activity is gradually converging inward from the boundary tectonic belt around the block, and the compression uplift and extrusion to the south and east occurs in the plateau. This mechanism of gradual migration and repeated activities from the periphery to the middle can be explained by coupled block movement and continuous deformation model, which conforms to the dynamic model of the active tectonic block hypothesis.
A comprehensive analysis shows that the Kunlun-Wenchuan earthquake series, which has lasted for more than 20a, is likely to come to an end. In the next 20a, the main active area of the major earthquakes with magnitude 7 on the continental China may migrate to the peripheral boundary zone of the Tibetan block. The focus is on the eastern boundary structural zone, i.e. the generalized north-south seismic belt. At the same time, attention should be paid to the earthquake-prone favorable regions such as the seismic empty sections of the major active faults in the northern Qaidam block boundary zone and other regions. For the northern region of the Tibetan block, the areas where the earthquakes of magnitude 7 or above are most likely to occur in the future will be the boundary structural zones of Qaidam active tectonic block, including Qilian-Haiyuan fault zone, the northern margin fault zone of western Qinling, the eastern Kunlun fault zone and the Altyn Tagh fault zone, etc., as well as the empty zones or empty fault segments with long elapse time of paleo-earthquake or no large historical earthquake rupture in their structural transformation zones. In future work, in-depth research on the seismogenic tectonic environment in the above areas should be strengthened, including fracture geometry, physical properties of media, fracture activity behavior, earthquake recurrence rule, strain accumulation degree, etc., and then targeted strengthening tracking monitoring and earthquake disaster prevention should be carried out. 相似文献
Since 1900AD, the Tibetan block area has experienced three periods of high tides of earthquake activity clusters(also known as earthquake series), among which the Haiyuan-Gulang earthquake series from 1920 to 1937 mainly occurred around the active block boundary structural belt on the periphery of the Tibetan block region, with the largest earthquake occurring on the large active fault zone in the northeastern boundary belt. The Chayu-Dangxiong earthquake series from 1947 to 1976 mainly occurred around the large-scale boundary active faults of Qiangtang block, Bayankala block and eastern Himalayan syntaxis within the Tibetan block area. In the 1995-present Kunlun-Wenchuan earthquake series, 8 earthquakes with MS7.0 or above have occurred on the boundary fault zones of the Bayankala block. Therefore, the Bayankala block has become the main area of large earthquake activity on the Tibetan plateau in the past 20a. The clustering characteristic of this kind of seismic activity shows that in a certain period of time, strong earthquake activity can occur on the boundary fault zone of the same block or closely related blocks driven by a unified dynamic mechanism, reflecting the overall movement characteristics of the block. The migration images of the main active areas of the three earthquake series reflect the current tectonic deformation process of the Tibetan block region, where the tectonic activity is gradually converging inward from the boundary tectonic belt around the block, and the compression uplift and extrusion to the south and east occurs in the plateau. This mechanism of gradual migration and repeated activities from the periphery to the middle can be explained by coupled block movement and continuous deformation model, which conforms to the dynamic model of the active tectonic block hypothesis.
A comprehensive analysis shows that the Kunlun-Wenchuan earthquake series, which has lasted for more than 20a, is likely to come to an end. In the next 20a, the main active area of the major earthquakes with magnitude 7 on the continental China may migrate to the peripheral boundary zone of the Tibetan block. The focus is on the eastern boundary structural zone, i.e. the generalized north-south seismic belt. At the same time, attention should be paid to the earthquake-prone favorable regions such as the seismic empty sections of the major active faults in the northern Qaidam block boundary zone and other regions. For the northern region of the Tibetan block, the areas where the earthquakes of magnitude 7 or above are most likely to occur in the future will be the boundary structural zones of Qaidam active tectonic block, including Qilian-Haiyuan fault zone, the northern margin fault zone of western Qinling, the eastern Kunlun fault zone and the Altyn Tagh fault zone, etc., as well as the empty zones or empty fault segments with long elapse time of paleo-earthquake or no large historical earthquake rupture in their structural transformation zones. In future work, in-depth research on the seismogenic tectonic environment in the above areas should be strengthened, including fracture geometry, physical properties of media, fracture activity behavior, earthquake recurrence rule, strain accumulation degree, etc., and then targeted strengthening tracking monitoring and earthquake disaster prevention should be carried out. 相似文献
12.
从西藏南部的定日、嘎拉至青海铜铁山的天然地震探测剖面,实际路线长约2000km,布设了约110台便携地震仪,记录了数百次远震和近震事件,采用多种方法进行了资料处理与解释.依据SKS,PKS,ps等横波分裂特征计算的青藏高原中部上地幔的地震各向异性表明:研究区各构造单元内的地震各向异性有明显变化,发现上地幔各向异性快速波的偏振方向与造山带的走向不完全一致.在雅江缝合线、崩错-嘉黎、唐古拉山口、昆仑山口几条断裂带处南、北各向异性出现显著的差异,而金沙江缝合线和班公-怒江缝合线的南、北则没有明显的各向异性变化.由P波走时残差,利用层析技术反演了400km深度内的速度图像,可以看出近地表100km范围内速度的不均匀变化与地表划分的构造单元很吻合,进一步佐证了青藏高原是由不同时期的微板块拼合而成的认识.在青藏高原中部150km深度以下发现了多处低速区.在金沙江缝合带下方约200km深度处有一长250km以上、延伸150km的低速体,推测可能是一地幔柱.利用PS转换波划分的界面,显示出青藏高原北部具有低速层和高速层交替出现的地壳结构. 相似文献
13.
从西藏南部的定日、嘎拉至青海铜铁山的天然地震探测剖面,实际路线长约2000km,布设了约110台便携地震仪,记录了数百次远震和近震事件,采用多种方法进行了资料处理与解释.依据SKS,PKS,ps等横波分裂特征计算的青藏高原中部上地幔的地震各向异性表明:研究区各构造单元内的地震各向异性有明显变化,发现上地幔各向异性快速波的偏振方向与造山带的走向不完全一致.在雅江缝合线、崩错-嘉黎、唐古拉山口、昆仑山口几条断裂带处南、北各向异性出现显著的差异,而金沙江缝合线和班公-怒江缝合线的南、北则没有明显的各向异性变化.由P波走时残差,利用层析技术反演了400km深度内的速度图像,可以看出近地表100km范围内速度的不均匀变化与地表划分的构造单元很吻合,进一步佐证了青藏高原是由不同时期的微板块拼合而成的认识.在青藏高原中部150km深度以下发现了多处低速区.在金沙江缝合带下方约200km深度处有一长250km以上、延伸150km的低速体,推测可能是一地幔柱.利用PS转换波划分的界面,显示出青藏高原北部具有低速层和高速层交替出现的地壳结构. 相似文献
14.
假定地震可以模拟为多层弹粘性介质中的位错,考虑大地震(Mge;7.0)和GPS数据得出的长期构造加载为形变源,依据多层麦克斯韦弹粘性介质中位错产生的应力变化,计算得到了地震产生的应力变化,给出了青藏高原东北部1920年以来积累库仑破裂应力演化. 地震破裂的断层长度、宽度和滑动量根据前人统计公式和野外地质调查得到. 研究表明,20次Mge;7.0地震中, 除1990年共和地震、1952年当雄地震和1976年松潘双震的后一个事件外,17次大地震均发生在库仑破裂应力变化为正的区域, 触发率达85%. 本研究为中长期地震危险性估计在一定程度上提供了基础数据. 相似文献
15.
16.
基于不同类型活断层产生的地震地表破裂带宽度和跨断层探槽地质剖面的地层强变形带宽度等观测事实 ,结合地面建筑设施毁坏带与活断层密切的空间位置关系 ,采用统计分析方法 ,确定了活断层“避让带”宽度为 30m。各活断层更为准确的避让带宽度可通过分析跨断层探槽地质剖面上地层的变形特征加以验证或修订 ;活断层斜列阶区、平行次级断层围限区、走向弯曲区等特殊地域的避让带宽度为这些地域宽度与两外侧各 15m之和。建议有关部门进行活断层“避让带”立法与执法管理 ,并加强活断层鉴定及其地表活动线几何结构形态的准确定位工作 ,积极而有效地减轻地震灾害 相似文献