首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
将轨道车辆系统仿真成由车厢、转向架及轮轴所组成。车厢与转向架间有次悬吊系统,转向架与轮轴间则有主悬吊系统。数学模型之推导将考虑车辆横向、垂向、翻滚(roll)及摇摆(yaw)方向之运动,将车辆仿真成三维具16个自由度之系统。本研究将探讨行驶高架桥梁之轨道车辆受地震激振时,建立轨道车辆与高架桥相互耦合之动态数学模型。  相似文献   

2.
针对高速铁路列车荷载激励输入特性及无砟轨道路基在动载作用下的动力响应问题,建立了轨道—路基三维有限元数值模型,确立了单元结构类型、路基本构模型及结构材料参数的选取方法及依据。根据列车荷载分布特点及其激励输入特性,采用2车厢8轮对车辆离散模型,通过Fourier变换获得了相邻车厢两个转向架通过轨道时轨下扣件点的反力时程曲线,在此基础上利用实测数据验证了模型的合理性和适用性。以运行速度300 km/h,轴重为170 kN的高速列车为例,分别计算CRTSⅡ型板式无砟轨道路基及双块式无砟轨道路基的竖向动应力、竖向动位移及动加速度,揭示上述响应规律与轨道路基结构之间的相关性。  相似文献   

3.
针对地震环境下铁路轮轨动态安全性及列车脱轨问题,本文详细地评述了近些年来国内外的研究进展情况。首先分析了地震作用下轮轨相互作用模型,包括密贴轮轨接触模型、简化轮轨弹性接触模型、轮轨弹性接触模型;然后分别评述了地震激励模型及输入方法的研究进展;接着分析了地震作用下列车脱轨判断准则、铁路地震预警系统及防脱轨措施的研究进展;接下来分析了车辆-轨道耦合动力学理论在地震作用下列车脱轨研究中的应用前景,并结合笔者目前现有工作,对车辆高速跳轨脱轨时的轮轨动态接触几何状态及其边界条件进行了初步的探讨;最后,建议了地震环境下列车运行安全性及脱轨机理等方面的今后研究重点。  相似文献   

4.
本文针对已有月球探测任务主要为极轨的特点,仿真分析了大倾角轨道卫星跟踪数据在月球重力场解算中的贡献.文中针对极轨道、77°倾角和极轨道结合77°倾角轨道三种情况各三个月的轨道跟踪数据进行了月球重力场模型仿真解算,通过重力场功率谱、基于解算模型位系数协方差矩阵的重力异常及月球大地水准面误差以及精密定轨等手段对解算模型进行...  相似文献   

5.
近年来,铁路的高速化、高运量化以及轻微的地震灾害等因素加速了轨道结构的沉降或变形,导致车辆轨道系统振动的加剧。本文运用车辆-轨道耦合动力学理论,编制了基于Timoehenko梁钢轨模型的车辆-轨道耦合振动仿真分析软件,分析了车辆-轨道系统的垂向振动特性,并与基于Euler梁模型的VICT软件的仿真结果进行了比较分析。结果表明:仿真结果与VICT的仿真结果基本一致,但在较高频域,前者能更好地反映轮轨系统的高频特性。因而,在研究轮轨高频振动及轮轨噪声时。采用Timoshenko梁钢轨模型更具合理性。  相似文献   

6.
大跨度简支钢桁梁桥车-桥耦合振动影响因素分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以黄韩侯铁路新黄河特大桥156m简支钢桁梁桥作为工程背景,建立车辆动力模型、桥梁有限元模型并考虑轮轨关系,以蛇形运动和轨道不平顺作为系统的自激激励源,利用大型有限元软件ANSYS以及UM(Universal Mechanism)动力学分析软件联合进行仿真分析。从桥梁结构的桥门架、宽跨比、曲线钢桁梁桥和车辆系统的轨道不平顺以及货车编组角度出发,研究大跨度简支钢桁梁桥车-桥耦合振动的影响因素。经过计算分析得出:钢桁梁桥桥门架对桥梁跨中加速度影响较大;曲线钢桁梁桥随着线路半径的增大,各车辆动力响应参数逐渐变小,轮轨力受到影响;钢桁梁桥宽跨比的增加使得横向刚度随之增加,桥梁横向振动变小;各项车辆动力响应均随着轨道情况变差而总体呈现逐渐增大趋势,车辆安全性、舒适性和平稳性指标逐渐变差;全列空车编组和空重混编对钢桁梁车-桥耦合系统是不利的编组形式,实际情况中应该避免。  相似文献   

7.
针对地震发生后对受灾地区高精度地图的获取需求,考虑到静止轨道轨位的紧张性,研究了一种基于共位衍射的卫星成像系统。该系统由两颗共位卫星构成,一颗为成像卫星,另一颗为薄膜衍射卫星,相比于传统的单颗成像卫星,该系统具有响应迅速以及空间分辨率高的优势。本文基于共位策略和隔离策略相结合的设计原则,采用倾角/偏心率协调隔离的方法,设计了一组轨位在10. 6E定点经度内的共位衍射成像系统轨道根数。通过仿真分析,将各个共位卫星之间相对距离与实际在轨卫星的相对距离做对比,仿真结果与实际数据间的误差满足一定的设计要求。因此,该组轨道根数在实际在轨应用中具备一定可行性,本文设计的共位衍射卫星系统为灾后应急响应提供重要参考。  相似文献   

8.
高铁列车运行时突发地震会对路基及轨道产生振动危害,严重影响列车的安全运行。为此,文中建立轨道系统-弹塑性路基-地基三维精细化有限元模型,分析高速铁路弹塑性路基和轨道在不同列车速度v(50、70、100、130 m·s~(-1))下的地震反应特性,结果表明:地震与列车共同作用下,路基和轨道的位移振幅主要受地震作用影响,而车速变化对路基位移幅值的作用较弱,对轨道的作用较强;地震发生时,列车以不同车速运行会对路基和轨道的频谱曲线产生不同程度的波动影响,其中在车速50 m·s~(-1)时波动最为剧烈,且总体向高频移动,并出现多个振动主频,此时路基和轨道的加速度峰值分别为单独移动荷载的2.3和1.3倍,路基及轨道加速度显著提高;地震作用下,列车的脱轨系数与横向位移在车速50 m·s~(-1)时显著增大,超过列车安全运行的标准;推测车速50 m·s~(-1)(180 km·h~(-1))为列车脱轨的临界速度。  相似文献   

9.
基于国内外轨道高低不平顺功率谱密度拟合函数,通过编程数值计算分别对比研究了普通线路谱和高速线路谱对行车平稳舒适性、安全性、轮轨动力效应的影响.结果表明,铁科院干线谱和原长沙铁道学院谱激励下列车的平稳舒适性略优于美国六级谱,而前者的轮轨动力效应介于美国六级谱和美国五级谱之间,后者则与美国六级谱相当;时速120 km等级普通线路谱和时速160 km等级提速线路谱引起的列车行驶平稳性介于美国五级谱和六级谱之间,轮轨动力效应与美国六级谱较一致;铁科院郑武线高速谱和时速200 km等级提速线路谱引起的列车平稳舒适性介于德国高干扰谱和低干扰谱之间,而前者引起的轮轨力大于德国轨道谱,后者则与德国低干扰谱相当.同时采用三角级法给出各轨道谱的时域样本,作为车辆-轨道垂向耦合动力分析模型的轮轨激励输入,仿真计算了青藏客车YZ25T在普通轨道谱激扰下以时速90 km/h行驶和高速轨道谱激励下以时速200 km/h行驶时的轮轨竖向作用力,较好地验证了基于轨道谱密度函数的轮轨力效应分析结果.研究成果可为列车行驶振动反应分析中轮-轨不平顺激励谱的选择提供参考.  相似文献   

10.
卫星重力场测量已成为最有效的全球重力场测量手段.本文结合典型的重力卫星和重力卫星研究计划,分析了卫星重力测量的三种原理,并基于各阶位系数的相对权重讨论了各种原理的应用优势.分析可知,卫星受摄轨道适用于恢复长波重力场,低轨星间距离变化率适用于恢复中长波重力场,重力梯度适用于恢复中短波重力场.针对中长波高精度重力场测量的需要,设计了综合获取低轨星间距离变化率与受摄轨道的重力卫星方案,该方案由两组内编队组成星星跟踪复合编队,轨道高度为250km,星间距离为50~100km.  相似文献   

11.
The use of ballastless slab track is significantly increasing in HST line technology. This development is due to some structural and operational advantages over ballasted track. In addition, floating slab tracks can be used to control ground-borne vibrations generated by surface and underground rail transportation systems. In this paper, a general and fully three dimensional multi-body-finite element-boundary element model is used to study vibrations due to train passage on ballast and non-ballast tracks. The vehicle is modelled as a multi-body system, the track, in both cases, using finite elements and the soil is represented using boundary elements. The three components of the load are considered; the quasi-static excitation (force generated by moving axle loads), the parametric excitation due to discrete supports of the rails and the excitation due to wheel and rail roughness and track unevenness. Track receptances are computed for both track systems and vibrations induced by high-speed train passage at the track and the free-field are evaluated for different train speeds. Soil behaviour changes significantly with the track system. Finally, a floating slab track is studied to show how this type of solution leads to a significant vibration reduction for surface tracks.  相似文献   

12.
2022年3月16日日本福岛县发生了M7.4级地震,不仅造成了大量铁路基础设施破坏,而且导致了一辆行驶中的新干线列车脱轨。本文介绍了东北新干线在此次地震中的震害特点和应急功能恢复情况,总结了此次地震震害的典型特征及启示。通过与2021年福岛地震和2011年东日本大地震的震害情况进行比较,从强震特点、列车脱轨、土木结构损伤和电气设施损伤等几方面对该铁路系统在此次地震中的震害特点进行了分析,从抗震韧性角度讨论了此次地震应急恢复时间,总结了日本铁路设施抗震的经验和对我国铁路设施抗震的启示。分析表明:随着地震强度的增大,可能伴有轨道变形、墩柱开裂和横系梁开裂等震害现象,甚至出现列车脱轨。从震害现象的比较中,可以看出东日本大地震以来的维修加固措施是具有一定成效,但列车防脱轨系统的有效性还需进一步检验,设计还需进一步完善。  相似文献   

13.
The paper reviews some important published papers on the effects of railway track imperfections on track dynamic behavior, and investigates the effect of unsupported sleepers on the normal load of wheel/rail in detail through a numerical simulation. The numerical simulation is based on a coupling dynamic model of vehicle–track. In the model, the vehicle is modeled as a multi-body system, and the track is considered as a 3-layer model with rails, sleepers, and ballast masses. Each rail of the track is modeled with a Timoshenko beam resting on discrete sleepers. The lateral, vertical, and torsional deformations of the beam are taken into account. The sleepers are assumed to move backward at a constant speed to simulate the vehicle running along the track at the same speed, and therefore such a track model can consider the effect of the discrete support by sleepers on the coupling dynamic behavior of the vehicle and track in the simulation. In calculating the coupled vehicle and track dynamics, Hertzian contact theory and the theory by Shen et al. are, respectively, used to calculate the normal forces and the creep forces between the wheels and the rails. The motion equations of the vehicle–track are solved by means of an explicit integration method. A nonlinear spring and a nonlinear damper are used to simulate a gap between the unsupported sleeper and the ballast mass. The numerical results obtained indicate that the gaps between the unsupported sleepers and ballast masses have a great influence on the normal load of the wheel and the rail.  相似文献   

14.
A field measurement of ground vibration was performed on the Beijing−Shanghai high-speed railway in China. In this paper, the experimental results of vertical ground vibration accelerations induced by very high speed trains running over a non-ballasted track on embankment with speeds from 300 to 410 km/h are reported and analyzed in detail for the first time. Characteristics of ground vibration accelerations in both time and frequency domains are analyzed based on the test data. It is shown that the periodic exciting action of high-speed train bogies can be identified in time histories of vertical accelerations of the ground within the range of 50 m from the track centerline. The first dominant sensitive frequency of the ground vibration acceleration results from the wheelbase of the bogie, and the center distance of two neighboring cars plays an important role in the significant frequencies of the ground vibration acceleration. Variations of time–response peak value and frequency-weighted vertical acceleration level of ground vibration in relation with train speed as well as the distance from the track centerline are also investigated. Results show that the time-domain peak value of ground vibration acceleration exhibits an approximately linear upward tendency with the increase of train speed. With the increasing distance from the track centerline, the frequency-weighted vertical acceleration level of the ground vibration attenuates more slowly than the time-domain peak value of the ground vibration acceleration does. Severe impact of high-speed railway ground vibration on human body comfort on the ground occurs at the speed of 380–400 km/h. The results given in the paper are also valuable for validating the numerical prediction of train induced ground vibrations.  相似文献   

15.
In recent years, the high-speed train (HST) network has developed considerably, unfortunately increasing vibration nuisances in its neighbourhood. This paper aims to present some vibration measurements collected on a Belgian site located between Brussels and Paris/London and travelled by the Thalys and Eurostar high-speed trains, and to compare them with the results obtained by a recently developed model, involving the compound vehicle/track/soil system. Assuming that the soil can be reasonably decoupled from the track, the approach first considers the train/track subsystem. The latter is studied by combining a multibody model of the vehicle with a finite element model of the track, both so far limited to the vertical motion. The ground forces given by this first simulation are then applied on a finite/infinite element model of the soil subsystem, where the infinite elements are placed on the border of the mesh in order to properly represent an unbounded domain. Both simulations are performed in the time domain, offering the opportunity to include non-linearities. The good correspondence between numerical and experimental results shows that the model is reliable for predicting the vibration produced by the high-speed vehicles. Finally, the paper presents some cases showing the importance of including the complete vehicle and the soil layering to the model.  相似文献   

16.
The objective of this study is to investigate the effects of earthquakes on road vehicle-bridge coupling vibration systems. A two-axle highway freight vehicle is treated as a 13 degree-of-freedom system composed of several rigid bodies, which are connected by a series of springs and dampers. The framework of the earthquake-vehicle-bridge dynamic analysis system is then established using an earthquake as the external excitation. The equivalent lateral contact force serves as the judgment criteria for sideslip accidents according to reliability theory. The entire process of the vehicle crossing the bridge is considered for a very high pier continuous rigid frame bridge. The response characteristics of the vehicle and the bridge are discussed in terms of various parameters such as earthquake ground motion, PGA value of the earthquake, incident angle, pier height, vehicle speed and mass. It is found that seismic excitation is the most influential factor in the responses of the vehicle-bridge system and that the safety of vehicles crossing the bridge is seriously impacted by the dual excitations of earthquake and bridge vibration.  相似文献   

17.
This study is intended to investigate the seismic response of steel monorail bridges using three‐dimensional dynamic response analysis. We particularly consider monorail bridge–train interaction when subjected to ground motion that occurs with high probability. A monorail train car with two bogies with pneumatic tires for running, steering and stabilizing wheels is assumed to be represented sufficiently by a discrete rigid multi‐body system with 15 degrees of freedom (DOFs). Bridges are considered as an assemblage of beam elements with 6 DOFs at each node. Modal analysis is used for dynamic response analysis under moderate earthquakes. The seismic response of an advanced monorail bridge that adopts a simplified structural system and composite girders is investigated through comparison with seismic responses of a conventional bridge. The acceleration response of a monorail train is also calculated to investigate the effect of structural types of bridges on the train's dynamic response during earthquakes. Results show that the seismic responses of the advanced bridges are greater than those of the conventional monorail bridge because of the simplified structural system and increased girder weight that is attributable to composite girders of the advanced bridge. Moreover, the train on the advanced bridge shows greater dynamic response than that on the conventional bridge. Observations reveal that the dynamic monorail train system acts as a damper on the monorail bridge. That fact shows that the existing design, which considers a train as additional mass, yields a conservative result. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
The problem of assessing errors in implementing time-marching algorithms in the context of pseudo-dynamic seismic testing of structures is considered. These errors occur in implementing the numerical and experimental steps of the test procedure. The study investigates how a linearized variational equation can be augmented with the governing equation of motion to track the effect of the errors, and, accordingly, adjust the step size of integration adaptively to keep a global error norm within specified limits. The governing augmented equations are integrated using an explicit operator splitting scheme. Additional efforts, in terms of evaluation of the tangent stiffness matrix, are shown to become necessary while modelling the errors. Illustrative examples include numerical studies on a set of nonlinear systems and an experimental study on a geometrically nonlinear two-storied building frame. The experimental results from pseudo-dynamic test are shown to compare reasonably well with pertinent results from an effective force test.  相似文献   

19.
借助虚拟激励法,本文研究了非一致水平地震作用下三维车桥耦合时变系统的非平稳随机振动问题。通过轮轨间位移协调关系将列车和桥梁运动方程进行耦合,建立了考虑行波效应的多点地震激励下列车-桥梁时变系统运动方程。水平地震激励假设为均匀调制多点异相位完全相干随机激励;轨道不平顺激励假设为多点异相位完全相干平稳随机激励。采用时变系统的虚拟激励法将这些随机激励分别转化为一系列虚拟的确定性激励,然后通过数值积分求解相应的虚拟响应,进而方便地得到系统随机响应的时变功率谱密度函数和标准差等。数值算例中,通过Monte Carlo法验证了本文随机振动分析方法的正确性和有效性,并讨论了地震波视波速、场地土条件等对系统随机响应的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号