首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
《Gondwana Research》2010,18(4):718-720
The following four major questions were raised about my recent proposal for the possible link between the end-Guadalupian extinction and a unique geomagnetic event called the Illawarra Reversal (Isozaki, 2009a); 1) timings of extinction, cooling, and the Illawarra Reversal (end of the Kiaman Superchron), 2) geomagnetic intensity during superchrons, 3) ascent rate of mantle plume, and 4) age constraints of LIP volcanism in east Pangea. The latest research results on the Permian biodiversity change, numerical modeling of plume, and single-crystal measurement of geomagnetism support that the timings of extinction and the Illawarra Reversal, high field intensity during the Kiaman superchron, and ascent rate of plume are reasonably explained in accordance with the integrated “plume winter” scenario (Isozaki, 2009b). The onset ages of LIP volcanism need further refinement for identifying the impingement of a plume head.  相似文献   

2.
We report rock-magnetic and magnetostratigraphic results from one of the best exposed Permo-Carboniferous outcrops in Mexico, in order to determine some decisive magnetostratigraphy constraints. Some spinels, most probably titanomagnetites, seem to be responsible for aimantation, although greigite may also exist judging from thermal desaimantation of isothermal remanence. Remanence analyses indicate that only one remanent component could be recognized with minor secondary overprint, which were easily removed applying 100–180 °C. Six normal and four reverse magnetozones were recognized from bottom to top in Patlanoya section between 340 and 280 Myr. Both normal and reverse polarity rocks were found in Carboniferous time around 340 Myr, in agreement with previous paleomagnetic works. Our record revealed two normal subchrons within PCRS (Kiaman), the dominantly reverse superchron, at 305 and 280 Myr, respectively. These, which may be speculatively correlated to normal aimantation, occasionally occurred during PCRS interval. More detailed studies are needed in order to establish a more precise magnetostratigraphy for Permo-Carboniferous time. To cite this article: L.M. Alva-Valdivia et al., C. R. Geoscience 334 (2002) 811–817.  相似文献   

3.
Yukio Isozaki   《Gondwana Research》2009,15(3-4):421-432
The Permian magnetostratigraphic record demonstrates that a remarkable change in geomagnetism occurred in the Late Guadalupian (Middle Permian; ca. 265 Ma) from the long-term stable Kiaman Reverse Superchron (throughout the Late Carboniferous and Early-Middle Permian) to the Permian–Triassic Mixed Superchron with frequent polarity changes (in the Late Permian and Triassic). This unique episode called the Illawarra Reversal probably reflects a significant change in the geodynamo in the outer core of the planet after a 50 million years of stable geomagnetism. The Illawarra Reversal was likely led by the appearance of a thermal instability at the 2900 km-deep core–mantle boundary in connection with mantle superplume activity. The Illawarra Reversal and the Guadalupian–Lopingian boundary event record the significant transition processes from the Paleozoic to Mesozoic–Modern world. One of the major global environmental changes in the Phanerozoic occurred almost simultaneously in the latest Guadalupian, as recorded in 1) mass extinction, 2) ocean redox change, 3) sharp isotopic excursions (C and Sr), 4) sea-level drop, and 5) plume-related volcanism. In addition to the claimed possible links between the above-listed environmental changes and mantle superplume activity, I propose here an extra explanation that a change in the core's geodynamo may have played an important role in determining the course of the Earth's surface climate and biotic extinction/evolution. When a superplume is launched from the core–mantle boundary, the resultant thermal instability makes the geodynamo's dipole of the outer core unstable, and lowers the geomagnetic intensity. Being modulated by the geo- and heliomagnetism, the galactic cosmic ray flux into the Earth's atmosphere changes with time. The more cosmic rays penetrate through the atmosphere, the more clouds develop to increase the albedo, thus enhancing cooling of the Earth's surface. The Illawarra Reversal, the Kamura cooling event, and other unique geologic phenomena in the Late Guadalupian are all concordantly explained as consequences of the superplume activity that initially triggered the breakup of Pangea. The secular change in cosmic radiation may explain not only the extinction-related global climatic changes in the end-Guadalupian but also the long-term global warming/cooling trend in Earth's history in terms of cloud coverage over the planet.  相似文献   

4.
It is generally acknowledged that geomagnetic polarity has reversed many times in geological history and an abnormal geologic phenomenon is the Cretaceous normal superchron. However, the causes have been unknown up to now. The nonlinear theory has been applied to analyze the phenomenon in geomagnetic polarity reversal and the Cretaceous normal superchron. The Cretaceous normal superchron implies that interaction of the Earth’s core-mantle and liquid movement in the outer core may be the lowest energy state and the system of Earth magnetic field maintains a sort of temporal or spatial order structure by exchanging substance and energy in the outside continuously. During 121-83 Ma, there was no impact of a celestial body that would result in a geomagnetic polarity reversal, which may be a cause for occurrence of the Cretaceous normal superchron.The randomness of geomagnetic polarity reversal has the self-reversion characteristic of chaos and the chaos theory gives a simple and clear explanation for the dynamic cause of the geomagnetic polarity reversal.  相似文献   

5.
Rock complexes in Mongolia experienced two remagnetization events. Almost all secondary remanence components of normal polarity were acquired apparently in the Cenozoic, after major deformation events, and those of reverse polarity were associated with intrusion of bimodal magmas during the Late Carboniferous–Permian reverse superchron. Active continental-margin sequences in some areas of Mongolia were folded prior to the Late Carboniferous–Permian magnetic event. The primary origin of magnetization in Late Paleozoic and Mesozoic rocks has been inferred to different degrees of reliability. According to paleolatitudes derived from most reliable paleomagnetic data, the analyzed rocks were located far north of the North China block throughout the Late Paleozoic and Early Mesozoic. Mongolia, as well as Siberia, moved from the south to the north in the Paleozoic, back from the north to the south between the latest Triassic and the latest Jurassic, and remained almost within the same latitudes in Cretaceous and Cenozoic time. These paleolatitudes show no statistical difference from those for the Siberian craton at least since the latest Permian (275–250 Ma). Older Mongolian complexes (with ages of 290, 316, and 330 Ma) likewise may have formed within the Siberian continent, which makes their paleomagnetic determinations applicable to calculate the polar wander path for Siberia. The paleolatitudes of Early Carboniferous sediments in Mongolia differ significantly from those of Siberia, either because of overprints from the reverse superchron or because they were deposited away from the Siberian margin.  相似文献   

6.
We have studied three Permian–Triassic (PT) localities from China as part of a combined magnetostratigraphic, 40Ar/39Ar and U–Pb radioisotopic, and biostratigraphic study aimed at resolving the temporal relations between terrestrial and marine records across the Permo-Triassic boundary, as well as the rate of the biotic recovery in the Early Triassic. The studied sections from Shangsi (Sichuan Province), Langdai (Guihzou Province), and the Junggar basin (Xinjiang Province), span marine, paralic, and terrestrial PT environments, respectively. Each of these sections was logged in detail in order to place geochronologic, paleomagnetic, geochemical, conodont and palynologic samples within a common stratigraphic context. Here we present rock-magnetic, paleomagnetic and magnetostratigraphic results from the three localities.At Shangsi, northern Sichuan Province, we sampled three sections spanning Permo-Triassic marine carbonates. Magnetostratigraphic results from the three sections indicate that the composite section contains at least eight polarity chrons and that the PT boundary occurs within a normal polarity chron a short distance above the mass extinction level and a reversed-to-normal (R-N) polarity reversal. Furthermore, the onset of the Illawarra mixed interval lies below the sampled section indicating that the uppermost Permian Changhsingian and at least part of the Wuchiapingian stages postdate the end of the Kiaman Permo-Carboniferous Reversed Superchron.At Langdai, Guizhou Province, we studied magnetostratigraphy of PT paralic mudstone and carbonate sediments in two sections. The composite section spans an R-N polarity sequence. Section-mean directions pass a fold test at the 95% confidence level, and the section-mean poles are close to the mean PT pole for the South China block. Based on biostratigraphic constraints, the R-N transition recorded at Langdai is consistent with that at Shangsi and demonstrates that the PT boundary occurred within a normal polarity chron a short distance above the mass extinction level.In the southern Junggar basin, Xinjiang Province, in northwest China, we determined the magnetostratigraphy of three sections of a terrestrial sequence. Normal and reversed polarity directions are roughly antipodal, and magnetostratigraphies from the three sections are highly consistent. Combined bio- and magneto-stratigraphy used to correlate this sequence to other PT sequences suggests that the previously-proposed biostratigraphic PT boundary in the Junggar sections was most likely misplaced by earlier workers suggesting that further work is necessary to confidently place the PT boundary there.  相似文献   

7.
In western Henan, Late Palaeozoic coal measures are completely developed and well exposed. A great deal of research work on biostratigraphy was done by predecessors. After systematic palaeomagnetic studies, we have confirmed the existence of the Permian Kiaman reversed polarity epoch in the study region. Its palaeolatitude varied from 11.2° N(P,) to 15.6°N(P2). This provides important evidence for the view that this region was situated in a low latitude climatic zone in this period and gradually moved northwards from the tropic rain forest climate area to the tropic arid-humid seasonal climate area during this stage.  相似文献   

8.
Rochette  P.  Ben Atig  F.  Collombat  H.  Vandamme  D.  Vlag  P. 《Geologie en Mijnbouw》1997,76(1-2):9-19
McFadden and Merrill (1995) suggested that the paleosecular variation (PSV) measured by the angular scatter of the virtual geomagnetic pole is minimal at the equator and should be smaller during a superchron than during the last 5 Myr. We revisited a key site of the 0–5 Ma database, the Galapagos archipelago, studied by Allan Cox in the early sixties. We obtained 79 sites with reliable mean directions on four islands (San Cristobal, Floreana, Santa Cruz and Pinzon), showing a larger proportion of transitional data than Cox (16 instead of 6%), because the sampling was concentrated on the Brunhes-Matuyama transition as delimited by Cox. This dataset allowed us to test the statistical method of Vandamme (1994) to separate PSV from transitional data. We obtained an angular scatter value of 11.2° (9.9–12.9°), instead of 16.8° for an a-priori rejection angle of 40°, compared with the 12.7° predicted from the global compilation (McFadden et al. 1991). Studies of sequences of lava flows are quite scarce in the Permian Kiaman Superchron, and the Esterel volcanics with their subequatorial paleolatitude are a good candidate to test the above prediction. We confirm the quality of the original data of Zijderveld (1975) and we improved the mean direction from one site. We also used new geological and geochronological data: Ar/Ar ages point to the period 264–278 Ma for a totally reversed volcanic sequence, in agreement with an ending of the Kiaman Superchron at 262–268 Ma. The extremely low angular scatter obtained (4 to 8°, depending on data selection) confirms the prediction, but an alternative interpretation invoking a post-volcanic Permian remagnetization is discussed.  相似文献   

9.
10.
西南地区二叠纪层序地层及海平面变化   总被引:10,自引:2,他引:8  
西南地区二叠系可划分为2个二级层序、11个三级层序,它们代表11次三级海平面升降旋回,其中有6次可与欧美地区二叠纪海平面变化相对比,它们是伦纳德(Leonardian)早期、瓜达卢普(Guadalupian)早期、瓜达卢普(Guadalupian)晚期、卡赞(Kazanian)早期、鞑靼(Tatarian)早期和鞑靼(Tatarian)晚期的海平面旋回。研究表明,该区二叠纪相对海平面变化作为全球海平面变化和同沉积构造活动相互作用的产物,它与欧美地区乃至联合古陆发展具反向效应,即具有以海侵型碳酸盐沉积序列为典型的主体海平面上升的特点。作者认为显生宙全球海平面旋回曲线的二叠纪部分总体具有两种类型或分支:其一是以海侵型碳酸盐沉积序列为主的反映海平面主体上升的特提斯型或华南型;其二是以海陆过渡—陆相海退沉积序列为主的揭示海平面主体下降的经典型或欧美型。作者强调,全球二叠纪海侵型全球海平面旋回曲线应以西南地区为代表。  相似文献   

11.
在四川省攀枝花一西昌地区六个采样点,采集了二叠纪玄武岩和铝土矿标本,测得的古地磁结果表明,不同点地层的平均磁特征方向是一致的,但其磁极性既有正向的,也有反向的,进一步分析研究提出,磁性方向在NE象限的峨眉山玄武岩是在正极性期形成的.文章还讨论了安宁河断裂两侧地层磁性的某些差异,并提出这些磁特征方向的差异可能是由于构造作用或地层年龄差异所致.  相似文献   

12.
INTRODUCTIONBecause many P/ T boundary sections around the worldare stratigraphically unconformed,som e possible exceptionsdeveloped in Greenland,Iran,Russia and South China are ofcourse of international importance.Especially successive sedi-ments from the L ate Paleozoic to Early Mesozoic widely ap-peared in South China,for example,the Meishan Section inChangxing County,Zhejiang Province,and som e analogies inGuangyuan,Wulong and Shangsi counties,Sichuan Province.Some geologists…  相似文献   

13.
A section 300 m thick across the Permian—Triassic boundary has been sampled in the Southern Coalfield of the Sydney Basin, New South Wales. 55 samples, mainly grey to drab sandstones, were collected from 9 diamond drill holes which penetrated the entire Narrabeen Group and the upper part of the conformably underlying Illawarra Coal Measures, as well as a sill emplaced into the coal measures. The samples included fully oriented cores. Additional reconnaissance samples from two further drill holes were also studied.Partial alternating field demagnetization and petrography indicate the magnetic remanence to be a stable DRM. Partial thermal demagnetization above 300°C or 400°C caused large increases in magnetic susceptibility. Partial chemical demagnetization did not cause significant changes in remanence directions.For the Coal Cliff Sandstone (basal Narrabeen Group, Triassic) the palaeomagnetic pole position (Normal) was calculated to be at 59°N 322°E (dp = 27°, dm = 29°), which agrees with previously published data. For the uppermost coal measures (Permian) the pole position was calculated as 58°N 340°E (dp = 09°, dm = 10°). Data for samples from the lower to middle coal measures yield a pole position which is between the new Permian—Triassic pole position and that for the underlying Middle Permian igneous rocks. The top of the Reversed “Kiaman Magnetic Interval” (Permian) may be near the Tongarra coal and Appin Formation boundary — (early) Late Permian.  相似文献   

14.
The Karoo Supergroup outcropst in the mid-Zambezi Valley, southern Zambia. It is underlain by the Sinakumbe Group of Ordovician to Devonian age. The Lower Karoo Group (Late Carboniferous to Permian age) consists of the basal Siankondobo Sandstone Formation, which comprises three facies, overlain by the Gwembe Coal Formation with its economically important coal deposits, in turn overlain by the Madumabisa Mudstone Formation which consists of lacustrine mudstone, calcilutite, sandstone, and concretionary calcareous beds. The Upper Karoo Group (Triassic to Early Jurassic) is sub-divided into the coarsely arenaceous Escarpment Grit, overlain by the fining upwards Interbedded Sandstone and Mudstone, Red Sandstone; and Batoka Basalt Formations.Palynomorph assemblages suggest that the Siankondobo Sandstone Formation is Late Carboniferous (Gzhelian) to Early Permian (Asselian to Early Sakmarian) in age, the Gwembe Coal Formation Early Permian (Artinskian to Kungurian), the Madumabisa Mudstone Late Permian (Tatarian), and the Interbedded Sandstone and Mudstone Early or Middle Triassic (Late Scythian or Anisian). The marked quantitative variations in the assemblages are due partly to age differences, but they also reflect vegetational differences resulting from different paleoclimates and different facies.The low thermal maturity of the formations (Thermal Alteration Index 2) suggests that the rocks are oil prone. However, the general scarcity of amorphous kerogen, such as the alga Botryococcus sp., and the low proportion of exinous material, indicates a low potential for liquid hydrocarbons. Gas may have been generated, particularly in the coal seams of the Gwembe Coal Formation, that are more deeply buried.  相似文献   

15.
The New Zealand succession spans the full length of the Permian, and unlike that of most areas of the world, is almost entirely marine, with faunas ranging from Sakmarian to topmost ("Tatarian") Permian. The Lower Permian is correlated by brachiopods, bivalves and gastropods with faunas of Queensland and New South Wales, and the Upper Permian by brachiopods, an ammonoid, and fusulinids with Tethyan sequences of south and east Asia.  相似文献   

16.
Most Lower Phanerozoic rocks of western Mongolia investigated were repeatedly remagnetized. They demonstrate a secondary magnetization component of normal and reversed polarity. The normal polarity components are related to Mesozoic rock remagnetization. The reversed polarity components were probably formed during the Carboniferous?Permian Superchron of reversed polarity. The analysis of the distribution of the reversed polarity component in the geological structure of Mongolia allows some zoning to be outlined with the defining regions of Mongolia characterized by insignificant rock defamations with intricate post-Permian dislocations and a region marked by rotation of large blocks around the horizontal axis (Khan Khukhei Range). It is assumed that Ordovician rock of western Mongolia contains a magnetization component close to the primary one. If the assumption is valid, the presumably northern paleolatitude derived from this direction corresponds to the interval of 14°?17°?20° (minimum?average?maximum, respectively).  相似文献   

17.
Some stratigraphic interpretations concerning correlation of the Permian–Triasssic transition beds from the Central European, Boreal and Tethyan Basins are inconsistent with the existing magnetostratigraphic data. In addition, the suggestion that the Permian–Triassic boundary is located in the lower part of the Calvörde Formation of the Central European Basin cannot be supported by magnetostratigraphic data. Results of magnetostratigraphic correlation show that in the Polish part of the Central European Basin the Permian–Triassic boundary is close to the boundary between the uppermost Zechstein and the Lower Buntsandstein. It is located within the reversed magnetozone ‘PZr1’ identified in the upper part of the Rewal Formation. In the German part of the Central European Basin the Permian–Triassic boundary can be located within the reversed magnetozone ‘zrz’ that covers most of the Bröckelschiefer. A higher stratigraphic location of this boundatry, i.e. inside the lowermost Buntsandstein, requires a reversed polarity record to be found within the basal Triassic normal polarity zone.  相似文献   

18.

The Hastings Terrane comprises two or three major fragments of the arc‐related Tamworth Belt of the southern New England Orogen, eastern Australia, and is now located in an apparently allochthonous position outboard of the subduction complex. A palaeomagnetic investigation of many rock units has been undertaken to shed light on this anomalous location and orientation of this terrane. Although many of the units have been overprinted, pre‐deformational magnetizations have been isolated in red beds of the Late Carboniferous Kullatine Formation from the northern part of the terrane. After restoring these directions to their palaeohorizontal (pre‐plunging and pre‐folding) orientations they appear to have been rotated 130° clockwise (or 230° anti‐clockwise) when compared with coeval magnetizations from regions to the west of the Hastings Terrane. Although these data are insensitive to translational displacements, a clockwise rotation is incompatible with models previously proposed on geological grounds. While an anti‐clockwise rotation is in the same sense as these models the magnitude appears to be too great by about 100°. Nevertheless, the palaeomagnetically determined rotation brings the palaeoslopes of the Tamworth Belt, facing east, and the Northern Hastings Terrane, facing west before rotation and facing southeast after rotation, into better agreement. A pole position of 14.4°N, 155.6°E (A95 = 6.9°) has been determined for the Kullatine Formation (after plunge and bedding correction but not corrected for the hypothetical rotation). Reversed magnetizations interpreted to have formed during original cooling are present in the Werrikimbe Volcanics. The pole position from the Werrikimbe Volcanics is at 31.6° S, 185.3° E (A95 = 26.6°). These rocks are the volcanic expression of widespread igneous activity during the Late Triassic (~ 226 Ma). While this activity is an obvious potential cause of the magnetic overprinting found in the older units, the magnetic directions from the volcanics and the overprints are not coincident. However, because only a few units could be sampled, the error in the mean direction from the volcanics makes it difficult to make a fair comparison with the directions of overprinted units. The overprint poles determined from normal polarity magnetizations of the Kullatine Formation is at 61.0°S, 155.6°E (A95 = 6.9°) and a basalt from Ellenborough is at 50.7° S, 148.8° E (A95 = 15.4°), and from reversed polarity magnetizations, also from the basalt at Ellenborough is at 49.4° S, 146.2° E (A95 = 20.4°). These are closer to either an Early Permian or a mid‐Cretaceous position, rather than a Late Triassic position, on the Australian apparent polar wandering path. Therefore, despite their mixed polarity, and global observations that the Permian and mid‐Cretaceous geomagnetic fields were of constant polarities, the age of these overprint magnetizations appears to be either Early Permian or mid‐Cretaceous.  相似文献   

19.
The major-ion composition of Permian seawater   总被引:1,自引:0,他引:1  
The major-ion (Mg2+, Ca2+, Na+, K+, SO42−, and Cl) composition of Permian seawater was determined from chemical analyses of fluid inclusions in marine halites. New data from the Upper Permian San Andres Formation of Texas (274-272 Ma) and Salado Formation of New Mexico (251 Ma), analyzed by the environmental scanning electron microscopy (ESEM) X-ray energy-dispersive spectrometry (EDS) method, along with published chemical compositions of fluid inclusions in Permian marine halites from North America (two formations of different ages) and the Central and Eastern European basins (eight formations of four different ages) show that Permian seawater shares chemical characteristics with modern seawater, including SO42− > Ca2+ at the point of gypsum precipitation, evolution into Mg2+-Na+-K+-SO42−-Cl brines, and Mg2+/K+ ratios ∼5. Permian seawater, however, is slightly depleted in SO42− and enriched in Ca2+, although modeling results do not rule out Ca2+ concentrations close to those in present-day seawater. Na+ and Mg2+ in Permian seawater are close to (slightly below) their concentrations in modern seawater. Permian and modern seawater are both classified as aragonite seas, with Mg2+/Ca2+ ratios >2, conditions favorable for precipitation of aragonite and magnesian calcite as ooids and cements.The chemistry of Permian seawater was modeled using the chemical composition of brine inclusions for three periods: Lower Permian Asselian-Sakmarian (296-283 Ma), Lower Permian Artinskian-Kungurian (283-274 Ma), and Upper Permian Tatarian (258-251 Ma). Parallel changes in the chemistry of brine inclusions from equivalent age evaporites in North America, Central Europe, and Eastern Europe show that seawater underwent secular variations in chemistry over the 50 million years of the Permian. Modeled SO42− concentrations are 20 mmol per kg H2O (mmolal) and 19 mmolal in the Asselian-Sakmarian and Artinskian-Kungurian, with higher concentrations in the Upper Permian Tatarian (23 mmolal). Modeled Ca2+ is at or above its concentration in modern seawater throughout the Permian. Mg2+ is close to (slightly below) its concentration in modern seawater (55 mmolal) in the Asselian-Sakmarian (52 mmolal), and Tatarian (52 mmolal), but slightly higher than modern seawater in the Artinskian-Kungurian (60 mmolal). Mg2+/Ca2+ ratios are 3.5 (total range = 2.7 to 5.5) in the Lower Permian and rose slightly to 3.7 (total range = 3.1 to 5.8) in the Upper Permian, primarily due to decreases in Ca2+. These results are consistent with models that predict oscillations in the major-ion composition of Phanerozoic seawater on the basis of changes in the midocean ridge/river water flux ratio driven by changes in the rate of midocean ridge crust production.The Permian was characterized by low sea levels, icehouse conditions, and southern hemisphere glaciation. Such conditions, analogous to the present ice age, and the similarities between Permian seawater and modern seawater, all suggest that general Phanerozoic supercycles, driven by mantle convection and global volcanicity, also control the major-ion chemistry of seawater.  相似文献   

20.
The presence of a single Otoceras species (O.boreale), morphologically very variable, at the base of the Nekuchan Formation in Verkhoyansk, we believe, is to be obvious. Some morphological evidence leaves no doubt that two described morphs of O. boreale are s strictly corresponding sexual dimorphic pair. It is very likely that Kummel‘s idea that Canadian. O. concavum Tozer is an invalid species is truthful, considering the range of variability seen in larger Siberian and Himalayan Otoceras fauna. Just above the upper Tatarian Imtachan Formation, the six stages of ammonoid succession can be recognized within the lower part of the Nekuchan Formation in the Setorym River Section:(a) Otoceras boreale;(b) Otoceras boreale-Tompophiceras pascoei; (c) Otoceras boreale-Tompophiceras pascoei-Aldanoceras;(d)Tompophiceras pascoei-Otoceras boreale-Aldanoceras;(e) Tompophiceras morpheous-T.pascoei-Aldanoceras;(f) Tompophiceras more pheous-T.pascoei-Wordieoceras domokhotovi-Ophiceras transitorium;(g)Tompophiceras morpheous-T.pascoei, corresponding to the Otoceras boreale and Tompophiceras morpheous zones. In spite of the domination of Otocerataceae or Xenodiscaceae in both oif these zones and the presence of some Permian type conodonts in the lower part of the Otoceras boreale Zone, they seem to be early Induan in age on the basis of the following arguments:(1) in contrast to the underlying regressive type sediments of the Upper Tatarian Imtachan Formation, both the Otoceras boreale and the Tompophiceras morpheous zones of the lowermost part of the Nekuchan Formation correspond to the single transgressive cycle;(2)typical early Induan ammonoids (Ophiceras and Wordieoceras) have been recognized in the Tompophiceras morpheous zone; (3) all described ammonoid succession stages (a-g) are characterized by very gradual changes and therefore correspond to the different parts of the single zone or to the different zones of the same stage, but not to the different systems (Permian and Triassic);(4)elsewhere in the Boreal realm (Arctic Canada), the conodont index species for the base of the Triassic, Hindeodus parvus, has been reported from the Otoceras boreale Zone. A new scheme of the phylogeny for the Otocerataceae and its Induan-Olenekian offspring (Araxceratidae-Otoceratidae-Vavilovitidae n.fam.-Proptychitidae-Arctoceratidae) and Xenodiscaceae is offered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号