首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The trace element composition of silicate inclusions in diamonds: a review   总被引:1,自引:0,他引:1  
On a global scale, peridotitic garnet inclusions in diamonds from the subcratonic lithosphere indicate an evolution from strongly sinusoidal REEN, typical for harzburgitic garnets, to mildly sinusoidal or “normal” patterns (positive slope from LREEN to MREEN, fairly flat MREEN–HREEN), typical for lherzolitic garnets. Using the Cr-number of garnet as a proxy for the bulk rock major element composition it becomes apparent that strong LREE enrichment in garnet is restricted to highly depleted lithologies, whereas flat or positive LREE–MREE slopes are limited to less depleted rocks. For lherzolitic garnet inclusions, there is a positive relation between equilibration temperature, enrichment in MREE, HREE and other HFSE (Ti, Zr, Y), and decreasing depletion in major elements. For harzburgitic garnets, relations are not linear, but it appears that lherzolite style enrichment in MREE–HREE only occurs at temperatures above 1150–1200 °C, whereas strong enrichment in Sr is absent at these high temperatures. These observations suggest a transition from melt metasomatism (typical for the lherzolitic sources) characterized by fairly unfractionated trace and major element compositions to metasomatism by CHO fluids carrying primarily incompatible trace elements. Melt and fluid metasomatism are viewed as a compositional continuum, with residual CHO fluids resulting from primary silicate or carbonate melts in the course of fractional crystallization and equilibration with lithospheric host rocks.

Eclogitic garnet inclusions show “normal” REEN patterns, with LREE at about 1× and HREE at about 30× chondritic abundance. Clinopyroxenes approximately mirror the garnet patterns, being enriched in LREE and having chondritic HREE abundances. Positive and negative Eu anomalies are observed for both garnet and clinopyroxene inclusions. Such anomalies are strong evidence for crustal precursors for the eclogitic diamond sources. The trace element composition of an “average eclogitic diamond source” based on garnet and clinopyroxene inclusions is consistent with derivation from former oceanic crust that lost about 10% of a partial melt in the garnet stability field and that subsequently experienced only minor reenrichment in the most incompatible trace elements. Based on individual diamonds, this simplistic picture becomes more complex, with evidence for both strong enrichment and depletion in LREE.

Trace element data for sublithospheric inclusions in diamonds are less abundant. REE in majoritic garnets indicate source compositions that range from being similar to lithospheric eclogitic sources to strongly LREE enriched. Lower mantle sources, assessed based on CaSi–perovskite as the principal host for REE, are not primitive in composition but show moderate to strong LREE enrichment. The bulk rock LREEN–HREEN slope cannot be determined from CaSi–perovskites alone, as garnet may be present in these shallow lower mantle sources and then would act as an important host for HREE. Positive and negative Eu anomalies are widespread in CaSi–perovskites and negative anomalies have also been observed for a majoritic garnet and a coexisting clinopyroxene inclusion. This suggests that sublithospheric diamond sources may be linked to old oceanic slabs, possibly because only former crustal rocks can provide the redox gradients necessary for diamond precipitation in an otherwise reduced sublithospheric mantle.  相似文献   


2.
Mineral inclusions recovered from 100 diamonds from the A154 South kimberlite (Diavik Diamond Mines, Central Slave Craton, Canada) indicate largely peridotitic diamond sources (83%), with a minor (12%) eclogitic component. Inclusions of ferropericlase (4%) and diamond in diamond (1%) represent “undetermined” parageneses.

Compared to inclusions in diamonds from the Kaapvaal Craton, overall higher CaO contents (2.6 to 6.0 wt.%) of harzburgitic garnets and lower Mg-numbers (90.6 to 93.6) of olivines indicate diamond formation in a chemically less depleted environment. Peridotitic diamonds at A154 South formed in an exceptionally Zn-rich environment, with olivine inclusions containing more than twice the value (of  52 ppm) established for normal mantle olivine. Harzburgitic garnet inclusions generally have sinusoidal rare earth element (REEN) patterns, enriched in LREE and depleted in HREE. A single analyzed lherzolitic garnet is re-enriched in middle to heavy REE resulting in a “normal” REEN pattern. Two of the harzburgitic garnets have “transitional” REEN patterns, broadly similar to that of the lherzolitic garnet. Eclogitic garnet inclusions have normal REEN patterns similar to eclogitic garnets worldwide but at lower REE concentrations.

Carbon isotopic values (δ13C) range from − 10.5‰ to + 0.7‰, with 94% of diamonds falling between − 6.3‰ and − 4.0‰. Nitrogen concentrations range from below detection (< 10 ppm) to 3800 ppm and aggregation states cover the entire spectrum from poorly aggregated (Type IaA) to fully aggregated (Type IaB). Diamonds without evidence of previous plastic deformation (which may have accelerated nitrogen aggregation) typically have < 25% of their nitrogen in the fully aggregated B-centres. Assuming diamond formation beneath the Central Slave to have occurred in the Archean [Westerlund, K.J., Shirey, S.B., Richardson, S.H., Gurney, J.J., Harris, J.W., 2003b. Re–Os systematics of diamond inclusion sulfides from the Panda kimberlite, Slave craton. VIIIth International Kimberlite Conference, Victoria, Canada, Extended Abstracts, 5p.], such low aggregation states indicate mantle residence at fairly low temperatures (< 1100 °C). Geothermometry based on non-touching inclusion pairs, however, indicates diamond formation at temperatures around 1200 °C. To reconcile inclusion and nitrogen based temperature estimates, cooling by about 100–200 °C shortly after diamond formation is required.  相似文献   


3.
Kimberlite AT-56, discovered in February 2001, represents the most recent addition to the Attawapiskat kimberlite cluster, located in the James Bay Lowlands of Ontario, Canada. AT-56 is a small kimberlite body with a surface diameter of approximately 40 m and a steep southeastern plunge. It consists of a medium to coarse-grained matrix supported kimberlite with abundant olivine, clinopyroxene, garnet, ilmenite and mica macrocrysts in a green-black to orange-black matrix. The kimberlite is classified as a hypabyssal facies sparsely macrocrystic calcite kimberlite. Heavy mineral concentrates from two representative samples of AT-56 have been analyzed to characterize the mantle sampled by the kimberlite. Both samples yielded large heavy mineral concentrates comprised of roughly equal proportions of Mg-ilmenite, Cr-diopside, high-Cr garnet and low-Cr garnet. Mg-chromite is also present in quantities an order of magnitude less than the other constituents.

The high-Cr peridotitic garnet macrocrysts are only slightly more abundant than the low-Cr varieties, the population being dominated by G9 (lherzolitic) types with only a few (less than 10%) weakly sub-calcic G10 (probable harzburgitic) garnets present. Ni thermometry results for a representative selection of G9 and G10 garnets indicate that the majority equilibrated at temperatures ranging from 1000 to 1250 °C. A significant proportion of the low-Cr garnet population derived from AT-56 is characterized by relatively low-Ti (0.2 to 0.4 wt.% TiO2) and elevated Na (0.07 to 0.13 wt.% Na2O) contents characteristic of Group 1, diamond inclusion type eclogite garnets. These sodic garnets have elevated Cr2O3 contents (typically 1 to 2 wt.% Cr2O3), suggesting they may be websteritic in origin rather than eclogitic. Comparison of AT-56 garnet compositions with published data available for other Attawapiskat kimberlites suggests websteritic mantle has also been sampled by kimberlite bodies elsewhere in the Attawapiskat cluster and it may be an important diamond reservoir in this area.  相似文献   


4.
The Orapa and Jwaneng kimberlites are located along the western margin of the Kalahari Craton and the prevalence of eclogitic over peridotitic diamonds in both mines has recently been linked to lower P-wave velocities in the deep mantle lithosphere (relative to the bulk of the craton) to suggest a diamond formation event prompted by mid-Proterozoic growth and modification of preexisting Archean lithosphere (Shirey et al. 2002). Here we study peridotitic diamonds from both mines, with an emphasis on the style of metasomatic source enrichment, to evaluate their relationship with this major eclogitic diamond formation event. In their major element chemistry, the peridotitic inclusions compare well with a world-wide database but reveal differences to diamond sources located in the interior of the Western Terrane of the Kaapvaal block, where the classical mines in the Kimberley region are located. The most striking difference is the relative paucity of low-Ca (<2 wt% CaO in garnet) harzburgites and a low ratio of harzburgitic to lherzolitic garnets (2:1). This suggests that lithospheric mantle accreted to the rim of the Zimbabwe and Kaapvaal blocks was overall chemically less depleted. Alternatively, this more fertile signature may be assigned to stronger metasomatic re-enrichment but the trace element signature of garnet inclusions is not in favor of strong enrichment in major elements. For both mines the majority of lherzolitic and harzburgitic garnet inclusions are characterized by moderately sinusoidal REEN patterns and low Ti, Zr and Y contents, indicative of a metasomatic agent with very high LREE/HREE and low HFSE. This is consistent with metasomatism by a CHO-fluid or, as modeled by Burgess and Harte (2003), a highly fractionated, low-volume silicate melt from the MORB-source. In both cases, changes in the major element chemistry of the affected rocks will be limited. In a few garnets from Orapa preferential MREE enrichment is observed, suggesting that the percolating fluid/melt fractionated a LREE-phyllic phase (such as crichtonite). The overall moderate degree of metasomatism reflected by the inclusion chemistry is in stark contrast to lithospheric sections for Orapa and Jwaneng based on mantle xenocrysts and xenoliths, revealing extensive mantle metasomatism (Griffin et al. 2003). This suggests that the formation of peridotitic diamonds predates the intensive modification of the subcratonic lithosphere during Proterozoic rifting and compression, implying that diamonds may survive major tectonothermal events.Editorial responsibility: J. Hoefs  相似文献   

5.
Jian-Jun Yang   《Lithos》2003,70(3-4):359-379
A garnet–pyroxene rock containing abundant Ti-clinohumite (ca. 40 vol.%) occurs along with eclogites as small blocks in quartzo-feldsparthic gneiss in the southern end of the Chinese Su-Lu ultrahigh-pressure (UHP) metamorphic terrane. It consists of three aggregates: (1) Ti-clinohumite-dominated aggregate with interstitial garnet and pyroxene, (2) garnet+pyroxene aggregate with Ti-clinohumite inclusions, and (3) Ti-clinohumite-free aggregate dominated by garnet. Apatite, phlogopite, zircon, hematite, pentlandite, and an unknown Ni-Fe-volatile-Si (NFVS) mineral, which is replaced by Ni-greenalite, occur as accessories. Serpentine is the major secondary mineral. Garnet (Prp63.9–64.6Alm25.8–26.9Grs1.4–7.9Uva0.5–7.6Sps1.0) in all three aggregates is pyrope-rich with very low grossular component, with that in the aggregate (2) most enriched in Cr (Cr2O3=2.55 wt.%). Orthopyroxene is depleted in Al (Al2O3=0.16 wt.% in the cores) and Ca (CaO=0.06–0.09 wt.% in the cores), with XMg (Mg/(Mg+Fe)) values at ca. 0.900. Clinopyroxene is chromian diopside with Fe3+≥Fe2+. Matrix clinopyroxene has a lower XMg (0.862) than that (0.887) included in Ti-clinohumite. The rock contains modest amount of heavy rare earth elements (HREE) (10 to 12×C1 chondrite), with significant enrichment in Cr, Co, Ni, V, Sr, and light rare earth elements (LREE) (22 to 33×C1 chondrite). The clinopyroxene is very enriched in Cr (Cr2O3 is up to 2.09 wt.% in the cores) and Sr (ca. 350 ppm) and LREE (CeN/YbN=157.7). Ti-clinohumite is enriched in Ni (1981 ppm), Co (123 ppm), and Nb (85 ppm).

While it is possible to enrich ultramafites in incompatible elements in a subducted slab, the high Al, Fe, Ti, and low Si, Ca, and Na contents in the Ti-clinohumite rock are difficult to account for by crustal metasomatism of an ultramafite. On the other hand, the similarity in major and trace element compositions and their systematic variations between the Ti-clinohumite-garnet-pyroxene rock of this study and those of Mg-metasomatised Fe–Ti gabbros reported in the literature suggest that crustal metasomatism occurred in a gabbroic protolith, which resulted in addition of Cr, Co, Ni, and Mg and removal of Si, Ca, Na, Al, and Fe. This implies that the rock was in contact with an ultramafite at low pressure. During subsequent subduction, the metagabbro was thrust into the country gneiss, where gneiss-derived hydrous fluids caused enrichment of Sr and LREE in recrystallised clinopyroxene. P–T estimates for the high-pressure assemblage are ca. 4.2 GPa and ca. 760 °C, compatible with those for the eclogites and gneisses in this terrane. It is possible that the Ti-clinohumite-garnet-pyroxene rock and associated eclogites represent remnants of former oceanic crust that was subducted to a great depth.  相似文献   


6.
Twenty-five diamonds recovered from 21 diamondiferous peridotitic micro-xenoliths from the A154 South and North kimberlite pipes at Diavik (Slave Craton) match the general peridotitic diamond production at this mine with respect to colour, carbon isotopic composition, and nitrogen concentrations and aggregation states. Based on garnet compositions, the majority of the diamondiferous microxenoliths is lherzolitic (G9) in paragenesis, in stark contrast to a predominantly harzburgitic (G10) inclusion paragenesis for the general diamond production. For garnet inclusions in diamonds from A154 South, the lherzolitic paragenesis, compared to the harzburgitic paragenesis, is distinctly lower in Cr content. For microxenolith garnets, however, Cr contents for garnets of both the parageneses are similar and match those of the harzburgitic inclusion garnets. Assuming that the microxenolith diamonds reflect a sample of the general diamond population, the abundant Cr-rich lherzolitic garnets formed via metasomatic overprinting of original harzburgitic diamond sources subsequent to diamond formation, conversion of original harzburgitic diamond sources occurred in the course of metasomatic overprint re-fertilization. Metasomatic overprinting after diamond formation is supported by the finding of a highly magnesian olivine inclusion (Fo95) in a microxenolith diamond that clearly formed in a much more depleted environment than indicated by the composition of its microxenolith host. Chondrite normalized REE patterns of microxenolith garnets are predominantly sinusoidal, similar to observations for inclusion garnets. Sinusoidal REEN patterns are interpreted to indicate a relatively mild metasomatic overprint through a highly fractionated (very high LREE/HREE) fluid. The predominance of such patterns may explain why the proposed metasomatic conversion of harzburgite to lherzolite appears to have had no destructive effect on diamond content. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Megacrysts from the Grib kimberlite pipe (Arkhangelsk Province, Russia)   总被引:3,自引:0,他引:3  
The megacryst suite of the Grib kimberlite pipe (Arkhangelsk province, Russia) comprises garnet, clinopyroxene, magnesian ilmenite, phlogopite and garnet-clinopyroxene intergrowths. Crystalline inclusions, mainly of clinopyroxene and picroilmenite, occur in garnet megacrysts. Ilmenite is characterized by a wide range in the contents of MgO (10.6–15.5 wt.%) and Cr2O3 (0.7–8.3 wt.%). Megacryst garnets show wide variations in Cr2O3 (1.3–9.6 wt.%) and CaO (3.6–11.0 wt.%) but relatively constant MgO (15.4–22.3 wt.%) and FeO (5.2–9.9 wt.%). The pyroxenes also show wide variations in such oxides as Cr2O3, Al2O3 and Na2O (0.56–2.95; 0.86–3.25; 1.3–3.0 wt.%, respectively). The high magnesium and chromium content of all these minerals puts them together in one paragenetic group. This conclusion was confirmed by studies of the crystalline inclusions in megacrysts, which demonstrate similar variations in composition. Low concentration of hematite in ilmenite suggests reducing conditions during crystallization. PT estimates based on the clinopyroxene geothermobarometer (Contrib. Mineral. Petrol. 139 (2000) 541) show wide variations (624–1208 °C and 28.8–68.0 kbars), corresponding to a 40–45 mW/m2 conductive geotherm. The majority of Gar-Cpx intergrowths differ from the corresponding monomineralic megacrysts in having higher Mg contents and relatively low TiO2. The minerals from the megacryst association, as a rule, differ from the minerals of mantle xenoliths, but garnets in ilmenite-bearing peridotite xenoliths are compositionally similar to garnet megacrysts. The common features of trace element composition of megacryst minerals and kimberlite (they are poor in Zr group elements) suggest a genetic relationship. The origin of the megacrysts is proposed to be genetically connected with kimberlite magma-chamber evolution on the one hand and with associated mantle metasomatism on the other. We suggest that, depending on the primary melt composition, different paragenetic associations of macro/megacrysts can be crystallized in kimberlites. They include: (1) Fe–Ti (Mir, Udachnaya pipes); (2) high-Mg, Cr (Zagadochna, Kusova pipes); (3) high-Mg, Cr, Ti (Grib pipe).  相似文献   

8.
Trace element concentrations in the four principal peridotitic silicate phases (garnet, olivine, orthopyroxene, clinopyroxene) included in diamonds from Akwatia (Birim Field, Ghana) were determined using SIMS. Incompatible trace elements are hosted in garnet and clinopyroxene except for Sr which is equally distributed between orthopyroxene and garnet in harzburgitic paragenesis diamonds. The separation between lherzolitic and harzburgitic inclusion parageneses, which is commonly made using compositional fields for garnets in a CaO versus Cr2O3 diagram, is also apparent from the Ti and Sr contents in both olivine and garnet. Titanium is much higher in the lherzolitic and Sr in the harzburgitic inclusions. Chondrite normalised REE patterns of lherzolitic garnets are enriched (10–20 times chondrite) in HREE (LaN/YbN = 0.02–0.06) while harzburgitic garnets have sinusoidal REEN patterns, with the highest concentrations for Ce and Nd (2–8 times chondritic) and a minimum at Ho (0.2–0.7 times chondritic). Clinopyroxene inclusions show negative slopes with La enrichment 10–100 times chondritic and low Lu (0.1–1 times chondritic). Both a lherzolitic and a harzburgitic garnet with very high knorringite contents (14 and 21 wt% Cr2O3 respectively) could be readily distinguished from other garnets of their parageneses by much higher levels of LREE enrichment. The REE patterns for calculated melt compositions from lherzolitic garnet inclusions fall into the compositional field for kimberlitic-lamproitic and carbonatitic melts. Much more strongly fractionated REE patterns calculated from harzburgitic garnets, and low concentrations in Ti, Y, Zr, and Hf, differ significantly from known alkaline and carbonatitic melts and require a different agent. Equilibration temperatures for harzburgitic inclusions are generally below the C-H-O solidus of their paragenesis, those of lherzolitic inclusions are above. Crystallisation of harzburgitic diamonds from CO2-bearing melts or fluids may thus be excluded. Diamond inclusion chemistry and mineralogy also is inconsistent with known examples of metasomatism by H2O-rich melts. We therefore favour diamond precipitation by oxidation of CH4-rich fluids with highly fractionated trace element patterns which are possibly due to “chromatographic” fractionation processes. Received: 27 January 1996 / Accepted: 5 May 1997  相似文献   

9.
This paper reports on the petrology and geochemistry of a diamondiferous peridotite xenolith from the Premier diamond mine in South Africa.

The xenolith is altered with pervasive serpentinisation of olivine and orthopyroxene. Garnets are in an advanced state of kelyphitisation but partly fresh. Electron microprobe analyses of the garnets are consistent with a lherzolitic paragenesis (8.5 wt.% Cr2O3 and 6.6 wt.% CaO). The garnets show limited variation in trace element composition, with generally low concentrations of most trace elements, e.g. Y (<11 ppm), Zr (<18 ppm) and Sr (<0.5 ppm). Garnet rare earth element concentrations, when normalised against the C1 chondrite of McDonough and Sun (Chem. Geol. 120 (1995) 223), are characterised by a rare earth element pattern similar to garnet from fertile lherzolite.

All diamonds recovered are colourless. Most crystals are sharp-edged octahedra, some with minor development of the dodecahedral form. A number of crystals are twinned octahedral macles, while aggregates of two or more octahedra are also common. Mineral inclusions are rare. Where present they are predominantly small black rosettes believed to consist of sulfide. In one instance a polymineralic (presumably lherzolitic) assemblage of reddish garnet, green clinopyroxene and a colourless mineral is recognised.

Infrared analysis of the xenolith diamonds show nitrogen contents generally lower than 500 ppm and variable nitrogen aggregation state, from 20% to 80% of the ‘B’ form. When plotted on a nitrogen aggregation diagram a well defined trend of increasing nitrogen aggregation state with increasing nitrogen content is observed. Carbon isotopic compositions range from −3.6 ‰ to −1.3 ‰. These are broadly correlated with diamond nitrogen content as determined by infrared spectroscopy, with the most negative C-isotopic compositions correlating with the lowest nitrogen contents.

Xenolith mantle equilibration temperatures, calculated from nitrogen aggregation systematics as well as the Ni in garnet thermometer are on the order of 1100 to 1200 °C.

It is concluded that the xenolith is a fertile lherzolite, and that the lherzolitic character may have resulted from the total metasomatic overprinting of pre-existing harzburgite. Metasomatism occurred prior to, or accompanied, diamond growth.  相似文献   


10.
Mantle xenoliths and xenocrysts were retrieved from three of the 88–86 Ma Buffalo Hills kimberlites (K6, K11, K14) for a reconnaissance study of the subcontinental lithospheric mantle (SCLM) beneath the Buffalo Head Terrane (Alberta, Canada). The xenoliths include spinel lherzolites, one garnet spinel lherzolite, garnet harzburgites, one sheared garnet lherzolite and pyroxenites. Pyroxenitic and wehrlitic garnet xenocrysts are derived primarily from the shallow mantle and lherzolitic garnet xenocrysts from the deep mantle. Harzburgite with Ca-saturated garnets is concentrated in a layer between 135–165 km depth. Garnet xenocrysts define a model conductive paleogeotherm corresponding to a heat flow of 38–39 mW/m2. The sheared garnet lherzolite lies on an inflection of this geotherm and may constrain the depth of the lithosphere–asthenosphere boundary (LAB) beneath this region to ca 180 km depth.

A loss of >20% partial melt is recorded by spinel lherzolites and up to 60% by the garnet harzburgites, which may be related to lithosphere formation. The mantle was subsequently modified during at least two metasomatic events. An older metasomatic event is evident in incompatible-element enrichments in homogeneous equilibrated garnet and clinopyroxene. Silicate melt metasomatism predominated in the deep lithosphere and led to enrichments in the HFSE with minor enrichments in LREE. Metasomatism by small-volume volatile-rich melts, such as carbonatite, appears to have been more important in the shallow lithosphere and led to enrichments in LREE with minor enrichments in HFSE. An intermediate metasomatic style, possibly a signature of volatile-rich silicate melts, is also recognised. These metasomatic styles may be related through modification of a single melt during progressive interaction with the mantle. This metasomatism is suggested to have occurred during Paleoproterozoic rifting of the Buffalo Head Terrane from the neighbouring Rae Province and may be responsible for the evolution of some samples toward unradiogenic Nd and Hf isotopic compositions.

Disturbed Re–Os isotope systematics, evident in implausible model ages, were obtained in situ for sulfides in several spinel lherzolites and suggest that many sulfides are secondary (metasomatic) or mixtures of primary and secondary sulfides. Sulfide in one peridotite has unradiogenic 187Os/188Os and gives a model age of 1.89±0.38 Ga. This age coincides with the inferred emplacement of mafic sheets in the crust and suggests that the melts parental to the intrusions interacted with the lithospheric mantle.

A younger metasomatic event is indicated by the occurrence of sulfide-rich melt patches, unequilibrated mineral compositions and overgrowths on spinel that are Ti-, Cr- and Fe-rich but Zn-poor. Subsequent cooling is recorded by fine exsolution lamellae in the pyroxenes and by arrested mineral reactions.

If the lithosphere beneath the Buffalo Head Terrane was formed in the Archaean, any unambiguous signatures of this ancient origin may have been obliterated during these multiple events.  相似文献   


11.
D. Phillips  J.W. Harris  K.S. Viljoen 《Lithos》2004,77(1-4):155-179
Silicate and oxide mineral inclusions in diamonds from the geologically and historically important De Beers Pool kimberlites in Kimberley, South Africa, are characterised by harzburgitic compositions (>90%), with lesser abundances from eclogitic and websteritic parageneses. The De Beers Pool diamonds contain unusually high numbers of inclusion intergrowths, with garnet+orthopyroxene±chromite±olivine and chromite+olivine assemblages dominant. More unusual intergrowths include garnet+olivine+magnesite and an eclogitic assemblage comprising garnet+clinopyroxene+rutile. The mineral chemistry of the De Beers Pool inclusions overlaps that of most worldwide localities. Peridotitic garnet inclusions exhibit variable CaO (<5.8 wt.%) and Cr2O3 contents (3.0–15.0 wt.%), although the majority are harzburgitic with very low calcium concentrations (<2 wt.% CaO). Eclogitic garnet inclusions are characterised by a wide range in CaO (3.3–21.1 wt.%) with low Cr2O3 (<1 wt.%). Websteritic garnets exhibit intermediate compositions. Most chromite inclusions contain 63–67 wt.% Cr2O3 and <0.5 wt.% TiO2. Olivine and orthopyroxene inclusions are magnesium-rich with Mg-numbers of 93–97. Olivine inclusions in chromite exhibit the highest Mg-numbers and also contain elevated Cr2O3 contents up to 1.0 wt.%. Peridotitic clinopyroxene inclusions are Cr-diopsides with up to 0.8 wt.% K2O. Eclogitic and websteritic clinopyroxene inclusions exhibit overlapping compositions with a wide range in Mg-numbers (66–86).

Calculated temperatures for non-touching inclusion pairs from individual diamonds range from 1082 to 1320 °C (average=1197 °C), whereas pressures vary from 4.6 to 7.7 GPa (average=6.3 GPa). Touching inclusion assemblages are characterised by equilibration temperatures of 995 to 1182 °C (average=1079 °C) and pressures of 4.2–6.8 GPa (average=5.4 GPa). Provided that the non-touching inclusions represent equilibrium assemblages, it is suggested that these inclusions record the conditions at the time of diamond crystallisation (1200 °C; 3.0 Ga). The lower average temperatures for touching inclusions are attributed to re-equilibration in a cooling mantle (1050 °C) prior to kimberlite eruption at 85 Ma. Pressure estimates for touching garnet–orthopyroxene inclusions are also skewed towards lower values than most non-touching inclusions. This apparent difference may be an artefact of the Al-exchange geobarometer and/or the result of sampling bias, due to limited numbers of non-touching garnet–orthopyroxene inclusions. Alternatively pressure differences could be caused by differential uplift in the mantle or possibly variations in thermal compressibility between diamond and silicate inclusions. However, thermodynamic modelling suggests that thermal compressibility differences would cause only minor changes in internal inclusion pressures (<0.2 GPa/100 °C).  相似文献   


12.
Peridotitic inclusions in alluvial diamonds from the Kankan region of Guinea in West Africa are mainly of lherzolitic paragenesis. Nevertheless, extreme Cr2O3 contents (max. 17 wt%) in some of the exclusively lherzolitic garnets document that the diamond source experienced a previous stage of melt extraction in the spinel stability field. This initial depletion was followed by at least two metasomatic stages: (1) enrichment of LREE and Sr and (2) introduction mainly of MREE–HREE and other HFSE (Ti, Y, Zr, Hf). The Ti- and HFSE-poor character of stage (1) points towards a CHO-rich fluid or carbonatitic melt, the high HFSE in stage (2) favour silicate melts as enriching agent. Eclogitic inclusions are derived from a large depth interval ranging from the lithosphere through the asthenosphere into the transition zone. The occurrence of negative Eu anomalies in garnet and clinopyroxene from both lithosphere and transition zone suggests a possible relationship to subducted oceanic crust. Lithospheric eclogitic inclusions are derived from heterogeneous sources, that may broadly be divided into a low-Ca group with LREE depleted trace element patterns and a high-Ca group representing a source with negative LREE–HREE slope that is moderately enriched in incompatible elements relative to primitive mantle. High-Ca inclusions of majoritic paragenesis are significantly more enriched in incompatible elements, such as in Sr and LREE. Calculated whole rock compositions require metasomatic enrichment even if a derivation from MORB is assumed. Received: 26 January 2000 / Accepted: 18 May 2000  相似文献   

13.
V. Mathavan  G. W. A. R. Fernando   《Lithos》2001,59(4):217-232
Grossular–wollastonite–scapolite calc–silicate granulites from Maligawila in the Buttala klippe, which form part of the overthrusted rocks of the Highland Complex of Sri Lanka, preserve a number of spectacular coronas and replacement textures that could be effectively used to infer their P–T–fluid history. These textures include coronas of garnet, garnet–quartz, and garnet–quartz–calcite at the grain boundaries of wollastonite, scapolite, and calcite as well as calcite–plagioclase and calcite–quartz symplectites or finer grains after scapolite and wollastonite respectively. Other textures include a double rind of coronal scapolite and coronal garnet between matrix garnet and calcite. The reactions that produced these coronas and replacement textures, except those involving clinopyroxene, are modelled in the CaO–Al2O3–SiO2–CO2 system using the reduced activities. Calculated examples of TXCO2 and PXCO2 projections indicate that the peak metamorphic temperature of about 900–875 °C at a pressure of 9 kbar and the peak metamorphic fluid composition is constrained to be low in XCO2 (0.1<XCO2<0.30). Interpretation of the textural features on the basis of the partial grids revealed that the calc–silicate granulites underwent high-temperature isobaric cooling, from about 900–875 °C to a temperature below 675 °C, following the peak metamorphism. The late-stage cooling was accompanied by an influx of hydrous fluids. The calc–silicate granulites provide evidence for high-temperature isobaric cooling in the meta-sediments of the Highland Complex, earlier considered by some workers to be confined exclusively to the meta-igneous rocks. The coronal scapolite may have formed under open-system metasomatism.  相似文献   

14.
陈欢  冯梦  康志强  付伟  冯佐海 《地球科学》2020,45(6):2059-2076
为了解桂东北伟晶岩岩浆的形成环境及演化过程,对桂东北茅安塘Nb-Ta-Be-Rb稀有金属矿床周围伟晶岩中的石榴子石进行了镜下观察、电子探针(EPMA)和LA-ICP-MS原位微区主微量元素研究,探讨石榴子石的成因及其对成岩及成矿作用的指示.结果表明,桂东北茅安塘地区伟晶岩中的石榴子石为岩浆成因石榴子石,属于铁铝榴石-锰铝榴石(平均Alm49.28-Sps47.09)固溶体系列,可分为早期形成的Ⅰ型石榴子石(GrtⅠ)和晚期形成的Ⅱ型子石(GrtⅡ).两期石榴子石均以富集重稀土(HREE)、高场强元素(HFSE),亏损轻稀土(LREE)和缺乏大离子亲石元素(LILE)为特征,∑REE配分模式呈明显左倾趋势,显著的Eu负异常.石榴子石生长过程中的界面反应速率小于物质迁移速率,水岩作用较弱,∑REE主要以表面吸附或吸收的形式进入石榴子石中,是导致其重稀土(HREE)元素富集,轻稀土元素亏损的主要原因.随着岩浆分异演化程度的不断提高,∑REE逐渐进入并赋存于石榴子石中,促进岩浆从早期的低分馏(未分馏)的岩浆熔体逐渐向晚期的高分馏的岩浆熔体演化.石榴子石中HREE含量随岩浆演化程度逐渐增加表明,晚期分异演化的岩浆-热液中逐渐富集稀土及稀有金属元素.这些晚期富含成矿元素的热液流体交代原生矿物,导致外侧带及核部花岗伟晶岩中发育大量交代成因的稀土和稀有金属矿物.   相似文献   

15.
A detailed petrographic, major and trace element and isotope (Re–Os) study is presented on 18 xenoliths from Northern Lesotho kimberlites. The samples represent typical coarse, low-temperature garnet and spinel peridotites and span a PT range from 60 to 150 km depth. With the exception of one sample (that belongs to the ilmenite–rutile–phlogopite–sulphide suite (IRPS) suite first described by [B. Harte, P.A. Winterburn, J.J. Gurney, Metasomatic and enrichment phenomena in garnet peridotite facies mantle xenoliths from the Matsoku kimberlite pipe, Lesotho. In: Menzies, M. (Ed.), Mantle metsasomatism. Academic Press, London 1987, 145–220.]), all samples considered here have high Mg# and show strong depletion in CaO and Al2O3. They have bulk rock Re depletion ages (TRD) >2.5 Ga and are therefore interpreted as residua from large volume melting in the Archaean. A characteristic of Kaapvaal xenoliths, however, is their high SiO2 concentrations, and hence, modal orthopyroxene contents that are inconsistent with a simple residual origin of these samples. Moreover, trace element signatures show strong overall incompatible element enrichment and REE disequilibrium between garnet and clinopyroxene. Textural and subtle major element disequilibria were also observed. We therefore conclude that garnet and clinopyroxene are not co-genetic and suggest that (most) clinopyroxene in the Archaean Kaapvaal peridotite xenoliths is of metasomatic origin and crystallized relatively recently, possibly from a melt precursory to the kimberlite.

Possible explanations for the origin of garnet are exsolution from a high-temperature, Al- and Ca-rich orthopyroxene (indicating primary melt extraction at shallow levels) or a majorite phase (primary melting at >6 GPa). Mass balance calculations, however, show that not all garnet observed in the samples today is of a simple exsolution origin. The extreme LREE enrichment (sigmoidal REE pattern in all garnet cores) is also inconsistent with exsolution from a residual orthopyroxene. Therefore, extensive metasomatism and probably re-crystallization of the lithosphere after melt-depletion and garnet exsolution is required to obtain the present textural and compositional features of the xenoliths. The metasomatic agent that modified or perhaps even precipitated garnet was a highly fractionated melt or fluid that might have been derived from the asthenosphere or from recycled oceanic crust. Since, to date, partitioning of trace elements between orthopyroxene and garnet/clinopyroxene is poorly constrained, it was impossible to assess if orthopyroxene is in chemical equilibrium with garnet or clinopyroxene. Therefore, further trace element and isotopic studies are required to constrain the timing of garnet introduction/modification and its possible link with the SiO2 enrichment of the Kaapvaal lithosphere.  相似文献   


16.
High-calcium, nepheline-normative ankaramitic basalts (MgO > 10 wt.%, CaO/Al2O3 > 1) from Rinjani volcano, Lombok (Sunda arc, Indonesia) contain phenocrysts of clinopyroxene and olivine (Fo85–92) with inclusions of spinel (Cr# 58–77) and crystallised melt. Olivine crystals have variable but on average low NiO (0.10–0.23 wt.%) and high CaO (0.22–0.35 wt.%) contents for their forsterite number. The CaO content of Fo89–91 olivine is negatively correlated with the Al2O3 content of enclosed spinel (9–15 wt.%) and positively correlated with the CaO/Al2O3 ratios of melt inclusions (0.9–1.5). Major and trace element patterns of melt inclusions are similar to that of the host rock, indicating that the magma could have formed by accumulation of small batches of melt, with compositions similar to the melt inclusions. The liquidus temperature of the magma was  1275 °C, and its oxygen fugacity ≤ FMQ + 2.5. Correlations between K2O, Zr, Th and LREE in the melt inclusions are interpreted to reflect variable degrees of melting of the source; correlations between Al2O3, Na2O, Y and HREE are influenced by variations in the mineralogy of the source. The melts probably formed from a water-poor, clinopyroxene-rich mantle source.  相似文献   

17.
B. Carter Hearn Jr.   《Lithos》2004,77(1-4):473-491
The Homestead kimberlite was emplaced in lower Cretaceous marine shale and siltstone in the Grassrange area of central Montana. The Grassrange area includes aillikite, alnoite, carbonatite, kimberlite, and monchiquite and is situated within the Archean Wyoming craton. The kimberlite contains 25–30 modal% olivine as xenocrysts and phenocrysts in a matrix of phlogopite, monticellite, diopside, serpentine, chlorite, hydrous Ca–Al–Na silicates, perovskite, and spinel. The rock is kimberlite based on mineralogy, the presence of atoll-textured groundmass spinels, and kimberlitic core-rim zoning of groundmass spinels and groundmass phlogopites.

Garnet xenocrysts are mainly Cr-pyropes, of which 2–12% are G10 compositions, crustal almandines are rare and eclogitic garnets are absent. Spinel xenocrysts have MgO and Cr2O3 contents ranging into the diamond inclusion field. Mg-ilmenite xenocrysts contain 7–11 wt.% MgO and 0.8–1.9 wt.% Cr2O3, with (Fe+3/Fetot) from 0.17–0.31. Olivine is the only obvious megacryst mineral present. One microdiamond was recovered from caustic fusion of a 45-kg sample.

Upper-mantle xenoliths up to 70 cm size are abundant and are some of the largest known garnet peridotite xenoliths in North America. The xenolith suite is dominated by dunites, and harzburgites containing garnet and/or spinel. Granulites are rare and eclogites are absent. Among 153 xenoliths, 7% are lherzolites, 61% are harzburgites, 31% are dunites, and 1% are orthopyroxenites. Three of 30 peridotite xenoliths that were analysed are low-Ca garnet–spinel harzburgites containing G10 garnets. Xenolith textures are mainly coarse granular, and only 5% are porphyroclastic.

Xenolith modal mineralogy and mineral compositions indicate ancient major-element depletion as observed in other Wyoming craton xenolith assemblages, followed by younger enrichment events evidenced by tectonized or undeformed veins of orthopyroxenite, clinopyroxenite, websterite, and the presence of phlogopite-bearing veins and disseminated phlogopite. Phlogopite-bearing veins may represent kimberlite-related addition and/or earlier K-metasomatism.

Xenolith thermobarometry using published two-pyroxene and Al-in-opx methods suggest that garnet–spinel peridotites are derived from 1180 to 1390 °C and 3.6 to 4.7 GPa, close to the diamond–graphite boundary and above a 38 mW/m2 shield geotherm. Low-Ca garnet–spinel harzburgites with G10 garnets fall in about the same T and P range. Most spinel peridotites with assumed 2.0 GPa pressure are in the same T range, possibly indicating heating of the shallow mantle. Four of 79 Cr diopside xenocrysts have PT estimates in the diamond stability field using published single-pyroxene PT calculation methods.  相似文献   


18.
Taiwan is an active mountain belt formed by oblique collision between the Luzon arc and the Asian continent. Regardless of the ongoing collision in central and southern Taiwan, a post-collisional extension regime has developed since the Plio–Pleistocene in the northern part of this orogen, and led to generation of the Northern Taiwan Volcanic Zone. Emplaced at 0.2 Ma in the southwest of the Volcanic Zone, lavas from the Tsaolingshan volcano are highly magnesian (MgO≈15 wt.%) and potassic (K2O≈5 wt.%; K2O/Na2O≈1.6–3.0). Whereas these basic rocks (SiO2≈48 wt.%) have relatively low Al2O3≈12 wt.%, total Fe2O3≈7.5 wt.% and CaO≈7.2 wt.%, they are extremely enriched in large ion lithophile elements (LILE, e.g. Cs, Rb, Ba, Th and U). The Rb and Cs abundances, >1000 and 120 ppm, respectively, are among the highest known from terrestrial rocks. In addition, these rocks are enriched in light rare earth elements (LREE), depleted in high field strength elements (HFSE), and display a positive Pb spike in the primitive mantle-normalized variation diagram. Their REE distribution patterns mark with slight Eu negative anomalies (Eu/Eu*≈0.90–0.84), and Sr and Nd isotope ratios are uniform (87Sr/86Sr≈0.70540–0.70551; 143Nd/144Nd≈0.51268–0.51259). Olivine, the major phenocryst phase, shows high Fo contents (90.4±1.8; 1σ deviation), which are in agreement with the whole rock Mg-values (83–80). Spinel inclusions in olivine are characterized by high Cr/Cr+Al ratios (0.94–0.82) and have compositions similar to those from boninites that originate from highly refractory peridotites. Such petrochemical characteristics are comparable to the Group I ultrapotassic rocks defined by Foley et al. [Earth-Sci. Rev. 24 (1987) 81], such as orogenic lamproites from central Italy, Span and Tibet. We therefore suggest that the Tsaolingshan lavas resulted from a phlogopite-bearing harzburgitic source in the lithospheric mantle that underwent a recent metasomatism by the nearby Ryukyu subduction zone processes. The lavas exhibit unique incompatible trace element ratios, with Rb/Cs≈8, Ba/Rb≈1, Ce/Pb≈2, Th/U≈1 and Nb/U≈0.8, which are significantly lower than the continental crust values and those of most mantle-derived magmas. Nonmagmatic enrichment in the mantle source is therefore required. Based on published experimental data, two subduction-related metasomatic components, i.e., slab-released hydrous fluid and subducted sediment, are proposed, and the former is considered to be more pervasive for causing the extraordinary trace element ratios observed. Our observations lend support to the notion that dehydration from subducting slabs at convergent margins, as a continuing process through geologic time, can account for the fractionation of these elemental pairs between the Earth's crust and mantle.  相似文献   

19.
A suite of spinel lherzolite and wehrlite xenoliths from a Devonian kimberlite dyke near Kandalaksha, Kola Peninsula, Russia, has been studied to determine the nature of the lithospheric mantle beneath the northern Baltic Shield. Olivine modal estimates and Fo content in the spinel lherzolite xenoliths reveal that the lithosphere beneath the Archaean–Proterozoic crust has some similarities to Phanerozoic lithospheric mantle elsewhere. Modal metasomatism is indicated by the presence of Ti-rich and Ti-poor phlogopite, pargasite, apatite and picroilmenite in the xenoliths. Wehrlite xenoliths are considered to represent localised high-pressure cumulates from mafic–ultramafic melts trapped within the mantle as veins or lenses. Equilibration temperatures range from 775 to 969 °C for the spinel lherzolite xenoliths and from 817 to 904 °C for the wehrlites.

Laser ablation ICP-MS data for incompatible trace elements in primary clinopyroxenes and metasomatic amphiboles from the spinel lherzolites show moderate levels of LREE enrichment. Replacement clinopyroxenes in the wehrlites are less enriched in LREE but richer in TiO2. Fractional melt modelling for Y and Yb concentrations in clinopyroxenes from the spinel lherzolites indicates 7–8% partial melting of a primitive source. Such a volume of partial melt could be related to the 2.4–2.5 Ga intrusion of basaltic magmas (now metamorphosed to garnet granulites) in the lower crust of the northern Baltic Shield. The lithosphere beneath the Kola Peninsula has undergone several episodes of metasomatism. Both the spinel lherzolites and wehrlites were subjected to an incomplete carbonatitic metasomatic event, probably related to an early carbonatitic phase associated with the 360–380 Ma Devonian alkaline magmatism. This resulted in crystallisation of secondary clinopyroxene rims at the expense of primary orthopyroxenes, with development of secondary forsteritic olivine and apatite. Two separate metasomatic events resulted in the crystallisation of the Ti–Fe-rich amphibole, phlogopite and ilmenite in the wehrlites and the low Ti–Fe amphibole and phlogopite in the spinel lherzolites. Alternatively, a single metasomatic event with a chemically evolving melt may have produced the significant compositional differences seen in the amphibole and phlogopite between the spinel lherzolites and wehrlites. The calculated REE pattern of a melt in equilibrium with clinopyroxenes from a cpx-rich pocket is identical to that of the kimberlite host, indicating a close petrological relationship.  相似文献   


20.
Quaternary basanitic to nephelinitic volcanoes from Tahalra (western Ahaggar, southern Algeria) contain numerous Mg-ilmenite and amphibole-rich inclusions (±olivine, ±salite) and spinel lherzolite (±pargasite) inclusions associated with kaersutite megacrysts. On the basis of petrological, geochemical and Sr isotopic study of representative xenoliths (including a composite nodule defined as a vein cross-cutting peridotite) and lavas, we attribute the series of amphibole-rich xenoliths and megacrysts to segregation under upper mantle conditions from a hydrous high Ti and LREE melt geochemically similar to the Quaternary basanite but isotopically different. Amphibole-rich rocks and megacrysts are the results of magmatic events (less than 40 Ma) probably contemporaneous with the various pre-Quaternary volcanic phases recognized in Ahaggar. The amphibole-rich veins and the Quaternary lavas have a garnet lherzolitic source enriched in REE (7 to 9 times chondritic in LREE, 2 times in HREE). This enrichment probably results from former metasomatic events unrelated to the recent magmatic history. Melts from which these veins precipitated within upper mantle peridotite also account for mantle enrichment processes; they induced a local partial melting and contact metasomatism (pargasitization). The upper mantle beneath the volcanic areas of Ahaggar is veined and hydrous, and consequently lightened: thus, the uplift of basement may be the isostatic response to magmatism and related metasomatism and therefore the result of the Cenozoïc igneous activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号