首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present preliminary results from a 150 ks Suzaku observation of the Seyfert 1 galaxy NGC 3516. Suzaku 's wide bandpass has enabled us to deconvolve the broadband emitting and absorbing components in this object, breaking model degeneracies inherent in previous, smaller‐bandpass spectra. The primary power‐law continuum is absorbed by an ionized absorber as well as a partial‐covering absorber; the column density of the ionized absorber has increased by a factor of ∼3 since XMM‐Newton observations in 2001. We detect a soft power‐law component which may be scattered emission. We confirm the presence of the broad Fe line, finding a eV equivalent width line that indicates emission extending down to a few Schwarzschild radii. Models which exclude either the broad line or the partial‐covering absorber are rejected. Suzaku 's high effective area and low background near 6 keV also allow us to resolve the narrow Fe K emission line; we find a FWHM velocity width near 4000 km s–1, commensurate with Broad Line Region velocities. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We present monitoring analysis of 8 XMM‐Newton observations of the Seyfert 2 galaxy Mrk 3, spanning a period of ∼19 months. The continuum flux in the 3–12 keV band remains constant during this observing period. The X‐ray spectrum is well described, in agreement with previous works, by a highly absorbed (N H > 1024 cm–2) power law model, with a photon index Γ = 1.9 and a strong reflection component. A strong Fe Kα line at 6.4 keV with an equivalent width of ∼500 eV is detected in the X‐ray spectrum. When we consider the co‐added spectrum we also detect a weaker emission line at 7.4 keV corresponding to neutral Ni Kα emission and weak evidence for the presence of an ionized Fe Kα line at 6.7 keV. Direct comparison with the results obtained from an earlier XMM‐Newton observation of Mrk 3, shows a decrease in the continuum flux of ∼30 per cent followed by a similar decrease in the reflected component. Both emission line components at 6.4 and 6.7 keV do not vary. However we find that an alternative model where the N H varies by 20 per cent is also plausible. In this case both the continuum and the reflected emission do not change. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The dust‐to‐gas ratios in three different samples of luminous, ultraluminous, and hyperluminous infrared galaxies are calculated by modelling their radio to soft X‐ray spectral energy distributions (SED) using composite models which account for the photoionizing radiation from H II regions, starbursts, or AGNs, and for shocks. The models are limited to a set which broadly reproduces the mid‐IR fine structure line ratios of local, IR bright, starburst galaxies. The results show that two types of clouds contribute to the IR emission. Those characterized by low shock velocities and low preshock densities explain the far‐IR dust emission, while those with higher velocities and densities contribute to the mid‐IR dust emission. Clouds with shock velocities of 500 km s–1 prevail in hyperluminous infrared galaxies. An AGN is found in nearly all of the ultraluminous infrared galaxies and in half of the luminous infrared galaxies of the sample. High IR luminosities depend on dust‐to‐gas ratios as high as ∼0.1 by mass, however most hyperluminous IR galaxies show dustto‐gas ratios much lower than those calculated for the luminous and ultraluminous IR galaxies. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We report on observations, with sub-parsec resolution, of neutral hydrogen seen in absorption in the λ=21 cm line against the nucleus of the active spiral galaxy NGC 5793. The absorption line consists of three components separated in both location as well as velocity. We derive HI column densities of 2×1022 cm−2 assuming a gas spin temperature of 100 K. For the first time we are able to reliably estimate the HI cloud sizes (≈15 pc) and atomic gas densities (≈200 cm−3). Our results suggest that the HI gas is not associated with the <10 pc region which presumably contains the H2O masers, but it is more distant from the nucleus, and is probably associated with the r1 kpc gas seen in CO.  相似文献   

5.
We present the photoionisation modelling of the intrinsic absorber in the bright quasar HS 1603 + 3820. We constructed the broad-band spectral energy distribution using the optical/UV/X-ray observations from different instruments as inputs for the photoionisation calculations. The spectra from the Keck telescope show extremely high Civ to Hi ratios, for the first absorber in system A, named A1. This value, together with high column density of Civ ion, place strong constraints on the photoionisation model. We used two photoionisation codes to derive the hydrogen number density at the cloud illuminated surface. By estimating bolometric luminosity of HS 1603 + 3820 using the typical formula for quasars, we calculated the distance to A1. We could find one photoionization solution, by assuming either a constant density cloud (which was modelled using cloudy), or a stratified cloud (which was modelled using titan), as well as the solar abundances. This model explained both the ionic column density of Civ and the high Civ to Hi ratio. The location of A1 is 0.1 pc, and it is situated even closer to the nucleus than the possible location of the Broad Line Region in this object. The upper limit of the distance is sensitive to the adopted covering factor and the carbon abundance. Photoionisation modelling always prefers dense clouds with the number density n0 = 1010  1012 cm−3, which explains intrinsic absorption in HS 1603 + 3820. This number density is of the same order as that in the disk atmosphere at the implied distance of A1. Therefore, our results show that the disk wind that escapes from the outermost accretion disk atmosphere can build up dense absorber in quasars.  相似文献   

6.
The sizes of the Broad Line Region (BLR) of some Seyfert 1 galax-ies and nearby quasars can be determined by the reverberation mapping method.Combining with the observed FWHM of Hβ emission line and assuming that themotion of BLR clouds is virialized, the black hole masses of these objects have beenestimated. However, this method strongly depends on the poorly-understood geom-etry and inclination of the BLR. On the other hand, a tight correlation between theblack hole mass and the bulge velocity dispersion was recently found for both activeand nearby inactive galaxies. This may provide another method, independent of theBLR geometry, for estimating the black hole mass. Using this method for estimatingthe black hole mass and combining with the measured BLR size and FWHM of Hβemission line, we derived the BLR inclination angles for 20 Seyfert I galaxies underthe assumption that the BLR is disk-like. The derived inclination angles agree wellwith those derived previously by fitting the UV continuum and Hβ emission lineprofiles. Adopting a relation between the FWHMs of [OⅢ]λ5007 forbidden line andthe stellar velocity dispersion, we also estimated the BLR inclinations for 50 nar-row line Seyfert 1 galaxies (NLSls). We found that the inclinations of broad LineSeyfert 1 galaxies (BLS1s) are systematically greater than those of NLS1s, whichseldom exceed 30. This may be an important factor that leads to the differencesbetween NLS1s and BLS1s if the BLR of NLS1s is really disk-like.  相似文献   

7.
We have mapped 16 molecular clouds toward a new OB association in the Pup-CMa region to derive their physical properties. The observations were carried out in the 12CO (J = 1 – 0) line with the Southern millimetre-wave Telescope at Cerro Tololo, Chile. Distances have been determined kinematically using the rotation curve of Brand with R = 8.5 kpc and V = 220 km/s. Masses have been derived adopting a CO luminosity to H2 conversion factor X = 3.8 . 1020 molecules cm-2 (K km/s)-1. The observed mean radial velocity of the clouds is comparable with the mean radial velocity of stars composing an OB association in Pup-CMa; it is in favor of the close connection of clouds with these stars. __________ Published in Astrofizika, Vol. 48, No. 4, pp. 491–501 (October–December, 2005).  相似文献   

8.
The origin of rovibrational H2 emission in the central galaxies of cooling flow clusters is poorly understood. Here we address this issue using data from our near-infrared spectroscopic survey of 32 of the most line-luminous such systems, presented in the companion paper by Edge et al.
We consider excitation by X-rays from the surrounding intracluster medium (ICM), ultra-violet (UV) radiation from young stars, and shocks. The   v = 1–0  K -band lines with upper levels within  104 K  of the ground state appear to be mostly thermalized (implying gas densities  ≳105 cm−3  ), with the excitation temperature typically exceeding 2000 K, as found earlier by Jaffe, Bremer & van der Werf. Together with the lack of strong   v = 2–0  lines in the H -band, this rules out UV radiative fluorescence.
Using the cloudy photoionization code, we deduce that the H2 lines can originate in a population of dense clouds, exposed to the same hot  ( T ∼ 50 000 K)  stellar continuum as the lower density gas which produces the bulk of the forbidden optical line emission in the Hα-luminous systems. This dense gas may be in the form of self-gravitating clouds deposited directly by the cooling flow, or may instead be produced in the high-pressure zones behind strong shocks. Furthermore, the shocked gas is likely to be gravitationally unstable, so collisions between the larger clouds may lead to the formation of globular clusters.  相似文献   

9.
We observed the H2CO(110–111) absorption lines and H110α radio recombination lines (RRL) toward 180 NH3 sources using the Nanshan 25-m radio telescope. In our observation, 138 sources were found to have H2CO lines and 36 have H110α RRLs. Among the 138 detected H2CO sources, 38 sources were first detected. The detection rates of H2CO have a better correlation with extinction than with background continuum radiation. Line center velocities of H2CO and NH3 agree well. The line width ratios of H2CO and NH3 are generally larger than unity and are similar to that of 13CO. The correlation between column densities of H2CO and extinction is better than that between NH3 and extinction. These line width relation and column density relation indicate H2CO is distributed on a larger scale than that of NH3, being similar to the regions of 13CO. The abundance ratios between NH3 and H2CO were found to be different in local clouds and other clouds.  相似文献   

10.
Using the recently completed Giant Meterwave Radio Telescope, we have detected the HI 21 cm-line absorption from the peculiar galaxy C153 in the galaxy cluster Abell 2125. The HI absorption is at a redshift of 0.2533, with a peak optical depth of 0.36. The full width at half minimum of the absorption line is 100 km s−1. The estimated column density of atomic Hydrogen is 0.7×1022(T s /100) cm−2. The HI absorption is redshifted by ∼400km s−1 compared to the [OIII] emission line from this system. We attribute this to an infalling cold gas or to an out-flowing ionised gas, or to a combination of both as a consequence of tidal interactions of C153 with either a cluster galaxy or the cluster potential.  相似文献   

11.
R. Fisher  T. Pope 《Solar physics》1971,20(2):389-399
Nine coronal emission lines representing five stages of Fe ionization and one stage of Ni were observed in an enhanced coronal region. The data from these observations are presented along with a density model of the enhanced region obtained from the FeXIII and NiXV emission line ratios as a function of position angle. The electron densities obtained from FeXIII lines range from N e = 108 to 109 cm–3, and are slightly lower for NiXV line data. Estimates of the variation of temperature over the enhanced region are inferred from the observed line intensities.  相似文献   

12.
The line ratios from coronal gas in Seyferts can be successfully fitted with photoionized clouds of high densities and low volume filling factor. The ionization parameter implied is sufficiently high that models must consider the effect of radiation pressure from the active nucleus. In spite of the gravitational force of the nucleus, radiation pressure is sufficiently strong to compress and radially accelerate the internally stratified gas clouds provided that these contain small amounts of dust (≃ 10 per cent of the solar neighbourhood value). This radial acceleration could explain the blueshift of the coronal lines relative to the systemic velocity without the need to invoke an ambient 'pushing' wind. Embedded dust has the interesting effect of making the photoionized clouds marginally ionization-bounded instead of matter-bounded.  相似文献   

13.
《New Astronomy Reviews》2000,44(7-9):563-568
The evidence is reviewed that the Broad Line Region (BLR) probably has two distinct components located at about the same distance from the central black hole. One component, BLR II, is optically-thick, low-ionization emission at least some of which arises from a disc and the other, BLR I, is probably optically-thin emission from a more spherically symmetric halo or atmosphere. The high Fe II/Hβ ratios seen in Narrow-Line Seyfert 1 galaxies (NLS1s) are not due to strong Fe II emission, as is commonly thought, but to unusually weak Balmer emission, probably caused by higher densities. NLS1s probably differ from non-NLS1s because of the higher density of gas near the black hole. This produces a higher accretion rate, a denser BLR, and a view of the central regions that is more face-on.  相似文献   

14.
We present accurate measurements of the physical conditions in five powerful radio galaxies, as derived from deep, long-slit spectroscopic observations. All five objects show prominent extended line emission, and have X-ray luminosities similar to those of isolated elliptical galaxies. The data are high enough quality that the electron density and temperature can be measured at several positions across the emission-line nebulae.
We subtract a model continuum comprising a combination of a 15-Gyr stellar template, a young stellar template and a power law, so as to be better able to measure faint diagnostic lines. Electron temperatures measured from the [O  iii ](4959+5007)/4363 line ratio are in the range  10 000< T e<20 000 K  , whilst  [S  ii ](6716/6731)  densities fall between  100–500 cm-3.  Using these values, we find pressures within the line-emitting clouds a factor of  10–100  times higher than expected for pressure balance with the hot X-ray haloes of the host galaxies.
Previous studies of sources that show significant evidence of jet–cloud interactions, both in terms of their kinematics and ionization, have concluded that the overpressure is a result of the warm, line-emitting gas being compressed by the radio cocoon; however, there is no evidence that the radio jet is influencing the emission-line regions in four of our five objects.
We suggest that it is plausible that the line-emitting clouds have not yet relaxed into pressure equilibrium from their initial photoionization by the central active galactic nucleus.  相似文献   

15.
Our aim is to explore the relation between gas, atomic and molecular, and dust in spiral galaxies. Gas surface densities are from atomic hydrogen and CO line emission maps. To estimate the dust content, we use the disk opacity as inferred from the number of distant galaxies identified in twelve HST/WFPC2 fields of ten nearby spiral galaxies. The observed number of distant galaxies is calibrated for source confusion and crowding with artificial galaxy counts and here we verify our results with sub‐mm surface brightnesses from archival Herschel ‐SPIRE data. We find that the opacity of the spiral disk does not correlate well with the surface density of atomic (H I) or molecular hydrogen (H2) alone implying that dust is not only associated with the molecular clouds but also the diffuse atomic disk in these galaxies. Our result is a typical dust‐to‐gas ratio of 0.04, with some evidence that this ratio declines with galactocentric radius, consistent with recent Herschel results. We discuss the possible causes of this high dust‐to‐gas ratio; an over‐estimate of the dust surface‐density, an under‐estimate of the molecular hydrogen density from CO maps or a combination of both. We note that while our value of the mean dust‐to‐gas ratio is high, it is consistent with the metallicity at the measured radii if one assumes the Pilyugin & Thuan (2005) calibration of gas metallicity. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Molecular line emission is a useful tool for probing the highly obscured inner kpc of starburst galaxies and buried AGNs. Molecular line ratios serve as diagnostic tools of the physical conditions of the gas—but also of its chemical properties. Both provide important clues to the type and evolutionary stage of the nuclear activity. While CO emission remains the main tracer for molecular distribution and dynamics, molecules such as HCN, HNC, HCO+, CN and HC3N are useful for probing the properties of the denser (n≳104 cm−3), star-forming gas. Here I discuss current views on how line emission from these species can be interpreted in luminous galaxies. HNC, HCO+ and CN are all species that can be associated both with photon dominated regions (PDRs) in starbursts—as well as X-ray dominated regions (XDRs) associated with AGN activity. HC3N line emission may identify galaxies where the starburst is in the early stage of its evolution.  相似文献   

17.
Exploratory models of the collapse of spherical self-gravitating clouds are studied in relation to the problem of the formation of first generation star-systems. The masses which were considered are in the range of 83 to 5.2×1010 M . For simplicity, the assumed composition includes hydrogen only, which could be in the form of H, H2, H+ or H?. Since the physical conditions that might have prevailed in a primeval nebula are not well known, rather simple initial conditions were chosen: The gas starts from rest and has initially a uniform temperature. We consider the case of rather cool (T 0~100 K) neutral clouds with different initial ionization degrees. Some of the initial density-distributions here considered are uniform while others are decreasing from the center outwards. The assumed initial values for the densities are ~10?24 g cm?3, except for one of the models, for which it is ~10?26 g cm?3. Several atomic processes within the gas, including physical-chemical reactions and the evaluation of radiative emission coefficients are considered. A system of differential equations is set up in order to evaluate the concentrationsn H,n H 2,n H +,n H ? andn e as a function of time. The treatment makes possible the study of the cooling and heating properties of the gas. Furthermore, the dynamical, thermal and chemical evolution of the cloud can be followed during the collapse. The computations apply only to the optically thin stages. The models show the importance of a correct evaluation of the chemical reactions and dissipative mechanisms, which cannot be ignored in a realistic treatment of the collapse of self-gravitating clouds. The influence of the initial conditions on the dynamical and thermal properties during evolution are also analysed.  相似文献   

18.
A 21 cm absorption measurement over a long path length free of the effects of differential galactic rotation indicates the existence of two distinct cloud populations in the plane. One of them consisting of cold, dense clouds has been well studied before. The newly found hot clouds appear to be at least five times more numerous. They have a spin temperature of ~ 300 K, an rms velocity of ~ 35 km s-1, twice the total mass, and hundred times the kinetic energy of the cold clouds. Over long path lengths, the hot clouds haveN H/kpc ~ 2 X 1021 cm-2 Kpc-1, and are estimated to have individual column densities ≤ 1020 cm-2. We propose that they are shocked clouds found only within supernova bubbles and that the cold clouds are found in the regions in-between old remnants, immersed in an intercloud medium. We conclude that the solar neighbourhood must be located between old supernova remnants rather than within one.  相似文献   

19.
The availability of new observing facilities both from ground and space such as the Keck 10m telescope and the Hubble Space Telescope is casting new light on the spectroscopic investigation of emission line galaxies. In particular, it is now possible to detect spectra with a significantly improved signal to noise ratio in a very wide wavelength range, from the ultraviolet to the near infrared (HST, Keck) and beyond (ISO is unveiling the far infrared domain). As we move to high redshifts, however, it is more likely that the observed spectra are given by the contribution of different components in the galaxy: in particular, this may be the case if an Active Galactic Nucleus (AGN hereafter) emitting a power-law continuum is surrounded by regions with strong star formation activity. The identification of the source which ionizes the line emitting regions is then complicated by the fact that we are observing the integrated spectrum from regions which are ionized by different sources. In this paper we wish to review which line ratios may be used in order to discriminate between photoionization by young stars and power-law continuum in the wavelength range from 1200 Å to 100 μm. To this aim we used the photoionization code Cloudy (Ferland 1996) to present a series of diagnostic diagrams showing the dependence of emission line ratios on the main input parameters of photoionization models in the case of one component models with gaseous clouds ionized by (1) a stellar continuum typical of an HII region and (2) a power-law continuum typical of an AGN: these line ratios are plotted as isoratio maps for different values of the hydrogen density, ionization parameter and slope of the power-law continuum. We then show how the results may be affected by more realistic assumptions about the environment of the ionized gas: to this aim, we show the effects on selected line ratios of (a) the presence of two populations of clouds with different densities and (b) an AGN surrounded by regions with strong star formation activity.  相似文献   

20.
In this paper a non-stationary model of the emission-line region of a quasar is considered. The motions of the emitting clouds in the quasar envelope are examined. The clouds are assumed to move radial-symmetrical relative to the core of the quasar. The density distribution in the atmosphere of a quasar, which is following from the supposition of a non-stationary model, is estimated. The resulting Hβ-emission line profiles are calculated for six velocity distributions and three different masses of quasars. Furthermore, emission-line profiles originating from ejections of clouds in a special direction are calculated. The theoretically obtained profiles agree satisfactory with those observed in SEYFERT galaxise in case of the model with μ = 2 ṁ 1043 g and a GAUSS ian distribution of the velocities with v0 = 3000 km s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号