首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examine 14 plates of the globular cluster M3 (NGC 5272) taken with the 40 cm refractor at the Sheshan station of Shanghai Astronomical Observatory. The plates span over a period of about 77 years. The positions and absolute proper motions of eight stars in the Hipparcos Catalogue and of 49 stars in the Tycho-2 Catalogue are used as the reference frame. The astrometric reduction is made with the central overlapping principle. The absolute proper motions of 534 stars in a region of about 100' × 100' around the cluster are measured. With the new proper motion data the membership probabilities of the stars are determined. The average absolute proper motion obtained for the cluster is -0.06@0.30 mas yr-1 in R.A. and -2.6@0.30 mas yr-1 in Decl. By combining this result with the known distance and radial velocity of the cluster, we also obtained the Galactic orbit of M3 for a chosen three-component Galactic potential.  相似文献   

2.
After publication of the Hipparcos catalogue (in 1997), a few new astrometric catalogues have appeared (TYCHO‐2, ARIHIP, etc.), as a good combination of the Hipparcos satellite and ground‐based data, to get more accurate coordinates and proper motions of stars than the Hipparcos catalogue ones. There are also investigations on improving the Hipparcos coordinates and proper motions by using the astrometric observations of latitude and universal time variations (via observed stars referred to Hipparcos catalogue), together with Hipparcos data, carried out during the last few years. These kind of ground‐based data were collected at the end of the last century by J. Vondrák. There are about 4.4 million optical observations made worldwide at 33 observatories and with 47 instruments during 1899.7–1992.0; our Belgrade visual zenith telescope data (for the period 1949.0‐1986.0) were included. First of all, these data were used to determine the Earth Orientation Parameters – EOP, but they are also useful for the opposite task – to check the accuracy of coordinates and proper motions of Hipparcos stars which were observed from the ground over many decades. Here, we use the latitude part of ten Photographic Zenith Tubes – PZT data (more than 0.9 million observations made at 6 observatories during the time interval 1915.8–1992.0), and combine them with the Hipparcos catalogue ones, with suitable weights, in order to check the proper motions in declination for 807 common PZT/Hipparcos stars (and to construct the PZT catalogue of μδ for 807 stars). Our standard errors in proper motions in declination of these stars are less than or equal to the Hipparcos ones for 423 stars. The mean value of standard errors of 313 stars observed over more than 20 years by PZT is 0.40 mas/yr. This is 53% of 0.75 mas/yr (the suitable value from the Hipparcos catalogue). We used the Least Squares Method – LSM with the linear model. Our results are in good agreement with the Earth Orientation Catalogue – EOC‐2 and the new Hipparcos ones. The main steps of the method and the investigations of systematic errors in determined proper motions (the proper motion differences with respect to the Hipparcos values, the EOC‐2 ones and the new Hipparcos ones, as a function of α, δ, and magnitude) are presented here. A comparison of the four catalogues by pairs shows that there is no significant relationship between the differences of their μδ values and magnitudes and color indices of the common 807 stars. All catalogues have relatively small random and systematic errors which are close to each other. However, the comparison shows that our formal errors are too small. They are underestimated by a factor of nearly 1.7 (for EOC‐2, it is 2.0) if we take the new Hipparcos (or Hipparcos) data as reference (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
A study of four open clusters in the direction of the Galactic anticentre (l = 186°, b = +2°) is presented. In a field of 8.32 square degrees proper motions and B magnitudes for about 79 000 stars down to 19.5 were determined on Tautenburg Schmidt plates. For more than 15 500 of them U magnitudes down to 17.3 could be obtained. Additionally, OCA Schmidt plates were used to determine V, R magnitudes in a larger field of 24.45 square degrees for 271 000 stars down to V = 18.2. For stars brighter than V = 15.5 an accuracy of about 1.5 mas/yr has been estimated for proper motions. The rms errors of stellar magnitudes and colour indices are 0.09 – 0.12 mag. Several open clusters have been already known in this direction of the sky, e.g. NGC 2168 or M 35 (C 0605+243), NGC 2158 (C 0604+241) and IC 2157 (C 0601+240). Inspecting the plates and analysing the colour-magnitude diagrams and published data, we could identify an additional anonymous cluster C 0605+242 with a projection on the sky near the centre of M 35 but at a larger distance from the Sun. The cluster membership determination was carried out using information on spatial and proper motion distributions of stars in the field. The colour-magnitude diagrams were derived down to the limiting stellar magnitude. For each cluster the interstellar extinction Av, the diameters of the core and corona, the ages and spatial velocity components (V,W) relative to the LSR in the Y,Z – Galactic directions were determined. The distances to the clusters of 960 pc, 2 600 pc, 2 520 pc and 3 700 pc were obtained for M 35, IC 2157, C 0605+242 and NGC 2158. They show the loci of the clusters in the Local and Perseus spiral arms and at external border of Perseus arm, respectively.  相似文献   

4.
王叔和  唐正宏 《天文学报》1999,40(4):351-359
利用上海天文台佘山40 厘米折射望远镜拍摄的2 个底片天区15 张照相底片上的31 次观测,以ACT 星表作为初始参考星表,按中心重叠法进行归算处理,得到了16 颗依巴谷星和38 颗场星的高精度位置和自行结果,其中依巴谷星的赤经和赤纬标准误差的平均值分别为10 .5 mas 和7 .5 mas,赤经自行和赤纬自行标准误差的平均值分别为0 .70 mas/yr 和0 .59 mas/yr  相似文献   

5.
We present a catalogue (CSOCA) of stars residing in 520 Galactic open cluster sky areas which is the result of the kinematic (proper motion) and photometric member selection of stars listed in the homogeneous All‐sky Compiled Catalogue of 2.5Million Stars (ASCC‐2.5).We describe the structure and contents of the catalogue, the selection procedure applied, and the proper motion and photometric membership constraints adopted. In every cluster area the CSOCA contains the complete list of the ASCC‐2.5 stars regardless of their membership probability. For every star the CSOCA includes accurate J2000 equatorial coordinates, proper motions in the Hipparcos system, BV photometric data in the Johnson system, proper motion and photometric membership probabilities, as well as angular distances from the cluster centers for about 166 000 ASCC‐2.5 stars. If available, trigonometric parallaxes, spectral types, multiplicity and variability flags from the ASCC‐2.5, and radial velocities with their errors from the Catalogue of Radial Velocities of Galactic Stars with high precision Astrometric Data (CRVAD) are also given. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Astrometric CCD observations of 1123 stars with large proper motions (μ > 300 mas yr−1) from the LSPM (I/298) catalog in the declination zone +30°–+70° have been carried out with the Pulkovo normal astrograph since 2006. The observational program includes mostly stars that previously have not entered into high-accuracy projects to determine the proper motions. Our studies are aimed at determining new proper motions of fast stars in the HCRF/UCAC3 system and searching for stars with invisible companions in the immediate Galactic neighborhoods of the Sun. Having analyzed about 10 000 CCD frames, we have obtained the equatorial coordinates of 414 program stars in the HCRF/UCAC3 system at an accuracy level of 10–50 mas and determined their new proper motions. To derive the proper motions, we have used the data from several star catalogs and surveys (M2000, CMC14, 2MASS, SDSS) as early epochs. The epoch differences range from 5 to 13 years (on average, about 10 years); the mean accuracy of the derived proper motions is 4–5 mas yr−1. For 70 stars, we have revealed significant differences between the derived proper motions and those from the LSPM and I/306A catalogs (these proper motions characterize the mean motion of the photocenter in 50 years or more). Apart from systematic errors, these differences can result from the existence of invisible components of the program stars.  相似文献   

7.
Stars observed by the astrometry satellite Hipparcos may be unknown double stars. A subsample of those are dangerous for the extragalactic link of Hipparcos proper motions by long-term photographic proper motions, if the time base of Hipparcos is too short to detect the orbital motion. The probability of these cases and the typical size of the photocentric orbital motion are estimated by Monte Carlo simulations for the sample of 33 stars used in the Bonn extragalactic link. Both are found to be considerable: about 16% and 9 mas/yr respectively.  相似文献   

8.
A study of four open clusters on Tautenburg Schmidt plates in the direction to the Galactic Centre (l = 17.0°, b = +0.8°) is presented. In a field of 8.95 square degrees proper motions and B, V magnitudes were determined for about 36 500 stars up to the limiting magnitudes B = 17m.9, V = 16m.8. For stars brighter than B = 16m an accuracy of about 3 mas/year has been estimated for proper motions. The rms errors of stellar magnitudes and (BV) colours is about 0.1 mag. There are two open clusters already known in this sky area: Trumpler 32 (C 1814-133) and NGC 6611 (C 1816-138). By the inspection of the plates two additional anonymous clusters were identified near the double star ADS 11285 or BD −14°5014 (C 1819-146) and near the star BD −14°5016 (C 1820-146). The cluster membership determination was carried out using information on spatial and proper motion distributions of stars in the field. The colour-magnitude diagrams up to the limiting stellar magnitude were constructed. For each cluster interstellar extinction AV, diameters of the core and corona, ages and spatial velocity components (V, W) relative to the LSR in the Y, Z-galactic directions were derived. The distances to the clusters were obtained to 1720 pc, 2260 pc, 2130 pc and 2130 pc for Trumpler 32, NGC 6611, C 1819-146 and C 1820-146, respectively. All clusters are situated in the Sagittarius-Carina spiral arm. Their spatial location confirms the assumption that galactic spiral arms are close to logarithmic spirals with a characteristic angle of about 20 degrees.  相似文献   

9.
Astrometric CCD observations of stars with large proper motions were carried out during 2008–2014 using telescopes of the Nikolaev Astronomical Observatory. A catalog of positions and proper motion of 1596 fast stars with proper motions exceeding 150 mas/yr has been compiled based on observation results. The catalog covers the declination zone from 0° to 65°. The standard error of derived proper motion is 1…10 mas/yr for both coordinates depending on the observational history of the star. Data from eight different star catalogs and surveys have been used to derive proper motion. The comparison results of proper motion with data from modern catalogs and results of the statistical test for the detection of possible invisible components are given.  相似文献   

10.
We present comparison results of our Independent Latitude (IL) catalogue of μδ determinations for 1120 bright stars with the Hipparcos, new Hipparcos and Earth Orientation Catalogue (EOC‐2) values. Also, we took into consideration the EOC3 and EOC4 (recent versions of EOC catalogues). Our μδ values are based on zenith telescope observations from seven Independent Latitude (IL) observatories. The IL measures are spanning a time baseline of up to 90 years which is the key advantage to the accurate determination of μδ. The short interval of the Hipparcos satellite observations is a disadvantage for a good accuracy of stellar proper motion, especially in the case of double and multiple stars. For this reason many astrometric catalogues have appeared after the publication of the Hipparcos including our IL catalogue. These catalogues are an appropriate combination of the Hipparcos satellite and ground‐based data which yields more accurate stellar coordinates and/or their proper motions. Among various types of ground‐based observations the latitude and universal time variations obtained from several million observations of stars reduced to the Hipparcos reference system were used for this purpose. These observations were obtained during almost the entire last century and were originally used to determine the Earth Orientation Parameters. It is also possible to use these data in the inverse task of checking the accuracy of stellar coordinates and/or their proper motions listed in the Hipparcos Catalogue. Such latitude and universal time variations data are the basis of the EOC and IL catalogues. In this paper, we computed the differences in μδ values between pairs of catalogues and analyzed the results to characterize the μδ errors for the four catalogues with a special focus on our IL catalogue. The standard errors of μδ for IL stars observed over more than 20 years are mostly smaller than or equal to the Hipparcos errors, and close to the accuracy level of the EOC‐2 (EOC‐3, EOC‐4) and the new Hipparcos. The resulting investigations of errors of differences of μδ, show that all four catalogues have relatively small random and systematic errors which are close to each other meaning that the corresponding μδ values have a high accuracy. Our sample also contains detected double and multiple stars for which the effects of the orbital and proper motions are difficult to separate. The differences of μδ values for these stars generally exceed those obtained for single stars. Also, these discrepancies could be attributed to effect of possible, still unrecognized, astrometric binaries. These investigations about the proper motions and double stars are in line with the activity of the IAU Working Group on Astrometry by Small Ground‐Based Telescopes. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The Hipparcos Catalogue contains members of nearby OB associations brighter than 12th magnitude in V . However, membership lists are complete only to magnitude V =7.3. In this paper we discuss whether proper motions listed in the 'Astrographic Catalogue+Tycho' reference catalogue (ACT) and the Tycho Reference Catalogue (TRC), which are complete to V ∼10.5 mag, can be used to find additional association members. Proper motions in the ACT/TRC have an average accuracy of ∼3 mas yr−1. We search for ACT/TRC stars which have proper motions consistent with the spatial velocity of the Hipparcos members of the nearby OB associations already identified by de Zeeuw et al. These stars are first selected using a convergent-point method, and then subjected to further constraints on the proper-motion distribution, magnitude and colour to narrow down the final number of candidate members. Monte Carlo simulations show that the proper-motion distribution, magnitude, and colour constraints remove ∼97 per cent of the field stars, while at the same time retain more than 90 per cent of the cluster stars.
The procedure has been applied to five nearby associations: the three subgroups of Sco OB2, plus Per OB3 and Cep OB6. In all cases except Cep OB6, we find evidence for new association members fainter than the completeness limit of the Hipparcos Catalogue. However, narrow-band photometry and/or radial velocities are needed to pinpoint the cluster members, and to study their physical characteristics.  相似文献   

12.
Based on the most complete list of the results of an individual comparison of the proper motions for stars of various programs common to the Hipparcos catalog, each of which is an independent realization of the inertial reference frame with regard to stellar proper motions, we redetermined the vector ω of residual rotation of the ICRS system relative to the extragalactic reference frame. The equatorial components of this vector were found to be the following: ωx=+0.04±0.15 mas yr?1, ωy=+0.18±0.12 mas yr?1, and ωz=?0.35±0.09 mas yr?1.  相似文献   

13.
A proper motion study from Tautenburg Schmidt plates is presented for the globular cluster M3 and its vicinity. The plates were scanned with the Automated Photographic Measuring (APM) system in Cambridge (UK). A photographic B,V photometry and star counts on the deepest plates were carried out. With a limiting magnitude of about B = 21.4 proper motions with an accuracy from 2 to 3 mas/yr have been obtained for stars with B 19. The proper motions were determined using a stepwise regression method with 3rd order polynomials in the plate-to-plate solutions with about 2000 reference galaxies. The results which were corrected for systematic errors dependent on position and magnitude of the stars were used for the determination of membership probabilities. We also looked for possible internal motions of M3.  相似文献   

14.
We have measured the absolute proper motions of 534 stars in a 1.5° × 1.5° region around the cluster M3, using 14 plates taken with a 40-cm refractor spanning 80 years. 24 stars in the ACT catalogue were used to define the reference frame and the reduction was made using the central overlapping technique. Using the new data, the membership probabilities were redetermined. The mean absolute motion of the cluster was found to be −0.3 ± 0.3 mas/yr in R.A., and −3.1 ± 0.3 mas/yr in declination. Combining the present data with the known distance and radial velocity, the three-dimensional galactic orbit of M3 was calculated for Allen's galactic potential.  相似文献   

15.
We present the results of our comprehensive study of the Galactic open star cluster NGC 6866. The positions of stars in the investigated region have been obtained with the “Fantasy” automatic measuring machine from 10 plates of the normal astrograph at the Pulkovo Astronomical Observatory. The size of the investigated field is 40′ × 40′, the limiting magnitude is B ∼ 16· m 6, and the maximum epoch difference is 79 yr. For 1202 field stars, we have determined the relative proper motions with an rms error of 2.5 mas yr−1. Out of them, 423 stars may be considered cluster members with a probability P > 70% according to the astrometric criterion. Photometric diagrams have been used as an additional criterion. We have performed two-color BV CCD photometry of stars with the Pulkovo ZA-320M mirror astrograph. The U magnitudes from the literature have also been used to construct the two-color diagrams. A total of 267 stars have turned out to be members of NGC 6866 according to the two criteria. We present refined physical parameters of the cluster and its age estimate (5.6 × 108 yr). The cluster membership of red and blue giants, variable, double, and multiple stars is considered. We have found an almost complete coincidence of the positions of one of the stars in the region (a cluster nonmember) and a soft X-ray source in the ROSAT catalog. The “Fantasy” automatic measuring machine is described in the Appendix.  相似文献   

16.
利用上海天文台的照相底片资料,确定了疏散星团NGC6530天区364颗恒星的自行和成员概率,并对有关自行测定的方法、结果和精度等问题作了较为详细的介绍和讨论。使用的底片历元差为87年,全部恒星自行中误差的均方根值为1.09mas/a。  相似文献   

17.
The PUL2 catalog has been photographically compiled in Pulkovo according to Deutch's plan. The catalog contains the mean coordinates of stars in the ICRS system at epoch J2000.0 and their original absolute proper motions. The photographic observations were performed with a normal astrograph. The first and second epochs of the photographic plates are 1937–1965 and 1969–1986, respectively. The PUL2 fields uniformly cover the northern sky. The mean difference between the epochs is 24 years. At least three pairs of plates are available for each field. There are one-hour and five-minute exposures on all plates. One pair of plates was taken with a diffraction grating. Only bright reference stars were measured on the pairs of plates with a grating. Based on a reduction model with six constants and using faint (\(15\mathop m\limits_. 2\)) reference stars, we determined the relative proper motions of the stars. We used ~700 galaxies for absolutization. The mean errors in the relative proper motions of the PUL2 stars are 5.5 mas yr?1 (milliarcseconds per year) in μα cos δ and 5.9 mas yr?1 in μδ. When using galaxies, the mean absolutization error is 7.9 mas yr?1 in both coordinates. By comparing the PUL2 and HIPPARCOS catalogs, we determined the components of the residual rotation vector ω for HIPPARCOS relative to the extragalactic (equatorial) coordinate system: ωx,y,z=(?0.98, ?0.03, ?1.66)±(0.47, 0.38, 0.42) mas yr?1. The mean error of one absolute proper motion of a bright PUL2 star in external convergence is 9 mas yr?1 in both coordinates.  相似文献   

18.
The Galactic orbits of 27 440 stars of all classes with accurate coordinates and parallaxes of more than 3 mas from the Hipparcos catalogue, proper motions from the Tycho-2 catalogue, and radial velocities from the Pulkovo Compilation of Radial Velocities (PCRV) are analyzed. The sample obtained is much more representative than the Geneva-Copenhagen survey and other studies of Galactic orbits in the solar neighborhood. An estimation of the influence of systematic errors in the velocities on orbital parameters shows that the errors of the proper motions due to the duplicity of stars are tangible only in the statistics of orbital parameters for very small samples, while the errors of the radial velocities are noticeable in the statistics of orbital parameters for halo stars. Therefore, previous studies of halo orbits may be erroneous. The distribution of stars in selection-free regions of the multidimensional space of orbital parameters, dereddened colors, and absolute magnitudes is considered. Owing to the large number of stars and the high accuracy of PCRV radial velocities, nonuniformities of this distribution (apart from the well-known dynamical streams) have been found. Stars with their peri- and apogalacticons in the disk, perigalacticons in the bulge and apogalacticons in the disk, perigalacticons in the bulge and apogalacticons in the halo, and perigalacticons in the disk and apogalacticons in the halo have been identified. Thus, the bulge and the halo are inhomogeneous structures, each consisting of at least two populations. The radius of the bulge has been determined: 2 kpc.  相似文献   

19.
We present an investigation of the differences between quasi-instantaneous stellar proper motions from the Hipparcos catalogue and long-term proper motions determined by combining Hipparcos and the Astrographic Catalogue. Our study is based on a sample of about 12000 stars of visual magnitude from 7 to 10 in two declination zones on the northern and equatorial sky. The distribution of the proper-motion differences shows an excess of large deviations. This is caused by the influence of orbital motion of unresolved binary systems. The proper-motion deviations provide statistical evidence for 360 astrometric binaries in the investigated zones, corresponding to about 2400 such binaries in the entire Hipparcos catalogue, in addition to those already known. In order to check whether the observed deviations are compatible with standard assumptions on the basic parameters of binary stars, we model the impact of orbital motion on the observed proper motions in a Monte Carlo simulation. We show that the simulation yields an acceptable approximation of the observations, if a binary frequency between 70% and 100% is assumed, i.e.if most of the stars in the sample are assumed to have a companion. Thus Hipparcos astrometric binaries confirm that the frequency of non-single stars among field stars is very high. We also investigate the influence of the mass function for the secondary component on the result of the simulation. A constant mass function and mass functions with moderate increase towards low masses lead to results, which are compatible with the observed proper-motion effects. A high preponderance of very-low-mass or substellar companions as produced, for example, by a M—1 power law is not in agreement with the frequency of proper-motion deviations in our sample of stars.  相似文献   

20.
The Commission 19 (Earth Rotation) of the International Astronomical Union—IAU established the Working Group on Earth Rotation in the Hipparcos Reference Frame—WG ERHRF at 1995 to collect the optical observations of latitude and universal time variations, made during 1899.7-1992.0 in line with Earth orientation programmes (to derive Earth Orientation Parameters—EOP), with Dr. Jan Vondrák (Astronomical Institute of Academy of Sciences of the Czech Republic, Prague) as the head of WG ERHRF. Dr. Vondrák collected about 4.4 million optical observations of latitude/universal time variations made at 33 observatories. These data were used for EOP investigations, Hipparcos Catalogue—radio sources connection, etc. Nowadays, it is used to correct the positions and proper motions of stars of Hipparcos Catalogue (as an optical reference frame) using ground-based observations of some Hipparcos stars. After Hipparcos Catalogue, some new astrometric catalogues appeared (as ARIHIP, EOC-2, etc.) with better accuracy of proper motions. We use the latitude observations made by visual zenith-telescope (ZT), as classical astrometric instrument, at seven observatories (all over the world) of International Latitude Service—ILS. The observations were used in the programmes of monitoring the Earth orientation during the 20th century. We received the data from Dr. Vondrák via private communication. The observatories are Carloforte—CA, Cincinnati—CI, Gaithersburg—GT, Kitab—KZ, Mizusawa—MZZ, Tschardjui—TS and Ukiah—UK. The task is to improve proper motions in declination of the observed Hipparcos stars. The original method was developed. We removed from the instantaneous observed latitudes, all known effects (polar motion and some local instrumental errors), and the corrected latitudes were then the input data to calculate the corrections of Hipparcos proper motions in declination using the least squares method—LSM with the linear model. We did an improvement of Hipparcos proper motions in declination via mentioned latitude variations with time by using a long-term (a few decades) visual zenith-telescope data of ILS. The calculated results were compared with the ARIHIP and EOC-2 data, and the consistency were good. The main steps of the calculations and some of the results are presented here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号