首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Regional metamorphism in central Inner Mongolia has occurred during four different periods: the middle Proterozoic, the early Palaeozoic, the middle Palaeozoic and the late Palaeozoic tectonic cycles. The middle Proterozoic and late Palaeozoic metamorphic events are associated with rifting and are characterized by low-pressure facies series. The early Palaeozoic metamorphism occurred in two stages: (1) subduction zone metamorphism resulted in paired metamorphic belts in the Ondor Sum ophiolite and Bainaimiao island arc complex; and (2) orogenic metamorphism occurred during the collision of an island arc with the continent. Two types of middle Palaeozoic metamorphism are represented: (1) subduction zone metamorphism, which affected the melange; and (2) orogenic metamorphism that resulted from continent–continent collision.  相似文献   

2.
Granulites from Huangtuling in the North Dabie metamorphic core complex in eastern China preserve rare mineralogical and mineral chemical evidence for multistage metamorphism related to Palaeoproterozoic metamorphic processes, Triassic continental subduction‐collision and Cretaceous collapse of the Dabie Orogen. Six stages of metamorphism are resolved, based on detailed mineralogical and petrological studies: (I) amphibolite facies (6.3–7.0 kbar, 520–550 °C); (II) high‐pressure/high‐temperature granulite facies (12–15.5 kbar, 920–980 °C); (III) cooling and decompression (4.8–6.0 kbar, 630–700 °C); (IV) medium‐pressure granulite facies (7.7–9.0 kbar, 690–790 °C); (V) low‐pressure/high‐temperature granulite facies (4.0–4.7 kbar, 860–920 °C); (VI) retrograde greenschist facies overprint (1–2 kbar, 340–370 °C). The PT history derived in this study and existing geochronological data indicate that the Huangtuling granulite records two cycles of orogenic crustal thickening events. The earlier three stages of metamorphism define a clockwise PT path, implying crustal thickening and thinning events, possibly related to the assembly and breakup of the Columbia Supercontinent at c. 2000 Ma. Stage IV metamorphism indicates another crustal thickening event, which is attributed to Triassic subduction/collision between the Yangtze and Sino‐Korean Cratons. The dry lower crustal granulite persisted metastably during the Triassic subduction/collision because of the lack of hydrous fluid and deformation. Stage V metamorphism records the Cretaceous collapse of the Dabie Orogen, possibly due to asthenosphere upwelling or removal of the lithospheric mantle resulting in heating of the granulite and partial melting of the North Dabie metamorphic core complex. Comparison of the Huangtuling granulite in North Dabie and the high‐pressure–ultrahigh‐pressure metamorphic rocks in South Dabie indicates that the subducted upper (South Dabie) and lower (North Dabie) continental crusts underwent contrasting tectonometamorphic evolution during continental subduction‐collision and orogenic collapse.  相似文献   

3.
The eastern Himalayan syntaxis in southeastern Tibet consists of the Lhasa terrane, High Himalayan rocks and Indus‐Tsangpo suture zone. The Lhasa terrane constitutes the hangingwall of a subduction zone, whereas the High Himalayan rocks represent the subducted Indian continent. Our petrological and geochronological data reveal that the Lhasa terrane has undergone two stages of medium‐P metamorphism: an early granulite facies event at c. 90 Ma and a late amphibolite facies event at 36–33 Ma. However, the High Himalayan rocks experienced only a single high‐P granulite facies metamorphic event at 37–32 Ma. It is inferred that the Late Cretaceous (c. 90 Ma) medium‐P metamorphism of the southern Lhasa terrane resulted from a northward subduction of the Neo‐Tethyan ocean, and that the Oligocene (37–32 Ma) high‐P (1.8–1.4 GPa) rocks of the High Himalayan and coeval medium‐P (0.8–1.1 GPa) rocks of the Lhasa terrane represent paired metamorphic belts that resulted from the northward subduction of the Indian continent beneath Asia. Our results provide robust constraints on the Mesozoic and Cenozoic tectonic evolution of south Tibet.  相似文献   

4.
Structural-petrologic and isotopic-geochronologic data on magmatic, metamorphic, and metasomatic rocks from the Chernorud zone were used to reproduce the multistage history of their exhumation to upper crustal levels. The process is subdivided into four discrete stages, which corresponded to metamorphism to the granulite facies (500–490 Ma), metamorphism to the amphibolite facies (470–460 Ma), metamorphism to at least the epidote-amphibolite facies (440–430 Ma), and postmetamorphic events (410–400 Ma). The earliest two stages likely corresponded to the tectonic stacking of the backarc basin in response to the collision of the Siberian continent with the Eravninskaya island arc or the Barguzin microcontinent, a process that ended with the extensive generation of synmetamorphic granites. During the third and fourth stages, the granulites of the Chernorud nappe were successively exposed during intense tectonic motions along large deformation zones (Primorskii fault, collision lineament, and Orso Complex). The comparison of the histories of active thermal events for Early Caledonian folded structures in the Central Asian Foldbelt indicates that active thermal events of equal duration are reconstructed for the following five widely spiced accretion-collision structures: the Chernorud granulite zone in the Ol’khon territory, the Slyudyanka crystalline complex in the southwestern Baikal area, the western Sangilen territory in southeastern Tuva, Derbinskii terrane in the Eastern Sayan, and the Bayankhongor ophiolite zone in central Mongolia. The dates obtained by various isotopic techniques are generally consistent with the four discrete stages identified in the Chernorud nappe, whereas the dates corresponding to the island-arc evolutionary stage were obtained only for the western Sangilen and Bayankhongor ophiolite zone.  相似文献   

5.
Processes accompanied the breakup of continents, spreading of ocean floor and continent-ocean transi-tion could trigger large scale melting of the mantle beneath the continent as well as the ocean, and pro-duce mafic magmas with distinct geochemical charac-teristics. Such rocks provide us an important record for unraveling the nature and the time of deep tectonic and magmatic processes during the tectonic evolution of large-scale orogenic belts, such as the Himalayan orogenic belt. As an integrated part of the Himalaya, the Tethyan Himalaya consists of well-developed early Paleozoic to Cenozoic sediments and is noted for de-velopment of spectacular semi-continuous, thousand kilometers long gneiss (or granitic) domes. It has pre-served critical records to address the nature of defor-mation, magmatism, and metamorphism associated with the opening, spreading, and demise of the Neo-Tethyan Ocean and the final continental collision between the Indian and the Eurasian Plate at the early Cenozoic time. In addition, it also could be a type-example to address a number of first-order issues with regard to the tectonic dynamics of passive conti-nental margin during the Wilson-cycle.  相似文献   

6.
华北克拉通对前寒武纪超大陆旋回的基本制约   总被引:33,自引:4,他引:33  
全球大陆克拉通在前寒武纪至少记录了3次超大陆聚合-裂解的构造旋回。不同大陆前寒武纪地质的研究证明,板块的构造模式可以前推至新太古代。超大陆的聚合表现为大规模造山带的穿时性发育,而裂解则表现为大陆裂谷系、非造山花岗岩及巨型基性岩浆岩省的同期快速发育。广泛的区域地质研究揭示华北克拉通前寒武纪地质构造演化具有明显的阶段性差异特征,克拉通主体形成于新太古代陆壳增生与碰撞造山过程。华北克拉通在太古宙末期首次经历强烈的裂解作用,在古元古代晚期涉及强烈的陆缘再造作用。在古元古代末期发生第二次大规模的裂解活动,随后以中元古代末期的造山带拼合为Rodinia超大陆的组成部分。详细的区域构造对比证明,华北克拉通长期以来与波罗的地质、东南极克拉通、印度南部克拉通、巴西克拉通等具有构造亲缘关系。  相似文献   

7.
勉略宁地区区域地质背景,矿床类型及其成矿特点   总被引:9,自引:3,他引:6  
以地质演化为基础,从沉积-构造-岩浆-变质-成矿作用角度进行综合对比分析,提出煎茶岭—七里店和黑木林—峡口驿两大构造岩浆带对勉略宁地区矿床起主控作用, 认为各类型矿床成矿作用与先存基底岩石有成生关系, 将矿床形成时代统一在秦岭陆-陆碰撞时限范围, 对该地区地质找矿工作及矿床理论研究进行了讨论。  相似文献   

8.
Subduction-transform tectonic transitions were common in the geologic past, yet their impact on the evolution of orogenic belts is seldom considered. Evaluation of the tectonic transition in the Coast Ranges of California is used as an example to predict some characteristics of exhumed regions that experienced similar histories worldwide.

Elevated thermal gradients accompanied the transition from subduction to transform tectonics in coastal California. Along the axis of the Coast Ranges, peak pressure-temperature (P/T) conditions of 700 to 1000° C at a pressure of ~7 kbar, corresponding to granulite-facies metamorphism, and cooling to 500° C, or amphibolite facies, within 15 million years, are indicated by thermal gradients estimated from the depth to the base of crustal seismicity. Greenschist-facies conditions may occur at depths of 10 km or less. These P/T estimates are consistent with the petrology of crustal xenoliths and thermal models. Preservation of earlier subduction-related metamorphism is possible at depth in the Coast Ranges. Such rocks may record a greenschist or higher-grade overprint over blueschist assemblages, and late growth of metamorphic minerals may reflect dextral shear along the plate margin, with development of orogen-parallel stretching lineations.

Thermal overprints of early-formed high-P (HP), low-T (LT) assemblages, in association with orogen-parallel stretching lineations, occur in many orogenic belts of the world, and have been attributed to subduction followed by collision. Alternatively, a subduction-transform transition may have caused the overprints and lineations in some of these orogenic belts. Possible examples are the Sanbagawa belt of Japan and the Haast schists of New Zealand. P/T conditions of inferred granulite-grade metamorphism in the Coast Ranges, and predicted cooling of these rocks through lower thermal gradients, resemble the P/T evolution of many granulite belts, suggesting that some granulite belts may have formed as a result of a subduction-transform transition. Arclike belts of plutons also can form as a consequence of subduction-transform transition.  相似文献   

9.
M. V. Mints 《Geotectonics》2007,41(4):257-280
The evolution of the North American, East European, and Siberian cratons is considered. The Paleoproterozoic juvenile associations concentrate largely within mobile belts of two types: (1) volcanic-sedimentary and volcanic-plutonic belts composed of low-grade metamorphic rocks of greenschist to low-temperature amphibolite facies and (2) granulite-gneiss belts with a predominance of high-grade metamorphic rocks of high-temperature amphibolite to ultrahigh-temperature granulite facies. The first kind of mobile belt includes paleosutures made up of not only oceanic and island-arc rock associations formed in the process of evolution of relatively short-lived oceans of the Red Sea type but also peripheral accretionary orogens consisting of oceanic, island-arc, and backarc terranes accreted to continental margins. The formation of the second kind of mobile belt was related to the activity of plumes expressed in vigorous heating of the continental crust; intraplate magmatism; formation of rift depressions filled with sediments, juvenile lavas, and deposits of pyroclastic flows; and metamorphism of lower and middle crustal complexes under conditions of granulite and high-temperature amphibolite facies that, in addition, spreads over the fill of rift depressions. The evolution of mobile belts pertaining to both types ended with thrusting in a collisional setting. Five periods are recognized in Paleoproterozoic history: (1) origin and development of a superplume in the mantle that underlay the Neoarchean supercontinent; this process resulted in separation and displacement of the Fennoscandian fragment of the supercontinent (2.51–2.44 Ga); (2) a period of relatively quiet intraplate evolution complicated by locally developed plume-and plate-tectonic processes (2.44–2.0 (2.11) Ga); (3) the origin of a new superplume in the subcontinental mantle (2.0–1.95 Ga); (4) the complex combination of intense global plume-and plate-tectonic processes that led to the partial breakup of the supercontinent, its subsequent renascence and the accompanying formation of collisional orogens in the inner domains of the renewed Paleoproterozoic supercontinent, and the emergence of accretionary orogens along some of its margins (1.95–1.75 (1.71) Ga); and (5) postorogenic and anorogenic magmatism and metamorphism (<1.75 Ga).  相似文献   

10.
区域变质作用与中国大陆地壳的形成与演化   总被引:8,自引:4,他引:4  
在编制1∶500万中国变质地质图的基础上,本文总结了中国主要变质带的演化以及各变质带与中国大陆地壳形成演化之间的内在联系。虽然在华北和华南克拉通都有古太古代到中太古代的变质年代记录,但是由于后期改造其变质作用的特点及与区域构造背景的联系已难以追索。新太古代末-古元古代初期的变质作用在华北克拉通表现最明显,这期变质作用紧随大规模的TTG岩浆作用,普遍具有逆时针的P-T演化轨迹,反映了地幔柱主导的岩浆-变质事件特点。古元古代晚期的变质事件在华北、华南、塔里木克拉通都有强烈反映。这期变质作用以形成具有顺时针P-T演化轨迹的高压麻粒岩为特点,与形成Columbia超大陆的一些造山带的特点类似,但是这三个不同克拉通在与Columbia聚合的时间和空间方位上存在差异。华南克拉通是相对年轻的克拉通,是沿新元古代江南造山带扬子和华夏地块拼合的产物。新元古代江南造山带的火山岩形成时代和变质作用程度从北东向南西迁移,反映了造山过程逐渐迁移和剪刀式闭合的特点。形成华南克拉通后,在其东南缘又先后经历了加里东期和印支期的变质改造,并且由北西向南东变质带从加里东期转变为印支期,但是这两期变质作用的构造背景尚不很清楚。中国南北大陆的聚合首先从西昆仑-阿尔金-北祁连-北秦岭-桐柏开始,所反映的变质作用是早古生代的蓝片岩相和榴辉岩相变质岩相伴产出,表明经历了从洋壳俯冲到陆陆碰撞的演化过程。中国东部的南北大陆到印支期才最终汇聚,相应的变质作用以南部出现高压蓝片岩相、北部出现超高压的榴辉岩相变质带为特点,表明南方大陆向北方大陆的俯冲。超高压带内普遍含有柯石英,意味着大规模的陆壳深俯冲。华北克拉通和塔里木克拉通以北的中亚造山带内存在多条从早古生代到晚古生代的变质带和多条蓝片岩相变质带,表明这是一个由多阶段、多条变质带组成的造山区。但是其变质作用的空间和时间演化还有待进一步深入。青藏高原变质带具有北老南新的空间分布特点,最北部的印支期龙木错-双湖-澜沧江变质带反映了原特提斯和古特提斯洋的碰撞拼合过程,北部的燕山期班公湖-怒江变质带和中部的喜马拉雅早期雅鲁藏布江变质带反映了新特提斯洋的两次碰撞拼合过程,南部喜马拉雅晚期的高喜马拉雅变质带反映了印度板块向北俯冲导致的高原快速隆升过程。  相似文献   

11.
《Gondwana Research》2013,24(4):1402-1428
The formation of collisional orogens is a prominent feature in convergent plate margins. It is generally a complex process involving multistage tectonism of compression and extension due to continental subduction and collision. The Paleozoic convergence between the South China Block (SCB) and the North China Block (NCB) is associated with a series of tectonic processes such as oceanic subduction, terrane accretion and continental collision, resulting in the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt. While the arc–continent collision orogeny is significant during the Paleozoic in the Qinling–Tongbai–Hong'an orogens of central China, the continent–continent collision orogeny is prominent during the early Mesozoic in the Dabie–Sulu orogens of east-central China. This article presents an overview of regional geology, geochronology and geochemistry for the composite orogenic belt. The Qinling–Tongbai–Hong'an orogens exhibit the early Paleozoic HP–UHP metamorphism, the Carboniferous HP metamorphism and the Paleozoic arc-type magmatism, but the three tectonothermal events are absent in the Dabie–Sulu orogens. The Triassic UHP metamorphism is prominent in the Dabie–Sulu orogens, but it is absent in the Qinling–Tongbai orogens. The Hong'an orogen records both the HP and UHP metamorphism of Triassic age, and collided continental margins contain both the juvenile and ancient crustal rocks. So do in the Qinling and Tongbai orogens. In contrast, only ancient crustal rocks were involved in the UHP metamorphism in the Dabie–Sulu orogenic belt, without involvement of the juvenile arc crust. On the other hand, the deformed and low-grade metamorphosed accretionary wedge was developed on the passive continental margin during subduction in the late Permian to early Triassic along the northern margin of the Dabie–Sulu orogenic belt, and it was developed on the passive oceanic margin during subduction in the early Paleozoic along the northern margin of the Qinling orogen.Three episodes of arc–continent collision are suggested to occur during the Paleozoic continental convergence between the SCB and NCB. The first episode of arc–continent collision is caused by northward subduction of the North Qinling unit beneath the Erlangping unit, resulting in UHP metamorphism at ca. 480–490 Ma and the accretion of the North Qinling unit to the NCB. The second episode of arc–continent collision is caused by northward subduction of the Prototethyan oceanic crust beneath an Andes-type continental arc, leading to granulite-facies metamorphism at ca. 420–430 Ma and the accretion of the Shangdan arc terrane to the NCB and reworking of the North Qinling, Erlangping and Kuanping units. The third episode of arc–continent collision is caused by northward subduction of the Paleotethyan oceanic crust, resulting in the HP eclogite-facies metamorphism at ca. 310 Ma in the Hong'an orogen and low-P metamorphism in the Qinling–Tongbai orogens as well as crustal accretion to the NCB. The closure of backarc basins is also associated with the arc–continent collision processes, with the possible cause for granulite-facies metamorphism. The massive continental subduction of the SCB beneath the NCB took place in the Triassic with the final continent–continent collision and UHP metamorphism at ca. 225–240 Ma. Therefore, the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt records the development of plate tectonics from oceanic subduction and arc-type magmatism to arc–continent and continent–continent collision.  相似文献   

12.
华北克拉通的变质沉积岩及其克拉通的构造划分   总被引:8,自引:0,他引:8  
早前寒武纪花岗质岩年龄统计结果显示,华北克拉通经历了3.8,3.3,2.9,2.5和1.8~1.9 Ga等多个旋回才从陆核成长为陆台,与之对应沉积岩也由少变多,大约以500 Ma为一周期。由于沉积作用出现在成陆间歇期,所以二者在时间上相间互补,其状如同显生宙超大陆裂解和拼合的周期交替。这一现象不但是地壳演化的普遍规律,而且也可反过来用沉积岩反映陆壳的演化。然而,早前寒武纪尤其是太古宙的沉积岩毕竟太少,无法用来恢复当时古陆块的面貌,但古元古代的特别是陆缘沉积的孔兹岩,尽管已进入下地壳并成为克拉通基底的组成,则以保存甚多、分布延续,使其重塑克拉通的拼合成为可能。已有的华北克拉通的构造划分方案多种多样,但以陆缘沉积的古元古代孔兹岩作为地块的边界,理当最能反映当时古陆块的面貌。因此,以孔兹岩为主要依据,并综合考虑岩石组合、构造环境、变质p-T轨迹、同位素年龄、以及不变质的沉积盖层等地质特征,将华北克拉通主体从西往东划分为:鄂尔多斯地块 / 晋蒙弧形拼合带 / 冀鲁豫地块 /(郯庐断裂)/ 胶辽地块群等构造单元,所得到的不同于以往的构造轮廓,显示华北陆台并非一统的太古宙克拉通,而是吕梁运动拼合成的古元古代大陆。  相似文献   

13.
The Hercynian mobile belts in Central Asia comprise the Hercynian proper and the Late Hercynian (Indosinian) belts separated by the South Gobi microcontinent, the origin of which is related to the evolution of the South Mongolian and Inner Mongolian basins with the oceanic crust. Crystalline complexes within these belts occur as tectonic sheets of a variety of sizes. At the early stages, the metamorphic grade of these complexes reached conditions of high-temperature subfacies of amphibolite and locally developed granulite facies. In tectonic terms, the Hercynian belt of metamorphic rocks is situated at the margin of the North Asian Caledonian continent and extends from the southeast to the northwest along the southern slope of the Gobi, Mongolian, and Chinese Altai to East Kazakhstan, where metamorphic rocks are localized in the Irtysh Shear Zone. All these rocks are combined into the South Altai metamorphic belt of more than 1500 km in extent. Another belt of isolated outcrops of crystalline rocks conventionally combined into the Indosinian South Gobi metamorphic belt is traced along the junction of the Hercynides with the South Gobi microcontinent. The high-grade metamorphic rocks within both belts are not fragments of an ensialic Caledonian or older basement. These rocks were formed 390–360 and 230–220 Ma ago as a result of the closure of the Tethian South Mongolian and Inner Mongolian oceanic basins (Paleotethys I and Paleotethys II). The spatial position of the South Altai and South Gobi metamorphic belts is caused by the asymmetric structure of the Tethian basins, where active continental margins are expressed most distinctly along their northern parts, while passive margins extend along the southern parts (in present-day coordinates).  相似文献   

14.
A combined study of petrology and geochemistry was carried out for granulites from the Tongbai orogen in central China. The results reveal the tectonic evolution from collisional thickening to extensional thinning of the lithosphere at the convergent plate boundary. Petrographic observations, zircon U–Pb dating, and pseudosection calculations indicate that the granulites underwent four metamorphic stages, which are categorized into two cycles. The first cycle occurred at 490–450 Ma and involves high-P (HP) metamorphism (M1) at 785–815°C and 10–14 kbar followed by decompressional heating to 840–880°C and 8–9 kbar for medium-pressure granulite facies metamorphism (M2), defining a clockwise PT path. The high pressure is indicated by the occurrence of inclusions of rutile+kyanite+K-feldspar in the garnet mantle. The second cycle occurred at c. 440 Ma and shows an anticlockwise PT path with continuous heating to ultrahigh-temperature (UHT) metamorphism (M3) at 890–980°C and 9–11 kbar, followed by decompressional cooling to 740–880°C and 7–9 kbar (M4) till 405 Ma. The HP metamorphism is synchronous with the ultrahigh-pressure eclogite facies metamorphism in the Qinling orogen, indicating its relevance to the continental collision in the Cambrian. The UHT metamorphism took place at reduced pressures, indicating thinning of the collision-thickened orogenic lithosphere. Therefore, the Tongbai orogen was initially thickened by the collisional orogeny and then thinned, possibly as a result of foundering of the orogenic root. Such tectonic evolution may be common in collisional orogens where compression during continental collision switched to extension during continental rifting.  相似文献   

15.
《Tectonophysics》1987,135(4):307-327
The Kutch-Saurashtra, Cambay and Narmada basins are pericontinental rift basins in the western margin of the Indian craton. These basins were formed by rifting along Precambrian tectonic trends. Interplay of three major Precambrian tectonic trends of western India, Dharwar (NNW-SSE), Aravalli-Delhi (NE-SW) and Satpura (ENE-WSW), controlled the tectonic style of the basins. The geological history of the basins indicates that these basins were formed by sequential reactivation of primordial faults. The Kutch basin opened up first in the Early Jurassic (rifting was initiated in Late Triassic) along the Delhi trend followed by the Cambay basin in the Early Cretaceous along the Dharwar trend and the Narmada basin in Late Cretaceous time along the Satpura trend. The evolution of the basins took place in four stages. These stages are synchronous with the important events in the evolution of the Indian sub-continent—its breakup from Gondwanaland in the Late Triassic-Early Jurassic, its northward drifting during the Jurassic-Cretaceous and collision with the Asian continent in the Early Tertiary. The most important tectonic events occurred in Late Cretaceous time. The present style of the continental margins of India evolved during Early Tertiary time.The Saurashtra arch, the extension of the Aravalli Range across the western continental shelf, subsided along the eastern margin fault of the Cambay basin during the Early Cretaceous. It formed an extensive depositional platform continuous with the Kutch shelf, for the accumulation of thick deltaic sediments. A part of the Saurashtra arch was uplifted as a horst during the main tectonic phase in the Late Cretaceous.The present high thermal regime of the Cambay-Bombay High region is suggestive of a renewed rifting phase.  相似文献   

16.
As a window of insight into the lower crust, high pressure granulite has received much attention since last decade. Yushugou high pressure granulite-peridotite Complex was located in the northeast margin of Southern Tianshan, NW China. Previous ideas agreed that the peridotite unit in Yushugou, combined with the ultramafic rocks in Tonghuashan and Liuhuangshan, represent an ophiolite belt. However, the metamorphic evolution and tectonic mechanism of the Yushugou high pressure(HP) granulite remain controversial. Petrological investigations and phase equilibrium modelling for two representative felsic granulite samples suggest two stages metamorphism of the rocks in Yushugou Complex. Granulite facies metamorphism(Stage Ⅰ) with P-T conditions of 9.8–10.4 kbar at 895–920°C was recorded by the porphyroblastic garnet core; HP granulite facies metamorphism(Stage Ⅱ) shows P-T conditions of 13.2–13.5 kbar at 845–860°C, based on the increasing grossular and decreasing pyrope contents of garnet rims. The Yushugou HP felsic granulites have recorded an anticlockwise P-T path, characterized by the temperature decreasing and pressure increasing simultaneously. The LA-ⅠCP-MS isotopic investigations on zircons from the felsic granulite show that the protolith ages of the granlulites are ~430 Ma, with two age groups of ~390 Ma and 340–350 Ma from the metamorphic rims of zircon, indicating the Stage Ⅰ and Ⅱ metamorphic events, respectively. A tectonic model was proposed to interpret the processes. The investigated felsic granulite was derived from deep rooted hanging wall, with Stage Ⅰ granulite facies metamorphism of ~390 Ma, which may be related to the Devonian arc magmatic intrusion; Stage Ⅱ HP granulite facies metamorphism(340–350 Ma) may due to the involvement of being captured into the subducting slab and experienced the high pressure metamorphism.  相似文献   

17.
大陆碰撞造山样式与过程:来自特提斯碰撞造山带的实例   总被引:2,自引:0,他引:2  
张洪瑞  侯增谦 《地质学报》2015,89(9):1539-1559
本文选取特提斯域内比利牛斯、阿尔卑斯、扎格罗斯、喜马拉雅-青藏高原四个地球上最年轻的陆-陆碰撞造山带,对其造山带结构、类型、物质组成、构造岩浆过程等方面进行详细介绍,进而讨论各个造山带的差异性及其缘由,分析碰撞造山普遍性规律。资料分析表明,四个碰撞造山带具有不同的结构和组成。根据板块汇聚方向与造山带边界间的夹角可将造山带分为正向和斜向两种;根据造山带结构可将碰撞带分为对称式和不对称式两种。由此本文将碰撞造山带划分为四种基本式样:正向对称式、正向不对称式、斜向对称式、斜向不对称式,分别以比利牛斯、青藏高原、阿尔卑斯和扎格罗斯碰撞带为代表。综合分析四个造山带碰撞以来的岩浆构造活动,本文发现完整的碰撞过程可以划分为三个阶段,第一阶段主要发生挤压缩短、地壳加厚,高压变质和钙碱性火山岩浆活动;第二阶段以大规模走滑系统发育和高钾钙碱性或钾质火山岩浆作用为特征;第三个阶段挤压应力向碰撞带两侧扩展,同时伴有大型伸展构造系统的发育。在这三阶段演化历程中,比利牛斯只进行到第一阶段,成为幼年夭折的碰撞带;扎格罗斯进行到第二阶段,出现调节挤压应变的走滑系统和钾质超钾质岩浆活动;青藏高原和阿尔卑斯进行到第三个阶段,以发育大型伸展构造和钾质、超钾质岩浆活动为特征,但后者在造山带物质组成和汇聚速率方面显示出比前者更成熟的造山演化程度。因此认为岩石圈组成是碰撞造山带结构的主要控制因素,如果上覆板块具有相对不稳定的岩石圈,会使得碰撞带后陆发育宽广的构造岩浆带,造成造山带呈不对称式结构。  相似文献   

18.
《Gondwana Research》2014,25(1):170-189
The Lhasa terrane in southern Tibet is composed of Precambrian crystalline basement, Paleozoic to Mesozoic sedimentary strata and Paleozoic to Cenozoic magmatic rocks. This terrane has long been accepted as the last crustal block to be accreted with Eurasia prior to its collision with the northward drifting Indian continent in the Cenozoic. Thus, the Lhasa terrane is the key for revealing the origin and evolutionary history of the Himalayan–Tibetan orogen. Although previous models on the tectonic development of the orogen have much evidence from the Lhasa terrane, the metamorphic history of this terrane was rarely considered. This paper provides an overview of the temporal and spatial characteristics of metamorphism in the Lhasa terrane based mostly on the recent results from our group, and evaluates the geodynamic settings and tectonic significance. The Lhasa terrane experienced multistage metamorphism, including the Neoproterozoic and Late Paleozoic HP metamorphism in the oceanic subduction realm, the Early Paleozoic and Early Mesozoic MP metamorphism in the continent–continent collisional zone, the Late Cretaceous HT/MP metamorphism in the mid-oceanic ridge subduction zone, and two stages of Cenozoic MP metamorphism in the thickened crust above the continental subduction zone. These metamorphic and associated magmatic events reveal that the Lhasa terrane experienced a complex tectonic evolution from the Neoproterozoic to Cenozoic. The main conclusions arising from our synthesis are as follows: (1) The Lhasa block consists of the North and South Lhasa terranes, separated by the Paleo-Tethys Ocean and the subsequent Late Paleozoic suture zone. (2) The crystalline basement of the North Lhasa terrane includes Neoproterozoic oceanic crustal rocks, representing probably the remnants of the Mozambique Ocean derived from the break-up of the Rodinia supercontinent. (3) The oceanic crustal basement of North Lhasa witnessed a Late Cryogenian (~ 650 Ma) HP metamorphism and an Early Paleozoic (~ 485 Ma) MP metamorphism in the subduction realm associated with the closure of the Mozambique Ocean and the final amalgamation of Eastern and Western Gondwana, suggesting that the North Lhasa terrane might have been partly derived from the northern segment of the East African Orogen. (4) The northern margin of Indian continent, including the North and South Lhasa, and Qiangtang terranes, experienced Early Paleozoic magmatism, indicating an Andean-type orogeny that resulted from the subduction of the Proto-Tethys Ocean after the final amalgamation of Gondwana. (5) The Lhasa and Qiangtang terranes witnessed Middle Paleozoic (~ 360 Ma) magmatism, suggesting an Andean-type orogeny derived from the subduction of the Paleo-Tethys Ocean. (6) The closure of Paleo-Tethys Ocean between the North and South Lhasa terranes and subsequent terrane collision resulted in the formation of Late Permian (~ 260 Ma) HP metamorphic belt and Triassic (220 Ma) MP metamorphic belt. (7) The South Lhasa terrane experienced Late Cretaceous (~ 90 Ma) Andean-type orogeny, characterized by the regional HT/MP metamorphism and coeval intrusion of the voluminous Gangdese batholith during the northward subduction of the Neo-Tethyan Ocean. (8) During the Early Cenozoic (55–45 Ma), the continent–continent collisional orogeny has led to the thickened crust of the South Lhasa terrane experiencing MP amphibolite-facies metamorphism and syn-collisional magmatism. (9) Following the continuous continent convergence, the South Lhasa terrane also experienced MP metamorphism during Late Eocene (40–30 Ma). (10) During Mesozoic and Cenozoic, two different stages of paired metamorphic belts were formed in the oceanic or continental subduction zones and the middle and lower crust of the hanging wall of the subduction zone. The tectonic imprints from the Lhasa terrane provide excellent examples for understanding metamorphic processes and geodynamics at convergent plate boundaries.  相似文献   

19.
Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published PTt data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.  相似文献   

20.
超高压变质岩的全球分布与地球演化节律   总被引:4,自引:0,他引:4  
高压、超高压变质作用不是一个局部的孤立的地质现象,而是一个时空跨度大、范围广、影响构造观的重要科学问题。文中讨论了世界上三类(13个)典型超高压变质地区的地质学岩石学特点,从全球构造的角度研讨了超高压变质的时空分布,从而得到下列认识:(1)所有高压、超高压变质岩均分布于全球活动带及其次级褶皱带内,超高压变质岩常常保存于多期变质和变形的基底片麻岩块体中,与深位壳型剪切带关系密切。(2)现有的年代学资料说明大部分超高压变质带出现于显生宙不同时代的褶皱带(造山带)内。(3)超高压变质演化的多阶段性,说明了地球从收缩到膨胀的节律现象。(4)从欧亚大陆范围看来,从北而南,从陆到洋超高压变质有逐渐变新的趋势,可能说明欧亚大陆从中生代以来,有从大陆向大洋方向增生的总趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号