共查询到20条相似文献,搜索用时 15 毫秒
1.
The recent concerns regarding the seismic safety of the existing building stock have highlighted the need for an improvement of current seismic assessment procedures. Alongside with the development of more advanced commercial software tools and computational capacities, nonlinear dynamic analysis is progressively becoming a common and preferable procedure in the seismic assessment of buildings. Besides the complexity associated with the formulation of the mathematical model, major issues arise related with the definition of the seismic action, which can lead to different levels of uncertainty in terms of local and global building response. Aiming to address this issue, a comparative study of different code‐based record selection methods proposed by Eurocode 8, ASCE41‐13 and NZS1170.5:2004 is presented herein. The various methods are employed in the seismic assessment of four steel buildings, designed according to different criteria, and the obtained results are compared and discussed. Special attention is devoted to the influence of the number of real ground motion records selected on the estimation of the mean seismic response and, importantly, to the efficiency that is achieved when an additional selection criteria, based on the control of the spectral mismatch of each individual record with respect to the reference response spectrum, is adopted. The sufficiency of the methods with respect to the pairs of M–R of the selected group of records and the robustness of the scaling procedure are also examined. The paper closes with a study which demonstrates the suitability of a simplified probability‐based approach recently proposed for estimating mean seismic demands. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
2.
3.
This paper presents new trends in the relationship between the ductility reduction factor and the ductility demand in the seismic design of buildings. A total of 4860 inelastic time-history analyses were carried out to study this relationship using 60 single-degree-of-freedom models excited by an ensemble of 81 earthquake accelerogram records from around the world. The asymmetrical distribution of the results highlighted the inaccuracies associated with assuming a normal distribution simply described by the mean and standard deviation to represent the data. A probability of exceedence approach has been used based on counting the number of occurrences the ductility demand exceeds a specified level. The ductility reduction factors developed in this study are consistent with other studies in the long-period range but are different in the short-period range. The ductility reduction factor for very short period buildings of limited ductility has been found to be greater than previously predicted. © 1998 John Wiley & Sons, Ltd. 相似文献
4.
Discussion of ‘Modelling viscous damping in nonlinear response history analysis of buildings for earthquake excitation’ by Anil K. Chopra and Frank McKenna 下载免费PDF全文
John F. Hall 《地震工程与结构动力学》2016,45(13):2229-2233
This discussion deals with recommendations in the paper on appropriate damping formulations for use in nonlinear response history analysis of buildings. Concern over potentially excessive damping forces and moments should extend beyond the damping moments produced by the stiffness proportional part of Rayleigh damping that corresponds to rotational springs used to explicitly model plastic hinges. The key to an appropriate damping formulation for nonlinear analysis is a realistic mechanism that allows all damping forces and moments to be meaningfully assessed. Then features can be added to keep these forces and moments within reasonable bounds. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
5.
This paper evaluates the American FEMA 356 and the Greek GRECO (EC 8 based) procedural assumptions for the assessment of the seismic capacity of existing buildings via pushover analyses. Available experimental results from a four-storeyed building are used to compare the two different sets of assumptions. If the comparison is performed in terms of initial stiffness or plastic deformation capacities, the different partial assumptions of the procedures lead to large discrepancies, while the opposite occurs when the comparison is performed in terms of structural performance levels at target displacements. According to FEMA 356 assumptions, effective yield point rigidities are approximately four times greater than those of EC 8. Both procedures predicted that the structure would behave elastically during low-level excitation and that the structural performance level at target displacement for a high-level excitation would be between the Immediate Occupancy and Life Safety performance levels. 相似文献
6.
Response of asymmetric buildup under earthquake excitation often involves lateral vibration coupled with torsional vibration. Floor slab is, in general, assumed as rigid along the in‐plane direction. Building code provisions to account for the torsional effect in static force procedure are based on centre of rigidity or shear centre of the building. A convenient procedure is developed here to locate the centre of rigidity or shear centre, which can be implemented, using any standard building analysis software. The procedure is applicable for orthogonal as well as non‐orthogonal building systems and accounts for all possible definitions of static eccentricity to compute the design response. An irregular building is analysed to illustrate the proposed methodology. Significant variation in member force resultants is observed due to different definitions of static eccentricity. Finally, a mathematical proof is presented to substantiate the applicability of the proposed procedure to a non‐orthogonal building. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
7.
Non‐ductile reinforced concrete buildings represent a prevalent construction type found in many parts of the world. Due to the seismic vulnerability of such buildings, in areas of high seismic activity non‐ductile reinforced concrete buildings pose a significant threat to the safety of the occupants and damage to such structures can result in large financial losses. This paper introduces advanced analytical models that can be used to simulate the nonlinear dynamic response of these structural systems, including collapse. The state‐of‐the‐art loss simulation procedure developed for new buildings is extended to estimate the expected losses of existing non‐ductile concrete buildings considering their vulnerability to collapse. Three criteria for collapse, namely first component failure, side‐sway collapse, and gravity‐load collapse, are considered in determining the probability of collapse and the assessment of financial losses. A detailed example is presented using a seven‐story non‐ductile reinforced concrete frame building located in the Los Angeles, California. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
8.
根据漳州市规划区内房屋的调查资料及建筑物的抗震能力分析方法,对漳州市房屋进行了震害预测,并通过漳州市建筑物抗震能力评价分析结果,提出了有针对性的抗震减灾策略,为编制漳州市的抗震防灾规划和制定防灾决策提供了重要的科学依据。 相似文献
9.
Ahmet Can Altunişik Alemdar Bayraktar Barış Sevim Şevket Ateş 《Soil Dynamics and Earthquake Engineering》2011
This paper describes ambient vibration based seismic evaluation procedure of an isolated highway bridge. The procedure includes finite element modeling, ambient vibration testing, finite element model updating and time history analysis. Gülburnu Highway Bridge located on the Giresun–Espiye state highway is selected as a case study. Three dimensional finite element model of the bridge is created by SAP2000 software to determine the dynamic characteristics analytically. Since input force is not measured, Operational Modal Analysis is applied to identify dynamic characteristics. Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are used to obtain experimental dynamic characteristics. Analytical and experimental dynamic characteristic are compared with each other and finite element model of the bridge is updated by changing of material properties to reduce the differences between the results. Analytical model of the bridge after model updating is analyzed using 1992 Erzincan earthquake record to determine the seismic behavior. EW, NS and UP components of the ground motion are applied to the bridge at the longitudinal, transverse and vertical directions, respectively. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of highway bridges. Maximum differences between the natural frequencies are reduced averagely from 9% to 2% by model updating. It is seen from the earthquake analyses that friction pendulum isolators are very effective in reducing the displacements and internal forces. 相似文献
10.
《建筑工程抗震设防分类标准》(GB50223-2008)和《关于学校、医院等人员密集场所建设工程抗震设防要求确定原则的通知》(中震防发49号)从不同角度对学校和医院等乙类建筑的抗震设防提出要求。通过抗震设计中地震作用计算的原理以及国内外规范抗震设计的方法的阐述,讨论在不同抗震设防烈度下何种方法对乙类建筑结构抗震能力的提高更为有效,并通过对混凝土框架和钢框架的实例分析和验证,提出设计建议。为规范的修订完善提供参考。 相似文献
11.
The effects of higher modes and torsion have a significant impact on the seismic responses of asymmetric-plan tall buildings.A consecutive modal pushover(CMP) procedure is one of the pushover methods that have been developed to consider these effects.The aim of this paper is to modify the(CMP) analysis procedure to estimate the seismic demands of one-way asymmetric-plan tall buildings with dual systems.An analysis of 10-,15-and 20-story asymmetric-plan buildings is carried out,and the results from the modified consecutive modal pushover(MCMP) procedure are compared with those obtained from the modal pushover analysis(MPA) procedure and the nonlinear time history analysis(NLTHA).The MCMP estimates of the seismic demands of one-way asymmetric-plan buildings demonstrate a reasonable accuracy,compared to the results obtained from the NLTHA.Furthermore,the accuracy of the MCMP procedure in the prediction of plastic hinge rotations is better than the MPA procedure.The new pushover procedure is also more accurate than the FEMA load distribution and the MPA procedure. 相似文献
12.
As a result of rapid economic growth and urbanization in the past two decades,many tall buildings have been constructed in China Mainland,offering researchers and practitioners an excellent opportunity for research and practice in the field of structural engineering. This paper reviews progress by researchers throughout China Mainland on the seismic research of tall buildings,focusing on three major topics that impact the seismic performance of tall buildings. These are:(1) new types of steel-concrete composite structural members such as steel-concrete composite shear walls and columns,(2) earthquake resilient shear wall structures such as shear walls with replaceable structural components,self-centering shear walls and rocking walls,and(3) performance-based seismic design,including seismic performance index,performance level and design method. The paper concludes by presenting future research needs and directions in this field. 相似文献
13.
Modelling uncertainty can significantly affect the structural seismic reliability assessment. However, the limit state excursion due to this type of uncertainty may not be described by a Poisson process as it lacks renewal properties with the occurrence of each earthquake event. Furthermore, considering uncertainties related to ground motion representation by employing recorded ground motions together with modelling uncertainties is not a trivial task. Robust fragility assessment, proposed previously by the authors, employs the structural response to recorded ground motion as data in order to update prescribed seismic fragility models. Robust fragility can be extremely efficient for considering also the structural modelling uncertainties by creating a dataset of one-to-one assignments of structural model realizations and as-recorded ground motions. This can reduce the computational effort by more than 1 order of magnitude. However, it should be kept in mind that the fragility concept itself is based on the underlying assumption of Poisson-type renewal. Using the concept of updated robust reliability, considering both the uncertainty in ground motion representation based on as-recorded ground motion and non ergodic modelling uncertainties, the error introduced through structural reliability assessment by using the robust fragility is quantified. It is shown through specific application to an existing RC frame that this error is quite small when the product of the time interval and the standard deviation of failure rate is small and is on the conservative side. 相似文献
14.
Simplified procedure for the estimation of local inelastic deformation demands for seismic performance assessment of buildings 下载免费PDF全文
The implementation of performance‐based design and assessment procedures in seismic codes leads to the need for an accurate estimation of local component demands. According to Part 3 of Eurocode 8 safety checks should be always conducted in terms of plastic rotations, even when linear elastic methods of analysis are used. This paper demonstrates that linear analysis fails to predict inelastic deformation demands at the member level. Therefore, a simplified procedure that allows for the estimation of beam inelastic deformation demands using linear elastic methods of analysis in a simple and conservative way is presented herein. A number of moment‐resisting steel frames designed according to different criteria and exhibiting different column‐to‐beam strength ratios were analysed and used for the derivation of the proposed procedure. A comparative study between alternative methods of quantifying inelastic deformation demands using linear analysis is also carried out. The results obtained allow concluding about the efficiency and conservativeness of the proposed procedure which makes it attractive to be employed in engineering practice. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
15.
This paper investigates the seismic response of tall cantilever wall buildings subjected to pulse type ground motion, with special focus on the relation between the characteristics of ground motion and the higher‐modes of response. Buildings 10, 20, and 40 stories high were designed such that inelastic deformation was concentrated at a single flexural plastic hinge at their base. Using nonlinear response history analysis, the buildings were subjected to near‐fault seismic ground motions and simple closed‐form pulses, which represented distinct pulses within the ground motions. Euler–Bernoulli beam models with lumped mass and lumped plasticity were used to model the buildings. The response of the buildings to the closed‐form pulses fairly matched that of the near‐fault records. Subsequently, a parametric study was conducted for the buildings subjected to three types of closed‐form pulses with a broad range of periods and amplitudes. The results of the parametric study demonstrate the importance of the ratio of the fundamental period of the structure to the period of the pulse to the excitation of higher modes. The study shows that if the modal response spectrum analysis approach is used — considering the first four modes with a uniform yield reduction factor for all modes, and with the square root of sum of squares modal combination rule — it significantly underestimates bending moment and shear force responses. A response spectrum analysis method that uses different yield reduction factors for the first and the higher modes is presented. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
16.
AshutoshBagchi 《地震工程与工程振动(英文版)》2004,3(2):223-236
This paper presents a simplified method of evaluating the seismic performance of buildings. The proposed method is based on the transformation of a multiple degree of freedom (MDOF) system to an equivalent single degree of freedom (SDOF) system using a simple and intuitive process. The proposed method is intended for evaluating the seismic performance of the buildings at the intermediate stages in design, while a rigorous method would be applied to the final design. The performance of the method is evaluated using a series of buildings which are assumed to be located in Victoria in western Canada, and designed based on the upcoming version of the National Building Code of Canada which is due to be published in 2005. To resist lateral loads, some of these buildings contain reinforced concrete moment resisting frames,while others contain reinforced concrete shear walls. Each building model has been subjected to a set of site-specific seismic spectrum compatible ground motion records, and the response has been determined using the proposed method and the general method for MDOF systems. The results from the study indicate that the proposed method can serve as a useful tool for evaluation of seismic performance of buildings, and carrying out performance based design. 相似文献
17.
Envelope‐based pushover analysis procedure for the approximate seismic response analysis of buildings 下载免费PDF全文
An envelope‐based pushover analysis procedure is presented that assumes that the seismic demand for each response parameter is controlled by a predominant system failure mode that may vary according to the ground motion. To be able to simulate the most important system failure modes, several pushover analyses need to be performed, as in a modal pushover analysis procedure, whereas the total seismic demand is determined by enveloping the results associated with each pushover analysis. The demand for the most common system failure mode resulting from the ‘first‐mode’ pushover analysis is obtained by response history analysis for the equivalent ‘modal‐based’ SDOF model, whereas demand for other failure modes is based on the ‘failure‐based’ SDOF models. This makes the envelope‐based pushover analysis procedure equivalent to the N2 method provided that it involves only ‘first‐mode’ pushover analysis and response history analysis of the corresponding ‘modal‐based’ SDOF model. It is shown that the accuracy of the approximate 16th, 50th and 84th percentile response expressed in terms of IDA curves does not decrease with the height of the building or with the intensity of ground motion. This is because the estimates of the roof displacement and the maximum storey drift due to individual ground motions were predicted with a sufficient degree of accuracy for almost all the ground motions from the analysed sets. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
18.
Stavros A. Anagnostopoulos Christina Alexopoulou Kyriakos G. Stathopoulos 《地震工程与结构动力学》2010,39(5):521-540
This paper presents evidence that the extension of conclusions based on the widely used simplified, one story, eccentric systems of the shear‐beam type, to actual, nonsymmetric buildings and consequent assessments of the pertinent code provisions, can be quite erroneous, unless special care is taken to match the basic properties of the simplified models to those of the real buildings. The evidence comes from comparisons of results obtained using three variants of simplified models, with results from the inelastic dynamic response of three‐ and five‐story eccentric buildings computed with detailed MDOF systems, where the members are idealized with the well‐known plastic hinge model. In addition, a convincing answer is provided on a pertinent hanging controversy: For frame‐type buildings, designed in accordance with the dynamic provisions of modern codes (such as EC8 or IBC2000), which allow reduced shears at the stiff edge due to torsion, the frames at the flexible sides are the critical elements in terms of ductility demands. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
19.
Performance based design becomes an effective method for estimating seismic demands of buildings. In asymmetric plan tall building the effects of higher modes and torsion are crucial. The consecutive modal pushover (CMP) procedure is one of the procedures that consider these effects. Also in previous studies the influence of soil-structure interaction (SSI) in pushover analysis is ignored. In this paper the CMP procedure is modified for one-way asymmetric plan mid and high-rise buildings considering SSI. The extended CMP (ECMP) procedure is proposed in order to overcome some limitations of the CMP procedure. In this regard, 10, 15 and 20 story buildings with asymmetric plan are studied considering SSI assuming three different soil conditions. Using nonlinear response history analysis under a set of bidirectional ground motion; the exact responses of these buildings are calculated. Then the ECMP procedure is evaluated by comparing the results of this procedure with nonlinear time history results as an exact solution as well as the modal pushover analysis procedure and FEMA 356 load patterns. The results demonstrate the accuracy of the ECMP procedure. 相似文献
20.
Sergio Lagomarsino 《Bulletin of Earthquake Engineering》2006,4(4):445-463
In all European countries the will to conserve the building heritage is very strong. Unfortunately, large areas in Europe are characterised by a high level of seismic hazard and the vulnerability of ancient masonry structures is often relevant. The large number of monumental buildings in urban areas requires facing the problem with a methodology that can be applied at territorial scale, with simplified models which need little easily obtainable, data. Within the Risk-UE project, a new methodology has been stated for the seismic vulnerability assessment of monumental buildings, which considers two different approaches: a macroseismic model, to be used with macroseismic intensity hazard maps, and a mechanical based model, to be applied when the hazard is provided in terms of peak ground accelerations and spectral values. Both models can be used with data of different reliability and depth. This paper illustrates the theoretical basis and defines the parameters of the two models. An application to an important church is presented. 相似文献