共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Climate Dynamics - East Asian summer monsoon (EASM) precipitation has changed significantly due to regional warming. In this study, effect of regional warming on the EASM summer precipitation is... 相似文献
3.
Future changes in East Asian summer monsoon precipitation climatology, frequency, and intensity are analyzed using historical climate simulations and future climate simulations under the RCP4.5 scenario using the World Climate Research Programme’s (WCRP) Coupled Model Intercomparison Project 5 (CMIP5) multi-model dataset. The model reproducibility is evaluated, and well performance in the present-day climate simulation can be obtained by most of the studied models. However, underestimation is obvious over the East Asian region for precipitation climatology and precipitation intensity, and overestimation is observed for precipitation frequency. The overestimation of precipitation frequency is mainly due to the large positive bias of the light precipitation (precipitation <10 mm/day) days, and the underestimation of precipitation intensity is mainly caused by the negative bias of the intense precipitation (precipitation >10 mm/day) intensity. For the future climate simulations, simple multi-model ensemble (MME) averages using all of the models show increases in precipitation and its intensity over almost all of East Asia, while the precipitation frequency is projected to decrease over eastern China and around Japan and increase in other regions. When the weighted MME is considered, no large difference can be observed compared with the simple MME. For the MME using the six best models that have good performance in simulating the present-day climate, the future climate changes over East Asia are very similar to those predicted using all of the models. Further analysis shows that the frequency and intensity of intense precipitation events are also projected to significantly increase over East Asia. Increases in precipitation frequency and intensity are the main contributors to increases in precipitation, and the contribution of frequency increases (contributed by 40.8 % in the near future and by 58.9 % by the end of the twenty-first century) is much larger than that of intensity increases (contributed by 29.9 % in the near future and by 30.1 % by the end of the twenty-first century). This finding also implies an increased risk of intense precipitation events over the East Asian region under global warming scenario. These results regarding future climate simulations show much greater reliability than those using CMIP3 simulations. 相似文献
4.
Projected changes in South Asian summer monsoon by multi-model global warming experiments 总被引:1,自引:0,他引:1
S. S. Sabade Ashwini Kulkarni R. H. Kripalani 《Theoretical and Applied Climatology》2011,103(3-4):543-565
South Asian summer monsoon (June through September) rainfall simulation and its potential future changes are evaluated in a multi-model ensemble of global coupled climate models outputs under World Climate Research Program Coupled Model Intercomparison Project (WCRP CMIP3) dataset. The response of South Asian summer monsoon to a transient increase in future anthropogenic radiative forcing is investigated for two time slices, middle (2031–2050) and end of the twenty-first century (2081–2100), in the non-mitigated Special Report on Emission Scenarios B1, A1B and A2 .There is large inter-model variability in the simulation of spatial characteristics of seasonal monsoon precipitation. Ten out of the 25 models are able to simulate space–time characteristics of the South Asian monsoon precipitation reasonably well. The response of these selected ten models has been examined for projected changes in seasonal monsoon rainfall. The multi-model ensemble of these ten models projects a significant increase in monsoon precipitation with global warming. The substantial increase in precipitation is observed over western equatorial Indian Ocean and southern parts of India. However, the monsoon circulation weakens significantly under all the three climate change experiments. Possible mechanisms for the projected increase in precipitation and for precipitation–wind paradox have been discussed. The surface temperature over Asian landmass increases in pre-monsoon months due to global warming and heat low over northwest India intensifies. The dipole snow configuration over Eurasian continent strengthens in warmer atmosphere, which is conducive for the enhancement in precipitation over Indian landmass. No notable changes have been projected in the El Niño–Monsoon relationship, which is useful for predicting interannual variations of the monsoon. 相似文献
5.
东亚冬夏季风关系在1970s末的年代际转变 总被引:1,自引:0,他引:1
利用NCEP/NCAR和Hadley中心的大气与海洋再分析资料,选取具有代表性的东亚冬、夏季风指数,采用滑动相关和线性回归等方法,主要讨论了受ENSO影响的东亚冬季风分量和后期夏季风之间关系的年代际变化,并分析了二者关系发生变化的原因。结果表明:在1965—1979年,受ENSO影响的冬季风与后期夏季风强度的对应关系并不明显。在1980—2004年,受ENSO影响的冬季风强,对应后期的夏季风偏弱,弱冬季风对应的后期夏季风偏强。当受ENSO影响的冬季风较强时,冬季在对流层低层西北太平洋出现了异常气旋并可以维持到次年夏季,低纬地区位势高度偏低,削弱了西太平洋副热带高压,异常气旋西部的偏北气流阻碍了西南风的北进,导致夏季风偏弱。海表温度异常在1980年前后春、夏季不同的分布型可以解释环流在不同时段内的差异。 相似文献
6.
《大气和海洋科学快报》2017,(5)
东亚夏季气候受到东北亚低压和西北太平洋副热带高压的调制,但目前对于东北亚低压,特别是其在全球变暖下的变化及其影响所知甚少。本文对比CMIP5的20个模式的历史气候模拟、RCP4.5和8.5两种未来典型浓度路径下模拟试验的结果,预估了东北亚低压在21世纪末的变化特征。结果显示预估的东北亚低压强度在21世纪末将减弱,并且在RCP8.5情景下其强度减弱更为明显;对应东北亚低压减弱,低压西侧出现异常南风,导致更多的水汽向北输送到东北亚地区,有利于未来该地区降水的增加。 相似文献
7.
8.
The East Asian summer monsoon: an overview 总被引:38,自引:1,他引:38
Summary The present paper provides an overview of major problems of the East Asian summer monsoon. The summer monsoon system over East Asia (including the South China Sea (SCS)) cannot be just thought of as the eastward and northward extension of the Indian monsoon. Numerous studies have well documented that the huge Asian summer monsoon system can be divided into two subsystems: the Indian and the East Asian monsoon system which are to a greater extent independent of each other and, at the same time, interact with each other. In this context, the major findings made in recent two decades are summarized below: (1) The earliest onset of the Asian summer monsoon occurs in most of cases in the central and southern Indochina Peninsula. The onset is preceded by development of a BOB (Bay of Bengal) cyclone, the rapid acceleration of low-level westerlies and significant increase of convective activity in both areal extent and intensity in the tropical East Indian Ocean and the Bay of Bengal. (2) The seasonal march of the East Asian summer monsoon displays a distinct stepwise northward and northeastward advance, with two abrupt northward jumps and three stationary periods. The monsoon rain commences over the region from the Indochina Peninsula-the SCS-Philippines during the period from early May to mid-May, then it extends abruptly to the Yangtze River Basin, and western and southern Japan, and the southwestern Philippine Sea in early to mid-June and finally penetrates to North China, Korea and part of Japan, and the topical western West Pacific. (3) After the onset of the Asian summer monsoon, the moisture transport coming from Indochina Peninsula and the South China Sea plays a crucial “switch” role in moisture supply for precipitation in East Asia, thus leading to a dramatic change in climate regime in East Asia and even more remote areas through teleconnection. (4) The East Asian summer monsoon and related seasonal rain belts assumes significant variability at intraseasonal, interannual and interdecadal time scales. Their interaction, i.e., phase locking and in-phase or out-phase superimposing, can to a greater extent control the behaviors of the East Asian summer monsoon and produce unique rythem and singularities. (5) Two external forcing i.e., Pacific and Indian Ocean SSTs and the snow cover in the Eurasia and the Tibetan Plateau, are believed to be primary contributing factors to the activity of the East Asian summer monsoon. However, the internal variability of the atmospheric circulation is also very important. In particular, the blocking highs in mid-and high latitudes of Eurasian continents and the subtropical high over the western North Pacific play a more important role which is quite different from the condition for the South Asian monsoon. The later is of tropical monsoon nature while the former is of hybrid nature of tropical and subtropical monsoon with intense impact from mid-and high latitudes. 相似文献
9.
10.
Hui Ding Richard J. Greatbatch Wonsun Park Mojib Latif Vladimir A. Semenov Xuguang Sun 《Climate Dynamics》2014,42(1-2):367-379
The variability of the East Asian summer monsoon (EASM) is studied using a partially coupled climate model (PCCM) in which the ocean component is driven by observed monthly mean wind stress anomalies added to the monthly mean wind stress climatology from a fully coupled control run. The thermodynamic coupling between the atmospheric and oceanic components is the same as in the fully coupled model and, in particular, sea surface temperature (SST) is a fully prognostic variable. The results show that the PCCM simulates the observed SST variability remarkably well in the tropical and North Pacific and Indian Oceans. Analysis of the rainfall-SST and rainfall-SST tendency correlation shows that the PCCM exhibits local air-sea coupling as in the fully coupled model and closer to what is seen in observations than is found in an atmospheric model driven by observed SST. An ensemble of experiments using the PCCM is analysed using a multivariate EOF analysis to identify the two major modes of variability of the EASM. The PCCM simulates the spatial pattern of the first two modes seen in the ERA40 reanalysis as well as part of the variability of the first principal component (correlation up to 0.5 for the model ensemble mean). Different from previous studies, the link between the first principal component and ENSO in the previous winter is found to be robust for the ensemble mean throughout the whole period of 1958–2001. Individual ensemble members nevertheless show the breakdown in the relationship before the 1980’s as seen in the observations. 相似文献
11.
12.
The East Asian subtropical summer monsoon: Recent progress 总被引:2,自引:0,他引:2
The East Asian subtropical summer monsoon (EASSM) is one component of the East Asian summer monsoon system, and its evolution determines the weather and climate over East China. In the present paper, we firstly demonstrate the formation and advancement of the EASSM rainbelt and its associated circulation and precipitation patterns through reviewing recent studies and our own analysis based on JRA-55 (Japanese 55-yr Reanalysis) data and CMAP (CPC Merged Analysis of Precipitation), GPCP (Global Precipitation Climatology Project), and TRMM (Tropical Rainfall Measuring Mission) precipitation data. The results show that the rainy season of the EASSM starts over the region to the south of the Yangtze River in early April, with the establishment of strong southerly wind in situ. The EASSM rainfall, which is composed of dominant convective and minor stratiform precipitation, is always accompanied by a frontal system and separated from the tropical summer monsoon system. It moves northward following the onset of the South China Sea summer monsoon. Moreover, the role of the land–sea thermal contrast in the formation and maintenance of the EASSM is illustrated, including in particular the effect of the seasonal transition of the zonal land–sea thermal contrast and the influences from the Tibetan Plateau and midlatitudes. In addition, we reveal a possible reason for the subtropical climate difference between East Asia and East America. Finally, the multi-scale variability of the EASSM and its influential factors are summarized to uncover possible reasons for the intraseasonal, interannual, and interdecadal variability of the EASSM and their importance in climate prediction. 相似文献
13.
The spatial patterns and regional-scale surface air temperature (SAT) changes during the last millennium,as well as the variability of the East Asian summer monsoon (EASM) were simulated with a low-resolution version of Flexible Global Ocean-Atmosphere-Land-Sea-ice (FGOALS-gl) model.The model was driven by both natural and anthropogenic forcing agents.Major features of the simulated past millennial Northern Hemisphere (NH) mean SAT variations,including the Medieval Climate Anomaly (MCA),the Little Ice Age (LIA) and the 20th Century Warming (20CW),were generally consistent with the reconstructions.The simulated MCA showed a global cooling pattern with reference to the 1961-90 mean conditions,indicating the 20CW to be unprecedented over the last millennium in the simulation.The LIA was characterized by pronounced coldness over the continental extratropical NH in both the reconstruction and the simulation.The simulated global mean SAT difference between the MCA and LIA was 0.14°C,with enhanced warming over high-latitude NH continental regions.Consistencies between the simulation and the reconstruction on regional scales were lower than those on hemispheric scales.The major features agreed well between the simulated and reconstructed SAT variations over the Chinese domain,despite some inconsistency in details among different reconstructions.The EASM circulation during the MCA was stronger than that during the LIA The corresponding rainfall anomalies exhibited excessive rainfall in the north but deficient rainfall in the south.Both the zonal and meridional thermal contrast were enhanced during the MCA.This temperature anomaly pattern favored a stronger monsoon circulation. 相似文献
14.
The Community Climate Model version 2 (CCM2) of the National Center for Atmospheric Research (NCAR) was used to investigate
the effects of the land-surface characteristics on the East Asian summer monsoon. Four numerical experiments were performed
in this study. They include the control run, the biosphere–atmosphere transfer scheme (BATS) run, the heavy snow run, and
the light snow run. The results show that CCM2 can reasonably simulate many characteristics of the East Asian summer monsoon,
such as the 850-hPa southwesterlies, 200-hPa easterlies, high precipitation rate, two monsoon subsystems, the low-level subtropical
high, and the upper level South Asian anticyclone. Nevertheless, the model still exhibits some systematic errors, including
oversimulation of the temperature over the Eurasian continent, which in turn intensifies the monsoon circulations. In the
BATS run, the model can significantly relieve the temperature bias over the continent in spring and early summer. However,
the effect of BATS decreases in the summer due to excessive incoming solar radiation. The Eurasian continent is still occupied
by an oversimulated thermal low in summer. In the heavy snow case, the high albedo of snow and larger soil moisture suppress
the warming rate of the surface and atmosphere in the early summer and hence the cooler troposphere results in a weaker monsoon
circulation. Moreover, anomalous cyclonic flows are found in the leeside of Tibetan Plateau (i.e. the southwest vortex in
China) in the heavy snow case. This may shed a light on the precipitation anomalies (floods) over Yangtze River Valley (Central
China) and eastern Asia due to intensified baroclinic disturbances.
Received: 8 September 1999 / Accepted: 5 June 2000 相似文献
15.
东亚夏季风和ENSO关系的不稳定性 总被引:8,自引:0,他引:8
Wang Huijun 《大气科学进展》2002,19(1):1-11
通过本项研究,发现了东亚夏季风和ENSO的相互关系在长期变化中是不稳定的。不稳定指的是在一段时期两者关系比较紧密而在另一段时期两者关系比较微弱。文章揭示:在东亚季风和ENSO关系紧密时期(HCP)和关系微弱时期(LCP)夏季大气环流的年际变率有显著差别。在关系紧密时期,南热带东太平洋区的信风、热带东太平洋区的低层大气温度、两个半球的副热带高压系统等的年际变率均显著高于关系微弱时期。并且,HCP和LCP时期中国夏季降水和ENSO的关系也有明显差异。 相似文献
16.
Uncertainty in projections of the South Asian summer monsoon under global warming by CMIP6 models: Role of tropospheric meridional thermal contrast 下载免费PDF全文
本文基于第六次国际耦合模式比较计划共18个模式的工业革命前实验和CO2浓度突然四倍实验,发现在CO2四倍强迫下,南亚夏季风环流呈显著减弱趋势,但减弱强度存在较大模式间差异.利用Webster-Yang指数和经向哈得莱环流指数的下降趋势表征SASM减弱强度,发现该下降趋势与欧亚大陆-印度洋之间对流层上层经向温度梯度的变化值(EUTT-IUTT)高度相关.进一步利用气候反馈-响应分析方法进行分析,发现EUTT-IUTT变化的模式间差异主要来自于大气动力过程,其次是云的短波辐射效应的贡献.地表潜热通量和云的长波辐射效应缩小了EUTT-IUTT变化的模式间差异. 相似文献
17.
为了进一步了解全球变暖背景下北极海冰与东亚冬季风的关系及其变化,本文选用东亚冬季风北模态及南模态作为东亚冬季风指数,利用滑动相关分析、回归分析及合成分析研究了全球变暖背景下1953—2021年北极海冰密集度与东亚冬季风关系的变化特征及其机制。结果表明:11月巴伦支海海冰密集度与东亚冬季风北模态之间的关系发生了显著变化,从1962—1977年显著正相关转为1983—1999年显著负相关,2000年以后两者无显著关系。1962—1977年11月巴伦支海海冰偏多对应东亚冬季风偏强,这是大气环流影响海冰的结果,11月的大气环流异常特征维持到了冬季,使得欧亚大陆上空大气呈现出北极涛动(Arctic Oscillation,AO)负位相,在增强东亚冬季风的同时将中高纬大陆干冷空气输送至巴伦支海,在表面风应力的作用下巴伦支海海冰增多。1983—1999年则由前一时期的大气环流影响海冰变为海冰影响大气环流,11月巴伦支海海冰显著减少在冬季激发出了北极涛动负位相,加强东亚大槽及东亚高空西风急流,从而使得东亚冬季风偏强。2000年以后北极海冰与东亚冬季风北模态的关系明显减弱,此时东亚冬季风与北极涛动的负相关关系更为显著。 相似文献
18.
19.
东亚高空急流(简称急流)对夏季东亚地区的天气和气候有着重要影响。本文利用CMIP5的历史气候模拟试验和RCP8.5路径下的未来气候变化预估试验数据,预估了急流在6个全球变暖阈值(1.5℃,2.0℃,2.5℃,3.0℃,3.5℃和4.0℃)下相对于当代气候的变化情况。结果表明东亚高空西风在1.5℃阈值下略微减弱。在2.0℃阈值下,西风在急流轴(约40°N)南侧增强,北侧减弱。这种变化趋势在2.5℃和更高的变暖阈值下愈加明显,使急流轴逐渐向南移动,但急流强度变化不大。研究表明,在急流的入口和出口区,对流层中上层大气升温速度相对较慢,导致在急流轴南(北)侧出现向南(北)的负(正)经向温度梯度,使西风在南(北)侧增强(减弱). 相似文献
20.
Interference of the East Asian Winter Monsoon in the Impact of ENSO on the East Asian Summer Monsoon in Decaying Phases简 总被引:2,自引:0,他引:2
The variability of the East Asian winter monsoon (EAWM) can be divided into an ENSO-related part (EAWMEN) and an ENSO-unrelated part (EAWMres).The influence of EAWMres on the ENSO-East Asian summer monsoon (EASM) relationship in the decaying stages of ENSO is investigated in the present study.To achieve this,ENSO is divided into four groups based on the EAWMres:(1) weak EAWMres-E1Ni(n)o (WEAWMres-EN); (2) strong EAWMres-E1Ni(n)o (SEAWMresEN); (3) weak EAWMres-La Ni(n)a (WEAWMres-LN); (4) strong EAWMres-La Ni(n)a (SEAWMres-LN).Composite results demonstrate that the EAWMres may enhance the atmospheric responses over East Asia to ENSO for WEAWMres-EN and SEAWMres-LN.The corresponding low-level anticyclonic (cyclonic) anomalies over the western North Pacific (WNP) associated with El Ni(n)o (La Ni(n)a) tend to be strong.Importantly,this feature may persist into the following summer,causing abundant rainfall in northern China for WEAWMres-EN cases and in southwestern China for SEAWMres-LN cases.In contrast,for the SEAWMres-EN and WEAWMres-LN groups,the EAWMres tends to weaken the atmospheric circulation anomalies associated with E1 Ni(n)o or La Ni(n)a.In these cases,the anomalous WNP anticyclone or cyclone tend to be reduced and confined to lower latitudes,which results in deficient summer rainfall in northern China for SEAWMres-EN and in southwestern China for WEAWMres-LN.Further study suggests that anomalous EAWMres may have an effect on the extra-tropical sea surface temperature anomaly,which persists into the ensuing summer and may interfere with the influences of ENSO. 相似文献