共查询到18条相似文献,搜索用时 62 毫秒
1.
基于多核学习的高分辨率遥感图像目标检测方法 总被引:1,自引:0,他引:1
为更有效地实现复杂场景中的多类目标同时检测,本文提出了一种基于多核学习算法进行目标检测的框架。该方法由特征提取和模型训练2个阶段组成。特征提取阶段,引入了多尺度下的点特征、表观特征同时对多类目标进行综合描述;模型训练阶段,分别采用加权相加和相乘2种方法将提取的各个基础特征组合起来,在支持向量机的框架下对各特征所代表的基础核权重进行学习。将训练所得的分类器结合滑动窗搜索技术对遥感图像进行目标检测实验,结果表明,与传统单核支持向量机相比,准确率更高。 相似文献
2.
基于深度学习的高分辨率遥感影像目标检测 总被引:1,自引:0,他引:1
传统的目标检测识别方法难以适应海量高分辨率遥感影像数据,需要寻求一种能够自动从海量影像数据中学习最有效特征的方法,充分复挖掘数据之间的关联。本文针对海量高分辨率遥感影像数据下典型目标的检测识别,提出一种分层的深度学习模型,通过设定特定意义的分层方法建立目标语义表征及上下文约束表征,以实现高精度目标检测。通过对高分遥感影像目标检测的试验,证明了该方法的有效性。 相似文献
3.
基于多尺度特征融合和支持向量机的高分辨率遥感影像分类 总被引:16,自引:1,他引:16
相对传统的中低分辨率遥感数据而言,高空间分辨率遥感影像同一地物内部丰富的细节得到表征,空间信息更加丰富,地物的尺寸、形状以及相邻地物的关系得到更好的反映,但其光谱统计特性不如中低分辨率影像稳定,类内光谱差异较大,而传统分类方法仅依据像元的光谱值,因此在高分辨率影像分类中,传统方法往往不能获得好的结果。在此背景下,提出了一种多尺度空间特征融合的分类方法,旨在利用不同尺度的空间邻域特征弥补传统方法的不足。其基本过程是:首先针对不同尺度特点,用小波变换压缩空间邻域特征,并结合支持向量机得到不同尺度下的分类结果,然后根据尺度选择因子为每个像元选择最佳的类别。文中QuickBird和IKONOS影像实验证明该算法能有效提高高分辨率影像解译的精度。 相似文献
4.
关联向量机在高光谱影像分类中的应用 总被引:1,自引:0,他引:1
将关联向量机应用于高光谱影像分类, 实现高维空间中训练样本不足时分类器的精确建模。从稀疏贝叶
斯理论出发, 分析关联向量机原理, 探讨一对多、一对一和两种直接的多分类方法。实验环节比较了各种多分类方
法, 并从精度、稀疏性两方面将关联向量机与支持向量机等经典算法比较。实验结果表明, 两种直接的多分类方法
内存占用大、效率低; 一对多精度最高, 但效率较低; 一对一计算效率最高, 精度与一对多近似。关联向量机精度
不如支持向量机, 但解更稀疏, 测试样本较多时实时性好, 适合处理大场景高光谱影像的分类问题。 相似文献
5.
从支持向量机的基本理论出发,结合高光谱数据的分离性测度,提出了一种基于分离性测度的二叉树多类支持向量机分类器,并用OMIS传感器获得的高光谱遥感数据和Hyperion高光谱遥感数据进行实验,分析比较了各种多类SVM的分类精度,并和传统的光谱角制图和最小距离分类算法进行了比较。结果表明,SVM进行高光谱分类时,基于分离性测度的二叉树多支持向量机的分类精度最高。 相似文献
6.
基于支持向量机的特定目标检测方法 总被引:1,自引:1,他引:1
提出了运用支持向量机进行目标检测的方法。通过对航空影像中的军事目标和自然背景两类样本进行学习,支持向量机检测方法建立了针对目标和非目标有效区分的识别模型,该模型能够对航空影像中所有的区域进行快速的检测和识别,检测到所有感兴趣的人造军事目标。试验表明,该方法快速、高效且具备一定的鲁棒性。 相似文献
7.
目前的目标融合检测方法大都是基于多源遥感图像配准的,然而在实际的应用中,成像机理不同的多源遥感图像的精校正和图像间的配准是十分复杂的,难以确保其配准精度.为此,本文提出了一种基于目标关联的多源卫星遥感图像的兵营融合检测方法.该方法不对图像进行配准,而是根据单源图像的目标自动检测结果,利用图像的大地坐标信息,截取包含目标的同一地区的局部遥感图像,再分别提取多源遥感图像目标的特征,并根据其中冗余的特征,对提取的目标区域建立关联,再由关联检验确保特征关联的正确性,最后对目标特征进行融合决策,得到目标融合检测结果.实验结果表明,该方法能有效地利用多源遥感图像的信息,降低遥感图像目标检测的误判率,提高目标特征的准确度. 相似文献
8.
为利用高分辨率遥感影像实现高精度的飞机目标变化检测,提出了一种自适应的多特征融合变化检测与深度学习相结合的方法。首先,通过加权迭代的多元变化检测法获取变化强度图,并结合自适应的直方图统计法自动获取显著的变化与不变化样本;然后,提取多时相影像的光谱、边缘和纹理特征,完成多特征融合的变化检测,并通过形态学处理得到变化图斑;最后,利用训练的NIN(Network in Network)结构的卷积神经网络飞机识别模型,完成变化图斑的类型判别,实现变化飞机的检测。实验结果表明,本文方法在两组数据的正确率分别达到100%和91.89%,均优于对比方法,能实现准确可靠的飞机目标变化检测。 相似文献
9.
针对大坝变形系统的非线性、复杂性以及不确定等特点,提出一种优化多核相关向量机的大坝变形预测模型方法。通过对实验数据进行归一化处理,核函数的加权组合以及遗传算法对模型参数的优化,建立遗传算法优化多核相关向量机的大坝变形预测模型。实验结果表明:数据归一化能归纳统一样本的统计分布性,加快梯度下降求解最优解速度和提高预测精度;优化的加权核函数能有效提高模型预测精度;各项精度指标值均优于BP神经网络方法、多项式核相关向量机方法预测精度,证实优化的多核相关向量机模型是一种精度较高的大坝变形预测方法。 相似文献
10.
传统的基于滑窗搜索和人工设计特征相结合的目标检测方法难以适用于海量高分辨率遥感图像的目标检测任务。本文提出了一种基于多尺度形变特征卷积网络的目标检测方法,利用可形变卷积网络对具有尺度和方向变化的遥感图像目标进行特征提取,然后对多层残差模块提取出的形变特征进行区域预测和鉴别。具体模型包括两个子网络:①目标区域预测子网络用于从多层深度特征图提取目标候选区域;②目标区域鉴别子网络用于对目标候选区域进行分类和位置回归。本文在光学卫星图像10类目标数据集上对比了多种基于深度学习的目标检测算法,并将训练好的模型用于谷歌地球影像飞机坟场数据集和高分2号、吉林1号数据集的评估,试验结果表明本文方法能够快速准确地对多类目标进行检测,具有较好的稳健性和迁移性。 相似文献
11.
改进支持向量机的高分遥感影像道路提取 总被引:2,自引:0,他引:2
针对支持向量机受分类数的限制在高分辨率遥感影像中无法直接获取高精度道路网信息的问题,该文提出一种新的混合的基于支持向量机的方法:首先,利用模糊C均值聚类方法将输入的遥感影像分为3类,以减少支持向量机的错分现象;其次,运用支持向量机将不同类别的像素分为道路类和非道路类;最后,应用马尔科夫随机场对分类结果进行噪声去除,并采用形态学进行后处理,进而得到精确道路网信息。实验结果表明:该算法不仅能够从高分辨率遥感影像中提取出道路网,而且精度优于直接使用支持向量机算法以及对比算法。 相似文献
12.
建筑物图斑变化检测是遥感影像信息提取的重要内容之一,对于土地调查、自然资源常态化监测、土地执法监测等具有重要意义。岭南地区建设结构复杂,高分辨率遥感影像信息丰富,包含建筑结构细节多种多样,加上成像的季节不同、时间不同等因素导致建筑物变化信息的自动提取十分困难。针对此问题,本文提出了基于HRNet的语义分割模型,通过筛选保留高分辨率的特征层,从而保留更细节的图像信息。此外,结合图像分割二值化对结果进行优化,在一定程度上提高了高分辨率遥感影像建筑物变化自动检测的能力。 相似文献
13.
区域性地震滑坡信息获取目前主要通过遥感目视解译和计算机提取,存在主观性强、耗时费力、提取精度低等问题,导致难以满足灾后应急调查、灾情评估等方面的应用需求。采用资源三号、高分一号高分辨率遥感影像,以汶川震区为实验区,在地震滑坡灾害特征分析的基础上,通过多尺度最优分割方法构建多层次滑坡对象,融合光谱、纹理、几何等影像特征和地形特征信息建立多维滑坡识别规则集合,基于高分辨率影像认知模式与场景理解过程提出滑坡分层识别模型,从而实现地震滑坡空间分布及其滑源区、滑移区和堆积区的准确识别。实验区分析结果显示最低识别精度为81.89%,而滑坡的堆积区最容易被分辨,识别方法具有可推广性。研究成果可为灾后应急调查提供技术支撑,并促进国产高分辨率遥感卫星的地质灾害应用。 相似文献
14.
高分辨率遥感影像地物复杂,分类难度大,而深度学习方法可以提取地物更多更深层次的特征信息,适用于高分辨率遥感影像的地物分类。本文研究对高分辨率影像中不透水地面、建筑、低矮植被、树、车辆等地物的高精度分类。结合遥感多地物分类的特点,以DeepLab v3+网络模型为基础,提出E-DeepLab网络模型。主要改进为:(1)改进编码器和解码器的结合方式,使用简洁有效的加成连接方式。(2)缩小单次上采样倍数,增加上采样层,提高编码器与解码器连接的紧密性。(3)使用改进的自适应权重损失函数,自动调节地物损失权重。同时根据数据特点,提出结合DSM、NDVI数据等多通道训练方式。使用两个地区数据进行实验,结果表明,两地区精度均明显优于原始DeepLab v3+模型和其他相关模型,Potsdam地区总体提取精度达到93.2%,建筑物提取精度达到97.8%,Vaihingen地区总体提取精度达到90.7%,建筑物提取精度达到96.3%。目视对比分类图和标准标记图,两者具有高度的一致性。本文所提出的E-DeepLab网络在高分辨率遥感影像地物高精度提取和分类中有较好的应用价值。 相似文献
15.
16.
阴影检测与补偿涉及遥感影像的不确定性、算法复杂度高及提取自动化程度低等问题。基于Arc GIS Engine平台,结合Matlab和GDAL开发工具,根据构建的高分辨率遥感影像阴影检测和补偿算法设计了一体化的阴影检测与补偿系统。系统采用了数据分块读取、2%线性拉伸及DLL动态链接库等关键技术,解决了大数据量影像读取、影像不确定性及系统可扩展性等问题,实现了系统的集成和优化,提高了运行效率。测试结果表明,该系统在Quick Bird、资源三号(ZY-3)等高分辨率遥感影像的阴影检测与补偿中具有较高的精度和效率,可用于数据批处理。 相似文献
17.
为更好地发挥遥感技术在城市规划地图制作中的应用,高分辨率遥感影像成为城市地图制作中最重要的数据源。面对地物信息复杂、建筑物众多的城市地区,如何快速提取高分辨率遥感影像地图制作过程中相邻两景影像之间的镶嵌线具有重要意义。本文以国产卫星中分辨率最高、幅宽最小的GF-2影像为数据源,融合建筑物轮廓数据,研究了基于最短路径的A*搜索算法,实现了遥感影像地图制作的镶嵌线自动提取技术。结果表明,该方法能够自动生成避让建筑物的镶嵌线,速度快、镶嵌质量高,可广泛应用于城市地区高分辨率遥感影像地图制作。 相似文献
18.
高分辨率遥感影像目标形状特征多尺度描述与识别 总被引:1,自引:0,他引:1
在高分遥感影像中,同类地物目标形状具有多样性,单一尺度或单一形状模版不足以描述同类目标的形状。本文利用小波变换和Fourier描述子构建了一种目标形状的多尺度描述模型,并基于该模型给出了一种新的面向对象的高分遥感影像目标识别方法。从上到下,该模型采用尺度依次减小的小波近似系数对原始形状进行近似表示,并利用Fourier描述子对其进行定量描述。利用语义规则综合考虑多个尺度下的识别结果,得到最终识别结果,减小小尺度下分割目标破碎和大尺度下小目标无法识别造成的影响,提高识别精度。基于本文方法分别对高分遥感影像中的飞机和建筑物进行识别,对比实验表明,该方法具有较高识别精度。 相似文献