首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sunspots are caused by the eruption of magnetic flux tubes through the solar photosphere: current theories of the internal magnetic field of the Sun suggest that such tubes must rise relatively unscathed from the base of the convection zone. In order to understand how the structure of the magnetic field within a buoyant flux tube affects its stability as it rises, we have considered the quasi-two-dimensional rise of isolated magnetic flux tubes through an adiabatically stratified atmosphere. The magnetic field is initially helical; we have investigated a range of initial field configurations, varying the distribution and strength of the twist of the field.  相似文献   

2.
A numerical model of idealized sunspots and pores is presented, where axisymmetric cylindrical domains are used with aspect ratios (radius versus depth) up to 4. The model contains a compressible plasma with density and temperature gradients simulating the upper layer of the Sun's convection zone. Non-linear magnetohydrodynamic equations are solved numerically and time-dependent solutions are obtained where the magnetic field is pushed to the centre of the domain by convection cells. This central magnetic flux bundle is maintained by an inner convection cell, situated next to it and with a flow such that there is an inflow at the top of the numerical domain towards the flux bundle. For aspect ratio 4, a large inner cell persists in time, but for lower aspect ratios it becomes highly time dependent. For aspect ratios 2 and 3 this inner convection cell is smaller, tends to be situated towards the top of the domain next to the flux bundle, and appears and disappears with time. When it is gone, the neighbouring cell (with an opposite sense of rotation, i.e. outflow at the top) pulls the magnetic field away from the central axis. As this happens a new inner cell forms with an inflow which pushes the magnetic field towards the centre. This suggests that to maintain their form, both pores and sunspots need a neighbouring convection cell with inflow at the top towards the magnetic flux bundle. This convection cell does not have to be at the top of the convection zone and could be underneath the penumbral structure around sunspots. For an aspect ratio of 1, there is not enough space in the numerical domain for magnetic flux and convection to separate. In this case the solution oscillates between two steady states: two dominant convection cells threaded by magnetic field and one dominant cell that pushes magnetic flux towards the central axis.  相似文献   

3.
Continuous wavelet transform and cross‐wavelet transform have been used to investigate the phase periodicity and synchrony of the monthly mean Wolf (Rz) and group (Rg) sunspot numbers during the period of June 1795 to December 1995. The Schwabe cycle is the only one common period in Rg and Rz, but it is not well‐defined in case of cycles 5–7 of Rg and in case of cycles 5 and 6 of Rz. In fact, the Schwabe period is slightly different in Rg and Rz before cycle 12, but from cycle 12 onwards it is almost the same for the two time series. Asynchrony of the two time series is more obviously seen in cycles 5 and 6 than in the following cycles, and usually more obviously seen around the maximum time of a cycle than during the rest of the cycle. Rg is found to fit Rz better in both amplitudes and peak epoch during the minimum time time of a solar cycle than during the maximum time of the cycle, which should be caused by their different definition, and around the maximum time of a cycle, Rg is usually less than Rz. Asynchrony of Rg and Rz should somewhat agree with different sunspot cycle characteristics exhibited by themselves (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Flux elements, pores and sunspots form a family of magnetic features observed at the solar surface. As a first step towards developing a fully non-linear model of the structure of these features and of the dynamics of their interaction with solar convection, we conduct numerical experiments on idealized axisymmetric flux tubes in a compressible convecting atmosphere in cylindrical boxes of radius up to 8 times their depth. We find that the magnetic field strength of the flux tubes is roughly independent of both distance from the centre and the total flux content of the flux tube, but that the angle of inclination from the vertical of the field at the edge of the tube increases with flux content. In all our calculations, fluid motion converges on the flux tube at the surface. The results compare favourably with observations of pores; in contrast, large sunspots lie at the centre of an out-flowing moat cell. We conjecture that there is an inflow hidden beneath the penumbrae of large spots, and that this inflow is responsible for the remarkable longevity of such features.  相似文献   

5.
Using a perturbated (noised) dipole model of a sunspot magnetic field structure we simulated the influence of background noise or apparent noise (unresolved small-scale magnetic field structure) on sunspot magnetic field parameters. We evaluated mean values of the vertical and horizontal electric current densities |j| and |j|, respectively, of the force-free parameter α and of the Lorentz force |F|. For comparison we estimated |j| and |F| of a standard sunspot magnetic field model (return-flux model, OSHEROVICH 1982). Furthermore, we compared our results with those from observations resulting in estimated values of |j| for quiet sunspots. Our investigation led to the following results: the estimated values of 〈|F|〉 show clearly that due to the noise the axisymmetric magnetic dipole model is clustered into several subsystems of fluxbundles. The latter are connected with a system of electric current densities of the order of |j| ∼ 10−3 Am−2 and |j| = 10−1 Am−2, i.e., this system is a noise-generated nonaxisymmetric magnetohydrostatic model.  相似文献   

6.
We review possibilities for an interpretation of oscillations observed in several period bands (3 min., 5 min., 20 min.) and at different heights in sunspot umbrae. At subphotospheric depths two independent resonators are acting: A resonator for slow, quasi-transverse waves can explain the lifetimes of bright umbral dots (≥20 sec.), while a resonator for fast (acoustic), quasi-longitudinal waves could result in the 5-min. oscillations. The acoustic resonator strongly couples with the slow-mode longitudinal resonator at photospheric and chromospheric heights, the latter produces the resonance peaks in the 3-min. period band. The whole scheme of resonance levels generalizes and corroborates a chromospheric resonator model earlier proposed by the present authors. Comparisons with alternative models and recent measurements show that the present model most naturally explains the majority of observed data.  相似文献   

7.
This study aims at investigating surface magnetic flux participation among different types of magnetic features during solar cycle 24. State-of-the-art observations from SDO/HMI and Hinode/SOT are combined to form a unique database in the interval from April 2010 to October 2015. Unlike previous studies, the statistics presented in this paper are feature-detection-based. More than 20 million magnetic features with relatively large scale, such as sunspot/pore, enhanced and quiet networks, are automatically detected and categorized from HMI observations, and the internetwork features are identified from SOT/SP observations. The total flux from these magnetic features reaches 5.9×1022 Mx during solar minimum and2.4 × 1023 Mx in solar maximum. Flux occupation from the sunspot/pore region is 29% in solar maximum.Enhanced and quiet networks contribute 18% and 21% flux during the solar minimum, and 50% and 9% flux in the solar maximum respectively. The internetwork field contributes over 55% of flux in the solar minimum, and its flux contribution exceeds that of sunspot/pore features in the solar maximum. During the solar active condition, the sunspot field increases its area but keeps constant flux density of about 150 G,while the enhanced network follows the sunspot number variation showing increasing flux density and area,but the quiet network displays decreasing area and somewhat increasing flux density of about 6%. The origin of the quiet network is not known exactly, but is suggestive of representing the interplay between mean-field and local dynamos. The source, magnitude and possible importance of ‘hidden flux' are discussed in some detail.  相似文献   

8.
We propose that grand minima in solar activity are caused by simultane- ous fluctuations in the meridional circulation and the Babcock-Leighton mechanism for the poloidal field generation in the flux transport dynamo model. We present the following results: (a) fluctuations in the meridional circulation are more effective in producing grand minima; (b) both sudden and gradual initiations of grand minima are possible; (c) distributions of durations and waiting times between grand minima seem to be exponential; (d) the coherence time of the meridional circulation has an effect on the number and the average duration of grand minima, with a coherence time of about 30 yr being consistent with observational data. We also study the occurrence of grand maxima and find that the distributions of durations and waiting times between grand maxima are also exponential, like the grand minima. Finally we address the question of whether the Babcock-Leighton mechanism can be operative during grand minima when there are no sunspots. We show that an a-effect restricted to the upper portions of the convection zone can pull the dynamo out of the grand minima and can match various observational requirements if the amplitude of this a-effect is suitably fine-tuned.  相似文献   

9.
Duration of the extended solar cycles is taken into the consideration. The beginning of cycles is counted from the moment of polarity reversal of large-scale magnetic field in high latitudes, occurring in the sunspot cycle n till the minimum of the cycle n + 2. The connection between cycle duration and its amplitude is established. Duration of the “latent” period of evolution of extended cycle between reversals and a minimum of the current sunspot cycle is entered. It is shown, that the latent period of cycles evolution is connected with the next sunspot cycle amplitude and can be used for the prognosis of a level and time of a sunspot maximum. The 24th activity cycle prognosis is made. The found dependences correspond to transport dynamo model of generation of solar cyclicity, it is possible with various speed of meridional circulation. Long-term behavior of extended cycle's lengths and connection with change of a climate of the Earth is considered. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Probing sunspot magnetic fields with p-mode absorption and phase shift data   总被引:1,自引:0,他引:1  
Long-standing observations of incoming and outgoing f- and p-modes in annuli around sunspots reveal that the spots partially absorb and substantially shift the phase of waves incident upon them. The commonly favoured absorption mechanism is partial conversion to slow magneto-acoustic waves that disappear into the solar interior channelled by the magnetic field of the sunspot. However, up until now, only f-mode absorption could be accounted for quantitatively by this means. Based on vertical magnetic field models, the absorption of p-modes was insufficient. In this paper, we use the new calculations of Crouch & Cally for inclined fields, and a simplified model of the interaction between spot interior and exterior. We find excellent agreement with phase shift data assuming field angles from the vertical in excess of 30° and Alfvén/acoustic equipartition depths of around 600–800 km. The absorption of f-modes produced by such models is considerably larger than is observed, but consistent with numerical simulations. On the other hand, p-mode absorption is generally consistent with observed values, up to some moderate frequency dependent on radial order. Thereafter, it is too large, assuming absorbing regions comparable in size to the inferred phase-shifting region. The excess absorption produced by the models is in stark contrast with previous calculations based on a vertical magnetic field, and is probably due to finite mode lifetimes and excess emission in acoustic glories. The excellent agreement of phase shift predictions with observational data allows some degree of probing of subsurface field strengths, and opens up the possibility of more accurate inversions using improved models. Most importantly, though, we have confirmed that slow mode conversion is a viable, and indeed the likely, cause of the observed absorption and phase shifts.  相似文献   

11.
12.
13.
The generation of magnetic flux in the solar interior and its transport from the convection zone into the photosphere, the chromosphere, and the corona will be in the focus of solar physics research for the next decades. With 4 m class telescopes, one plans to measure essential processes of radiative magneto‐hydrodynamics that are needed to understand the nature of solar magnetic fields. One key‐ingredient to understand the behavior of solar magnetic field is the process of flux emergence into the solar photosphere, and how the magnetic flux reorganizes to form the magnetic phenomena of active regions like sunspots and pores. Here, we present a spectropolarimetric and imaging data set from a region of emerging magnetic flux, in which a proto‐spot without penumbra forms a penumbra. During the formation of the penumbra the area and the magnetic flux of the spot increases. First results of our data analysis demonstrate that the additional magnetic flux, which contributes to the increasing area of the penumbra, is supplied by the region of emerging magnetic flux. We observe emerging bipoles that are aligned such that the spot polarity is closer to the spot. As an emerging bipole separates, the pole of the spot polarity migrates towards the spot, and finally merges with it. We speculate that this is a fundamental process, which makes the sunspot accumulate magnetic flux. As more and more flux is accumulated a penumbra forms and transforms the proto‐spot into a full‐fledged sunspot (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
15.
We study the topology of field lines threading buoyant magnetic flux structures. The magnetic structures, visually resembling idealized magnetic flux tubes, are generated self-consistently by numerical simulation of the interaction of magnetic buoyancy and a localized velocity shear in a stably stratified atmosphere. Depending on the parameters, the system exhibits varying degrees of symmetry. By integrating along magnetic field lines and constructing return maps, we show that, depending on the type of underlying behaviour, the stages of the evolution, and therefore the degree of symmetry, the resulting magnetic structures can have field lines with one of three distinct topologies. When the x -translational and y -reflectional symmetries remain intact, magnetic field lines lie on surfaces but individual lines do not cover the surface. When the y symmetry is broken, magnetic field lines lie on surfaces and individual lines do cover the surface. When both x and y symmetries are broken, magnetic field lines wander chaotically over a large volume of the magnetically active region. We discuss how these results impact our simple ideas of a magnetic flux tube as an object with an inside and an outside, and introduce the concept of 'leaky' tubes.  相似文献   

16.
Spectropolarimetric observations of a sunspot were carried out with the Tenerife Infrared Polarimeter at Observatorio del Teide, Tenerife, Spain. Maps of the physical parameters were obtained from an inversion of the Stokes profiles observed in the infrared Fe I line at 15648 Å The regular sunspot consisted of a light bridge which separated the two umbral cores of the same polarity. One of the arms of the light bridge formed an extension of a penumbral filament which comprised weak and highly inclined magnetic fields. In addition, the Stokes V profiles in this filament had an opposite sign as the sunspot and some resembled Stokes Q or U. This penumbral filament terminated abruptly into another at the edge of the sunspot, where the latter was relatively vertical by about 30°. Chromospheric Hα and He II 304 Å filtergrams revealed three superpenumbral fibrils on the limb‐side of the sunspot, in which one fibril extended into the sunspot and was oriented along the highly inclined penumbral counterpart of the light bridge. An intense, elongated brightening was observed along this fibril that was co‐spatial with the intersecting penumbral filaments in the photosphere. Our results suggest that the disruption in the sunspot magnetic field at the location of the light bridge could be the source of reconnection that led to the intense chromospheric brightening and facilitated the supply of cool material in maintaining the overlying superpenumbral fibrils. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We present the data concerning the distribution of various sunspot magnetic classes over the solar butterfly diagram and discuss how this data can inform solar dynamo models. We use the statistics of sunspots that violate the Hale polarity law to estimate the ratio of the fluctuating and mean components of the toroidal magnetic field inside the solar convective zone. An analysis of the spatial distribution of bipolar, unipolar and complex sunspot groups in the context of simple dynamo models results in the conclusion that the mean toroidal field is relatively simple and maintains its shape during the course of the solar cycle (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
In order to search for oscillations in velocity and magnetic field strength within a sunspot umbra, a time series of spectra has been obtained through a circular analyzer and the Gregory-Coudé telescope at the Observatorio del Teide, Tenerife. The velocity oscillations clearly show peaks of power at periods between 2 and 7 minutes, with a maximum at 5 minutes. The apparent variations of the magnetic field strength, however, don't exhibit significant oscillations; these fluctuations are rather produced by the influence of parasitic stray light from the surrouding quiet sun which are also visible in the measured time variations of the umbral contrast of continuum intensity.  相似文献   

19.
A multiwavelength photometric analysis was performed in order to study the sub-structure of a sunspot light bridge in the photosphere and the chromosphere. Active region NOAA 8350 was observed on 1998 October 8. The data consist of a 100 min time series of 2D spectral scans of the lines Fe  i 5576 Å, Hα 6563 Å, Fe  i 6302.5 Å, and continuum images at 5571 Å. We recorded line-of-sight magnetograms in 6302.5 Å. The observations were taken at the Dunn Solar Telescope at US National Solar Observatory, Sacramento Peak. We find evidence for plasma ejection from a light bridge followed by Ellerman bombs. Magnetograms of the same region reveal opposite polarity in light bridge with respect to the umbra. These facts support the notion that low-altitude magnetic reconnection can result in the magnetic cancellation as observed in the photosphere.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号