首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
饱和砂土透镜体液化对建筑物地震反应的影响   总被引:2,自引:0,他引:2  
采用一种能分析有结构物存在的场地地震液化问题的二维有效应力有限元分析方法,研究饱和砂土透镜体液化对建筑物地震反应的影响。计算中采用了更为合理的迭代方式处理土的非线性,考虑了Kc对孔压的作用,引入了透射边界。取建筑物为短周期结构。考虑了透镜化宽度、厚度、埋深以及输入地震动类型幅值对结构加速度反应的影响。计算结果表明:(1)所采用的方法与已有的模型实验结果有很好的对应关系,可用于招考莪存在下的场地砂土  相似文献   

2.
利用等位移原则估计高层结构的非弹性地震反应(二)   总被引:4,自引:1,他引:3  
通过高层结构弹性和非弹性地震时程反应分析,研究了两者的位移反应关系。结果表明:结构在不同地震作用下非弹性总位移角反应的平均值与弹性反应十分接近,基本符合等位移原则,可以用后者分析结果直接估计前者;结构最大层间位移角反应的平均值在弱和中等非线性阶段亦与弹性反应十分接近,在强非线性阶段则大于弹性反应,经数据拟合,初步提供了一个在此阶段由弹性最大层间位移角反应估计非弹性反应的近似公式。  相似文献   

3.
水平地震作用下无锚固储罐应力与应变响应分析   总被引:1,自引:0,他引:1  
在考虑地基与储罐相互作用的情况下,采用有限元法对储罐在水平地震荷载作用下的应力及应变反应进行了数值计算。对3×104m3和2×103m3罐壁应力及应变的分析结果表明:环向、轴向应力及应变的分布形式呈现出明显的下部大上部小的特点,在偏底部的位置出现应力和应变的峰值;储液罐在水平地震作用下“象足”变形是由纵向压应力达到屈曲临界应力导致的屈曲破坏,不是强度破坏,即破坏属于失稳破坏而非强度破坏。  相似文献   

4.
一类多层偏心结构的地震反应研究   总被引:6,自引:0,他引:6  
本文用空间的两向抗侧力体系振动模型对五层结构分别分析了首层偏心,中间层偏心,顶层偏心和均匀偏心等不同偏心情况下的弹性地震反应规律,研究了静力偏心距,结构的基本平动周期,平扭频率比,非激励方向的平动频率等对结构的名义基底剪力和偏心层构件的最大剪力系数的影响。  相似文献   

5.
A comprehensive parametric study on the inelastic seismic response of seismically isolated RC frame buildings, designed for gravity loads only, is presented. Four building prototypes, with 23 m × 10 m floor plan dimensions and number of storeys ranging from 2 to 8, are considered. All the buildings present internal resistant frames in one direction only, identified as the strong direction of the building. In the orthogonal weak direction, the buildings present outer resistant frames only, with infilled masonry panels. This structural configuration is typical of many existing RC buildings, realized in Italy and other European countries in the 60s and 70s. The parametric study is based on the results of extensive nonlinear response‐time history analyses of 2‐DOF systems, using a set of seven artificial and natural seismic ground motions. In the parametric study, buildings with strength ratio (Fy/W) ranging from 0.03 to 0.15 and post‐yield stiffness ratio ranging from 0% to 6% are examined. Three different types of isolation systems are considered, that is, high damping rubber bearings, lead rubber bearings and friction pendulum bearings. The isolation systems have been designed accepting the occurrence of plastic hinges in the superstructure during the design earthquake. The nonlinear response‐time history analyses results show that structures with seismic isolation experience fewer inelastic cycles compared with fixed‐base structures. As a consequence, although limited plastic deformations can be accepted, the collapse limit state of seismically isolated structures should be based on the lateral capacity of the superstructure without significant reliance on its inherent hysteretic damping or ductility capacity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
For super high-rise buildings,the vibration period of the basic mode is several seconds,and it is very close to the period of the fluctuating wind.The damping of super high-rise buildings is low,so super high-rise buildings are very sensitive to fluctuating wind.The wind load is one of the key loads in the design of super high-rise buildings.It is known that only the basic mode is needed in the wind-response analysis of tall buildings.However,for super high-rise buildings,especially for the acceleration response,because of the frequency amplification of the high modes,the high modes and the mode coupling may need to be considered.Three typical super high-rise projects with the SMPSS in wind tunnel tests and the random vibration theory method were used to analyze the effect of high modes on the wind-induced response.The conclusions can be drawn as follows.First,for the displacement response,the basic mode is dominant,and the high modes can be neglected.Second,for the acceleration response,the high modes and the mode coupling should be considered.Lastly,the strain energy of modes can only give the vibration energy distribution of the high-rise building,and it cannot describe the local wind-induced vibration of high-rise buildings,especially for the top acceleration response.  相似文献   

7.
李文俊    曲哲    孙海林  熊政辉   《世界地震工程》2021,(4):109-121
房屋建筑的地震易损性是地震损失评估和地震巨灾风险模型的基础。作为房屋建筑的重要组成部分,各类非结构构件的损失在现有的易损性模型中并未得到足够重视。本文以一栋典型钢筋混凝土框架结构教学楼为对象,通过将房屋建筑中的各类构件划分为具有不同地震损伤特性和损失后果的易损性组,考察建筑内的损失分布和非结构损失对房屋建筑地震易损性的影响。分析结果表明:由于许多非结构构件在中小地震作用下即可能发生较严重的破坏,房屋建筑在中小地震下的易损性主要受非结构损失控制;随着地震动强度等级的不断提高,结构损伤渐趋严重,结构损失对整体建筑易损性的影响不断增大;在结构进入震后不可修状态之前,建筑不同楼层的损失分布是评估建筑地震损失时不可忽略的因素。  相似文献   

8.
The nonlinear behavior of a soil-foundation system may alter the seismic response of a structure by providing additional flexibility to the system and dissipating hysteretic energy at the soil-foundation interface. However, the current design practice is still reluctant to consider the nonlinearity of the soil-foundation system, primarily due to lack of reliable modeling techniques. This study is motivated towards evaluating the effect of nonlinear soil-structure interaction (SSI) on the seismic responses of low-rise steel moment resisting frame (SMRF) structures. In order to achieve this, a Winkler-based approach is adopted, where the soil beneath the foundation is assumed to be a system of closely-spaced, independent, nonlinear spring elements. Static pushover analysis and nonlinear dynamic analyses are performed on a 3-story SMRF building and the performance of the structure is evaluated through a variety of force and displacement demand parameters. It is observed that incorporation of nonlinear SSI leads to an increase in story displacement demand and a significant reduction in base moment, base shear and inter-story drift demands, indicating the importance of its consideration towards achieving an economic, yet safe seismic design.  相似文献   

9.
拱坝非线性地震反应分析   总被引:2,自引:0,他引:2  
本文根据一致粘弹性模型的概念,引入应变率的影响,将混凝土静态William-Warnke三参数模型改造成一致粘塑性William-Warnke三参数本构模型,并用这个模型对某高拱坝进行了非线性地震响应分析,与线弹性模型和应变率无关的William-Warnke三参数模型的结果进行了比较,初步探讨了应变率对拱坝地震反应的影响。  相似文献   

10.
The nonlinear response of structures is usually evaluated by considering two accelerograms acting simultaneously along the orthogonal directions. In this study, the infl uence of the earthquake direction on the seismic response of building structures is examined. Three multi-story RC buildings, representing a very common structural typology in Italy, are used as case studies for the evaluation. They are, respectively, a rectangular plan shape, an L plan shape and a rectangular plan shape with courtyard buildings. Nonlinear static and dynamic analyses are performed by considering different seismic levels, characterized by peak ground acceleration on stiff soil equal to 0.35 g, 0.25 g and 0.15 g. Nonlinear dynamic analyses are carried out by considering twelve different earthquake directions, and rotating the direction of both the orthogonal components by 30° for each analysis(from 0° to 330°). The survey is carried out on the L plan shape structure. The results show that the angle of the seismic input motion signifi cantly infl uences the response of RC structures; the critical seismic angle, i.e., the incidence angle that produces the maximum demand, provides an increase of up to 37% in terms of both roof displacements and plastic hinge rotations.  相似文献   

11.
Regulation of the total structural jerk is a means of managing the structural energy and enhancing the performance of civil structures undergoing large seismic events. A quadratic regulator is derived for the total structural jerk that produces a single algebraic Riccati equation to define the control gains. The resulting control method is tested using a realistic non‐linear structural control case study where the structural response is statistically quantified for large suites of scaled earthquakes. The control method developed is shown to be more effective than typical displacement‐focused active and semi‐active civil structural control methods. In particular, quadratic jerk regulation provides better performance than typical structural control methods for near‐field seismic events where the response is dominated by a large impulse, and relatively poorer results for far‐field seismic inputs where the response is vibratory. Hence, this type of control approach has strong potential for mitigating the damage for large impulse, near‐field events, where jerk regulation provides much more efficient response and damage management. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
刘泉    李继龙    陶冬旺    马强    解全才    杨剑   《世界地震工程》2023,39(1):181-188
工程结构地震反应观测台阵获取常时和震时结构反应记录,是工程结构健康诊断和震害评估的重要技术手段之一。2019年,云南大理建设了一个由8个地震烈度仪测点组成的结构地震反应观测台阵,每台烈度仪内置一个3分向微电子机械系统(Micro-Electro-Mechanical System, MEMS)加速度计。通过标准振动台检测,确定台阵配备的烈度仪的幅频响应特性曲线和线性度误差符合相关行业标准的要求。该台阵于2021年5月获得了大理漾濞地震序列的多次结构地震反应记录,本文选取其中3次MS3.0~MS3.2级地震,分析了观测记录的加速度时程、傅里叶幅值谱和信噪比等数据,由结果可知:该台阵可较好地记录幅值≥0.5 cm/s2、频带1.0~39.0Hz的振动信号,对于近场小震具有一定的监测能力。  相似文献   

13.
The elastic and inelastic seismic response of plan‐asymmetric regular multi‐storey steel‐frame buildings has been investigated under bi‐directional horizontal ground motions. Symmetric variants of these buildings were designed according to Eurocodes 3 and 8. Asymmetric buildings were created by assuming a mass eccentricity in each of the two principal directions. The torsional response in the elastic and inelastic range is qualitatively similar with the exception of the stiff edge in the strong direction of torsionally stiff buildings and the stiff edge in the weak direction of torsionally flexible buildings. The response is influenced by the intensity of ground motion, i.e. by the magnitude of plastic deformation. In the limiting case of very strong ground motion, the behaviour of initially torsionally stiff and initially torsionally flexible buildings may become qualitatively similar. A decrease in stiffness due to plastic deformations in one direction may substantially influence the behaviour in the orthogonal direction. The response strongly depends on the detailed characteristics of the ground motion. On average, torsional effects are reduced with increasing plastic deformations, unless the plastic deformations are small. Taking into account also the dispersion of results which is generally larger in the inelastic range than in the elastic one, it can be concluded that (a) the amplification of displacements determined by the elastic analysis can be used as a rough estimate also in the inelastic range and (b) any favourable torsional effect on the stiff side of torsionally stiff buildings, which may arise from elastic analysis, may disappear in the inelastic range. The conclusions are limited to fairly regular buildings and subject to further investigations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
This paper proposes bi‐directional coupled tuned mass dampers (BiCTMDs) for the seismic response control of two‐way asymmetric‐plan buildings subjected to bi‐directional ground motions. The proposed BiCTMD was developed from the three‐degree‐of‐freedom modal system, which represents the vibration mode of a two‐way asymmetric‐plan building. The performance of the proposed BiCTMD for the seismic response control of elastic two‐way asymmetric‐plan buildings was verified by investigating the reductions of the amplitudes of the associated frequency response functions. In addition, the investigation showed that the proposed BiCTMD is effective in reducing the seismic damage of inelastic asymmetric‐plan buildings. Therefore, the BiCTMD is an effective approach for the seismic response control of both elastic and inelastic two‐way asymmetric‐plan buildings. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The maintenance of integrity and functionality of nonstructural components during earthquake excitations is of paramount importance since mechanical failure of those systems can have dramatic consequences in terms of property damage and life safety of the buildings' occupants. This paper explores the dynamic response of nonstructural elements attached on multistory buildings with well‐established floor diaphragm action. Depending on the type of support conditions, seismic response of nonstructural components may be controlled either by acceleration or displacement: Nonstructural components that are subjected to uniform support excitation are controlled primarily by the absolute spectral acceleration developing at their point of attachment on the supporting building. On the contrary, seismic response of multiply supported nonstructural components depends primarily on the relative displacements between successive support points that are imposed by the supporting building during lateral sway. These findings are illustrated from the analytical formulation and its solution through time history analysis of the governing dynamic equation of motion of the primary and secondary components of a system modeled using finite elements. The model encompasses the assembly of a multistory building along with a multiply supported gas pipeline network. It is shown that the dependence of the seismic response of nonstructural components may be linked to the deformed shape of the supporting building at the state of its maximum lateral roof displacement, thereby enabling the definition of design procedures for these systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Assessment of seismic design response factors of concrete wall buildings   总被引:1,自引:2,他引:1  
To verify the seismic design response factors of high-rise buildings, five reference structures, varying in height from 20- to 60-stories, were selected and designed according to modern design codes to represent a wide range of concrete wall structures. Verified fiber-based analytical models for inelastic simulation were developed, considering the geometric nonlinearity and material inelasticity of the structural members. The ground motion uncertainty was accounted for by employing 20 earthquake records representing two seismic scenarios, consistent with the latest understanding of the tectonic setting and seismicity of the selected reference region (UAE). A large number of Inelastic Pushover Analyses (IPAs) and Incremental Dynamic Collapse Analyses (IDCAs) were deployed for the reference structures to estimate the seismic design response factors. It is concluded that the factors adopted by the design code are adequately conservative. The results of this systematic assessment of seismic design response factors apply to a wide variety of contemporary concrete wall buildings with various characteristics.  相似文献   

17.
The 1990 edition of the National Building Code of Canada (Associate Committee of the National Building Code, National Research Council, Ottawa, 1990) makes a clear distinction between eastern and western Canada in terms of seismic acceleration and velocity zones. While it is well established that ground motions can be amplified significantly through loose clay deposits, no results are available that take into consideration the typical high frequency content of ground motions in eastern Canada. This paper develops ground amplification curves for clays having depths between 10 and 70 m excited by typical eastern Canadian ground motions scaled to two different values of peak horizontal accelerations. Simplified free-field spectral design curves, which could be used by structural designers, are proposed. The curves show that maximum spectral accelerations occur for structural periods between 0.2 and 0.5 s. In addition, soil depth does not appear to be an important parameter controlling the response of typical clay deposits in eastern Canada.  相似文献   

18.
目前国内外已修建完成了大量隔震建筑,但仅有少量经受了地震检验,绝大部分隔震结构减震能力能否达到设计目标尚存疑问.本文针对基础隔震建筑,提出了一种基于自由振动响应的减震能力评估方法.首先,对隔震建筑进行多级幅值初位移自由振动原位试验,获取结构的抗震能力曲线;其次,根据地震反应谱建立地震需求曲面,进而确定隔震结构性能点;最...  相似文献   

19.
Coupling adjacent buildings using discrete viscoelastic dampers for control of response to low and moderate seismic events is investigated in this paper. The complex modal superposition method is first used to determine dynamic characteristics, mainly modal damping ratio and modal frequency, of damper-linked linear adjacent buildings for practical use. Random seismic response of linear adjacent buildings linked by dampers is then determined by a combination of the complex modal superposition method and the pseudo-excitation method. This combined method can effectively and accurately determine random seismic response of non-classically damped systems in the frequency domain. Parametric studies are finally performed to identify optimal parameters of viscoelastic dampers for achieving the maximum modal damping ratio or the maximum response reduction of adjacent buildings. It is demonstrated that using discrete viscoelastic dampers of proper parameters to link adjacent buildings can reduce random seismic responses significantly. Copyright © 1999 John Wiley & Sons Ltd.  相似文献   

20.
基岩弹性刚度对土层地震反应的影响   总被引:3,自引:1,他引:3  
将基岩上均匀、各向同性土层的地震反应,简化为置于弹性支座上的一维剪切梁模型进行分析。将地震激励假定为白噪声谱,在随机边界激励下,主要探讨了土层与基岩2种介质间的波阻抗比、波速比、土层厚度和阻尼特性对土层地震反应的影响。计算结果表明,对于一定的土层厚度,在一定阻尼比条件下,土层和基岩的阻抗比小到一定程度时,可以将基岩假定为刚性约束,而误差可以控制在一定的范围内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号