首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Experimental tests of garnet peridotite oxygen barometry   总被引:1,自引:0,他引:1  
We have performed experiments aimed at testing the calibration of oxygen barometers for the garnet peridotite [garnet (Gt)-olivine (Ol)-orthopyroxene (Opx)] phase assemblage. These involved equilibrating a thin layer of garnet sandwiched between layers of olivine and orthopyroxene at 1300°C and 23–35 kbar for 1–7 days. Oxygen fugacity was controlled (but not buffered) by using inner capsules of Fe?Pt alloy or graphitc or molybdenum sealed in welded Pt outer capsules. Post-experiment measurement of fO2 was made by determining the compositions of Pt-Fe alloy sensors at the interface between garnet and olivine + orthopyroxene layers. The composition of alloy in equilibrium with olivine + orthopyroxene was approached from Fe-oversaturated and Fe-undersaturated conditions in the same experiment with, in general, excellent convergence. Product phase compositions were determined by electron microprobe and a piece of the garnet layer saved for 57Fe Mössbauer spectroscopy. The latter gave the Fe3+ content of the garnet at the measured P-T-fO2 conditions. Approach to equilibrium was checked by observed shifts in Fe3+ content and by the approach of garnet-olivine Fe?Mg partitioning to the expected value. The compositions of the phases were combined with mixing properties and thermodynamic data to calculate an apparent fO2 from two possible garnet oxybarometers:- (1) $\begin{gathered} 2Ca_3 Fe_2 Si_3 O_{12} + 2Mg_3 Al_2 Si_3 O_{12} + 4FeSiO_3 = 2Ca_3 Al_2 Si_3 O_{12} \hfill \\ Gt Gt Opx Gt \hfill \\ + 8FeSi_{0.5} O_2 + 6MgSiO_3 + O \hfill \\ Ol Opx \hfill \\ \end{gathered} $ and (2) $\begin{gathered} 2Fe_3 Fe_2 Si_3 O_{12} = 8FeSi_{0.5} O_2 + 2FeSi_3 O_2 \hfill \\ Gt Ol Opx \hfill \\ \end{gathered} $ Comparison of calculated fO2s with those measured by the Pt-Fe sensors demonstrated that either barometer gives the correct answer within the expected uncertainty. Data from the first (Luth et al. 1990) has an uncertainty of about 1.6 logfO2 units, however, while that from equilibrium (2) (Woodland and O'Neill 1993) has an error of +/- 0.6 log units, comparable to that of the spinel peridotite oxybarometer. We therefore conclude that equilibrium (2) may be used to calculate the fO2 recorded by garnet peridotites with an uncertainty of about +/- 0.6 log units, providing the potential to probe the oxidation environment of the deep continental lithosphere. Preliminary application based on data from Luth et al. (1990) indicates that garnet peridotite xenoliths from Southern Africa record oxygen fugacities about 3.0 log units below the FMQ (fayalite-magnetite-quartz) buffer. These are substantially more reducing conditions than those recorded by continental spinel lherzolites which typically give oxygen fugacities close to FMQ (Wood et al. 1990).  相似文献   

2.
Clinopyroxene, orthopyroxene, and garnet megacrysts show consistent increase of Na and Ti, and decrease of Cr, with increasing Fe/Mg. Three groups of clinopyroxenes occur with increasing Fe/Mg: subcalcic diopside, lamellar intergrowth with ilmenite, and augite. Chemical relationships indicate simultaneous crystallization of garnet, orthopyroxene and sub-calcic diopside megacrysts, and pyroxene thermometry-barometry indicates a trend from 29 kb?1,230 ° C to 25 kb?1,080 ° C as crystallization proceeded to higher Fe/Mg. Ilmenite-pyroxene thermometry suggests a mean of 965 ° C for crystallization of the intergrowths, but calibration depends on crystal-chemical assumptions. Lherzolite assemblages fall into three groups: two garnet-bearing types which equilibrated at 31 kb?1,150 ° C and 22 kb?900 ° C, and a type bearing Al-rich spinel which probably crystallized below 20 kb. The minerals from the lherzolites have lower Fe/Mg than the megacrysts. The simplest model involves: (i) metamorphic equilibration of lherzolitic rocks to the local geotherm, (ii) local melting of lherzolite at P > 30 kb, (iii) sequential crystallization of megacrysts as the magma rose intermittently, (iv) generation of alnöitic magma at P > 32 kb, and (v) eruption to surface with transport of megacrysts and lherzolitic xenoliths. Garnet, olivine, orthopyroxene and clinopyroxene in these Malaita xenoliths have lower Na, Ti, and P relative to their equivalents from southern African kimberlites. Only clinopyroxene contains K (up to 270 ppmw), and no Na was found in olivine.  相似文献   

3.
The Caussou outcrop consists mostly of a spinel-bearing lherzolite with irregular patches of amphibole lherzolite. The characteristic paragenesis of the latter is: forsterite + bronzite+Ti-rich K-bearing pargasite ± diopside, with 10 to 15% amphibole in the rock. Petrographic and chemical analysis of the two types of rocks and their constituent minerals lead to the conclusion that the spinel-lherzolite recrystallized locally as amphibole lherzolite in the presence of a gas phase containing water, and probably Ti and alkali elements as well, at approximately 7 to 8 Kb and 1100° C (for \(P_{{\text{H}}_2 {\text{O}}} = P_{{\text{total}}} \) ). Two hypothesis could account for this local recrystallization:
  1. The amphibole lherzolite could represent a subsolidus recrystallization of the spinel lherzolite occuring in the stability field of plagioclase lherzolite at the time of the emplacement.
  2. Or, in the same P-T conditions, the Ti-pargasite could precipitate from a liquid of nephelinite composition produced by limited partial melting of the spinel lherzolite.
In either case the original peridotite that produced the two existing types at Caussou could be considered as an undifferentiated fragment of the upper mantle.  相似文献   

4.
Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.  相似文献   

5.
The stability relations between cordierite and almandite in rocks, having a composition of CaO poor argillaceous rocks, were experimentally investigated. The starting material consisted of a mixture of chlorite, muscovite, and quartz. Systems with widely varying Fe2+/Fe2++Mg ratios were investigated by using two different chlorites, thuringite or ripidolite, in the starting mixture. Cordierite is formed according to the following reaction: $${\text{Chlorite + muscovite + quartz}} \rightleftharpoons {\text{cordierite + biotite + Al}}_{\text{2}} {\text{SiO}}_{\text{5}} + {\text{H}}_{\text{2}} {\text{O}}$$ . At low pressures this reaction characterizes the facies boundary between the albite-epidotehornfels facies and the hornblende-hornfels facies, at medium pressures the beginning of the cordierite-amphibolite facies. Experiments were carried out reversibly and gave the following equilibrium data: 505±10°C at 500 bars H2O pressure, 513±10°C at 1000 bars H2O pressure, 527±10°C at 2000 bars H2O pressure, and 557±10°C at 4000 bars H2O pressure. These equilibrium data are valid for the Fe-rich starting material, using thuringite as the chlorite, as well as for the Mg-rich starting mixture with ripidolite. At 6000 bars the equilibrium temperature for the Mg-rich mixture is 587±10°C. In the Fe-rich mixture almandite was formed instead of cordierite at 6000 bars. The following reaction was observed: $${\text{Thuringite + muscovite + quartz}} \rightleftharpoons {\text{almandite + biotite + Al}}_{\text{2}} {\text{SiO}}_{\text{5}} {\text{ + H}}_{\text{2}} {\text{O}}$$ . Experiments with the Fe-rich mixture, containing Fe2+/Fe2++Mg in the ratio 8∶10, yielded three stability fields in a P,T-diagram (Fig.1):
  1. Above 600°C/5.25 kb and 700°C/6.5 kb almandite+biotite+Al2SiO5 coexist stably, cordierite being unstable.
  2. The field, in which almandite, biotite and Al2SiO5 are stable together with cordierite, is restricted by two curves, passing through the following points:
    1. 625°C/5.5 kb and 700°C/6.5 kb,
    2. 625°C/5.5 kb and 700°C/4.0 kb.
  3. At conditions below curves 1 and 2b, cordierite, biotite, and Al2SiO5 are formed, but no garnet.
An appreciable MnO-content in the system lowers the pressures needed for the formation of almandite garnet, but the quantitative influence of the spessartite-component on the formation of almandite could not yet be determined. the Mg-rich system with Fe2+/Fe2++Mg=0.4 garnet did not form at pressures up to 7 kb in the temperature range investigated. Experiments at unspecified higher pressures (in a simple squeezer-type apparatus) yielded the reaction: $${\text{Ripidolite + muscovite + quartz}} \rightleftharpoons {\text{almandite + biotite + Al}}_{\text{2}} {\text{SiO}}_{\text{5}} {\text{ + H}}_{\text{2}} {\text{O}}$$ . Further experiments are needed to determine the equilibrium data. The occurence of garnet in metamorphic rocks is discussed in the light of the experimental results.  相似文献   

6.
Equilibrium alumina contents of orthopyroxene coexisting with spinel and forsterite in the system MgO-Al2O3-SiO2 have been reversed at 15 different P-T conditions, in the range 1,030–1,600° C and 10–28 kbar. The present data and three reversals of Danckwerth and Newton (1978) have been modeled assuming an ideal pyroxene solid solution with components Mg2Si2O6 (En) and MgAl2SiO6 (MgTs), to yield the following equilibrium condition (J, bar, K): $$\begin{gathered} RT{\text{ln(}}X_{{\text{MgTs}}} {\text{/}}X_{{\text{En}}} {\text{) + 29,190}} - {\text{13}}{\text{.42 }}T + 0.18{\text{ }}T + 0.18{\text{ }}T^{1.5} \hfill \\ + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP = 0,} \hfill \\ \end{gathered} $$ where $$\begin{gathered} + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP} \hfill \\ = [0.013 + 3.34 \times 10^{ - 5} (T - 298) - 6.6 \times 10^{ - 7} P]P. \hfill \\ \end{gathered} $$ The data of Perkins et al. (1981) for the equilibrium of orthopyroxene with pyrope have been similarly fitted with the result: $$\begin{gathered} - RT{\text{ln(}}X_{{\text{MgTs}}} \cdot X_{{\text{En}}} {\text{) + 5,510}} - 88.91{\text{ }}T + 19{\text{ }}T^{1.2} \hfill \\ + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP = 0,} \hfill \\ \end{gathered} $$ where $$\begin{gathered} + \int\limits_1^P {\Delta V_{T,P}^{\text{0}} dP} \hfill \\ = [ - 0.832 - 8.78{\text{ }} \times {\text{ 10}}^{ - {\text{5}}} (T - 298) + 16.6{\text{ }} \times {\text{ 10}}^{ - 7} P]{\text{ }}P. \hfill \\ \end{gathered} $$ The new parameters are in excellent agreement with measured thermochemical data and give the following properties of the Mg-Tschermak endmember: $$H_{f,970}^0 = - 4.77{\text{ kJ/mol, }}S_{298}^0 = 129.44{\text{ J/mol}} \cdot {\text{K,}}$$ and $$V_{298,1}^0 = 58.88{\text{ cm}}^{\text{3}} .$$ The assemblage orthopyroxene+spinel+olivine can be used as a geothermometer for spinel lherzolites, subject to a choice of thermodynamic mixing models for multicomponent orthopyroxene and spinel. An ideal two-site mixing model for pyroxene and Sack's (1982) expressions for spinel activities provide, with the present experimental calibration, a geothermometer which yields temperatures of 800° C to 1,350° C for various alpine peridotites and 850° C to 1,130° C for various volcanic inclusions of upper mantle origin.  相似文献   

7.
Spinel-pyroxene-garnet relationships and their dependence on Cr/Al ratio   总被引:2,自引:0,他引:2  
The partitioning of Cr and Al between coexisting spinel and clinopyroxene and the dependence of spinel-cpxgarnet equilibria on Cr/Al ratio have been investigated by a combination of phase equilibrium experiments, high temperature solution calorimetry and thermodynamic calculations.The exchange equilibrium: has a measured enthalpy change for pure phases of –2,100±500 cal at 970 K and 1 atm. Experimental reversals of Cr-Al partitioning between the spinel and clinopyroxene phases yield the following partitioning relationship: where X i j refers to atomic fraction of i in the octahedral sites of phase j. The compositional dependence of partitioning implies that Al-Cr mixing in spinel is nonideal with, on the symmetrical model, a W Cr-Al Sp of 2,700±500 cal/gm. atom. In contrast, aluminum-chromium mixing in clinopyroxene is close to ideal.The measured stability field of knorringite (Mg3Cr2Si2O12) and mixing properties of garnet have been used in conjunction with our experimental data to calculate the influence of Cr/Al ratio on the important reaction: orthopyroxene+clinopyroxene+spinel=olivine+garnetThe stability field of spinel lherzolite increases by about 2.8 Kb for every increase of 0.1 in Cr/(Cr+Al) ratio up to Cr/(Cr+Al) of 0.7. The calculated stabilization is in very good agreement with the experimental results of O'Neill (1981). The partitioning relationships are such that, at the low ratios of Cr/Al (0.07) of primitive lherzolite, clinopyroxene buffers spinel composition and sharpens the spinelgarnet reaction interval from 10 Kb (little or no clinopyroxene) down to about 2 Kb in pyroxene-rich pyrolite.  相似文献   

8.
The partitioning of Fe and Mg between garnet and aluminous orthopyroxene has been experimentally investigated in the pressure-temperature range 5–30 kbar and 800–1,200° C in the FeO-MgO-Al2O3-SiO2 (FMAS) and CaO-FeO-MgO-Al2O3-SiO2 (CFMAS) systems. Within the errors of the experimental data, orthopyroxene can be regarded as macroscopically ideal. The effects of Calcium on Fe-Mg partitioning between garnet and orthopyroxene can be attributed to non-ideal Ca-Mg interactions in the garnet, described by the interaction term:W CaMg ga -W CaFe ga =1,400±500 cal/mol site. Reduction of the experimental data, combined with molar volume data for the end-member phases, permits the calibration of a geothermometer which is applicable to garnet peridotites and granulites: $$T(^\circ C) = \left\{ {\frac{{3,740 + 1,400X_{gr}^{ga} + 22.86P(kb)}}{{R\ln K_D + 1.96}}} \right\} - 273$$ with $$K_D = {{\left\{ {\frac{{Fe}}{{Mg}}} \right\}^{ga} } \mathord{\left/ {\vphantom {{\left\{ {\frac{{Fe}}{{Mg}}} \right\}^{ga} } {\left\{ {\frac{{Fe}}{{Mg}}} \right\}}}} \right. \kern-\nulldelimiterspace} {\left\{ {\frac{{Fe}}{{Mg}}} \right\}}}$$ and $$X_{gr}^{ga} = (Ca/Ca + Mg + Fe)^{ga} .$$ The accuracy and precision of this geothermometer are limited by largerelative errors in the experimental and natural-rock data and by the modest absolute variation inK D with temperature. Nevertheless, the geothermometer is shown to yield reasonable temperature estimates for a variety of natural samples.  相似文献   

9.
Paragneisses of the Ivrea-Verbano zone exhibit over a horizontal distance of 5 km mineralogical changes indicative of the transition from amphibolite to granulite facies metamorphism. The most obvious change is the progressive replacement of biotite by garnet via the reaction: a $${\text{Biotite + sillimanite + quartz }} \to {\text{ Garnet + K - feldspar + H}}_{\text{2}} {\text{O}}$$ which results in a systematic increase in the modal ratio g = (garnet)/(garnet + biotite) with increasing grade. The systematic variations in garnet and biotite contents of metapelites are also reflected by the compositions of these phases, both of which become more magnesian with increasing metamorphic grade. The pressure of metamorphism has been estimated from the Ca3Al2Si3O12 contents of garnets coexisting with plagioclase, sillimanite and quartz. These phases are related by the equilibrium: b $$\begin{gathered} 3 CaAl_2 {\text{Si}}_{\text{2}} {\text{O}}_{\text{8}} \rightleftharpoons Ca_3 Al_2 {\text{Si}}_{\text{3}} {\text{O}}_{{\text{12}}} + 2 Al_2 {\text{SiO}}_{\text{5}} + {\text{SiO}}_{\text{2}} \hfill \\ plagioclase garnet sillimanite quartz \hfill \\ \end{gathered} $$ which has been applied to these rocks using the available data on the mixing properties of plagioclase and garnet solid solutions. Temperature and f H 2O estimates have been made in a similar way using thermodynamic data on the biotite-garnet reaction (a) and the approximate solidus temperatures of paragneisses. Amphibolite to granulite facies metamorphism in the Ivrea-Verbano zone took place in the P-T ranges 9–11 kb and 700–820 °C. The differences in temperature and pressure of metamorphism between g= 0 and g = 1 (5 kms horizontal distance) were less than 50° C and approximately 1 kb. Retrogression and re-equilibration of garnets and biotites in the metapelites extended to temperatures more than 50° C below and pressures more than 1.5 kb below the peak of metamorphism, the degree of retrogression increasing with decreasing grade of the metamorphic “peak”. The pressure and temperature of the peak of metamorphism are not inconsistent with the hypothesis that the Ivrea-Verbano zone is a slice of upthrusted lower crust from the crust-mantle transition region, although it appears that the thermal gradient was too low for the zone to represent a near-vertical section through the crust. The most reasonable explanation of the granulite facies metamorphism is that it arose through intrusion of mafic rocks into a region already undergoing recrystallisation under amphibolite facies conditions.  相似文献   

10.
The solubility of chromium in chlorite as a function of pressure, temperature, and bulk composition was investigated in the system Cr2O3–MgO–Al2O3–SiO2–H2O, and its effect on phase relations evaluated. Three different compositions with X Cr = Cr/(Cr + Al) = 0.075, 0.25, and 0.5 respectively, were investigated at 1.5–6.5 GPa, 650–900 °C. Cr-chlorite only occurs in the bulk composition with X Cr = 0.075; otherwise, spinel and garnet are the major aluminous phases. In the experiments, Cr-chlorite coexists with enstatite up to 3.5 GPa, 800–850 °C, and with forsterite, pyrope, and spinel at higher pressure. At P > 5 GPa other hydrates occur: a Cr-bearing phase-HAPY (Mg2.2Al1.5Cr0.1Si1.1O6(OH)2) is stable in assemblage with pyrope, forsterite, and spinel; Mg-sursassite coexists at 6.0 GPa, 650 °C with forsterite and spinel and a new Cr-bearing phase, named 11.5 Å phase (Mg:Al:Si = 6.3:1.2:2.4) after the first diffraction peak observed in high-resolution X-ray diffraction pattern. Cr affects the stability of chlorite by shifting its breakdown reactions toward higher temperature, but Cr solubility at high pressure is reduced compared with the solubility observed in low-pressure occurrences in hydrothermal environments. Chromium partitions generally according to \(X_{\text{Cr}}^{\text{spinel}}\) ? \(X_{\text{Cr}}^{\text{opx}}\) > \(X_{\text{Cr}}^{\text{chlorite}}\) ≥ \(X_{\text{Cr}}^{\text{HAPY}}\) > \(X_{\text{Cr}}^{\text{garnet}}\). At 5 GPa, 750 °C (bulk with X Cr = 0.075) equilibrium values are \(X_{\text{Cr}}^{\text{spinel}}\) = 0.27, \(X_{\text{Cr}}^{\text{chlorite}}\) = 0.08, \(X_{\text{Cr}}^{\text{garnet}}\) = 0.05; at 5.4 GPa, 720 °C \(X_{\text{Cr}}^{\text{spinel}}\) = 0.33, \(X_{\text{Cr}}^{\text{HAPY}}\) = 0.06, and \(X_{\text{Cr}}^{\text{garnet}}\) = 0.04; and at 3.5 GPa, 850 °C \(X_{\text{Cr}}^{\text{opx}}\) = 0.12 and \(X_{\text{Cr}}^{\text{chlorite}}\) = 0.07. Results on Cr–Al partitioning between spinel and garnet suggest that at low temperature the spinel- to garnet-peridotite transition has a negative slope of 0.5 GPa/100 °C. The formation of phase-HAPY, in assemblage with garnet and spinel, at pressures above chlorite breakdown, provides a viable mechanism to promote H2O transport in metasomatized ultramafic mélanges of subduction channels.  相似文献   

11.
A spinel lherzolite body outcrops as a fault block on the north coast of East Timor. The most common rock‐type in this body is a clinopyroxene‐poor lherzolite, but there are smaller proportions of clinopyroxene‐rich lherzolite and harzburgite. The dominant mineral assemblage is olivine, orthopyroxene, clinopyroxene, spinel and calcic amphibole. Low‐temperature hydrous minerals are restricted in distribution.

The chemical composition of the peridotite is closely similar to mantle‐derived spinel lherzolite nodules and some alpine peridotites. The internal variation of the peridotite suggests variable depletion by some combination of partial melting and liquid contamination of the residua, in a CO2‐rich system at 10–15 kb (1000–1500 MPa).

Three solid‐state events are indicated by geothermometry. The earliest event is recorded by coarse exsolution lamellae of orthopyroxene in clinopyroxene porphyro‐clasts. These grains formed at 1250°C. A later granoblastic texture equilibrated at 1100°C, and finally the rocks were mylonitised at 800–1000°C and 8–20 kb (800–2000 MPa).

The peridotite is probably a sample of the oceanic mantle trapped between the Java Trench and the Inner Banda Arc. Its emplacement on Timor is not related to obduction, but may be due to transcurrent faulting between the Asian and Australian plates.  相似文献   

12.
Forty-six reversed determinations of the Al2O3content of enstatite in equilibrium with garnet were made in the P/T range 15–40 kbar/900–1,600° C in the MgO-Al2O3-SiO2 system. Starting materials were mixtures of synthetic pyrope+Al-free enstatite and pyrope+enstatite (5–12% Al2O3). Al2O3 contents in reversal run pairs closely approached common values from both the high- and low-Al sides. Most experiments were done in a piston-cylinder device using a NaCl medium; some runs at very high temperatures were made in pyrex/NaCl or pyrex/talc assemblies. The measured enstatite compositions, expressed as mole fractions of Mg2(MgAl)(AlSi3)O12(X Opy En ) were fitted by a Monte-Carlo method to the equilibrium condition: $$\begin{gathered} \Delta H_{970}^0 - 970\Delta S_{970}^0 \hfill \\ + \mathop \smallint \limits_1^P \Delta V_{970}^0 dP - \mathop \smallint \limits_{970}^T \Delta S_T^0 dT + RT\ln X_{Opy}^{En} = 0 \hfill \\ \end{gathered}$$ where the best fit parameters of ΔH, ΔS and ΔV (1 bar, 970 K) for the reaction pyrope=opy are 2,040 cal/mol, 2.12 eu and 9.55 cc/mol. In addition to the determination of Al2O3 contents of enstatite, the univariant reaction pyrope+forsterite=enstatite+spinel was reversibly located in the range 1,100–1,400°C. A “best-fit” line passes through 22, 22.5 and 25 kbar at 1,040, 1,255 and 1,415°C, respectively. Our results for the univariant reaction are in agreement with previous studies of MacGregor (1974) and Haselton (1979). However, comparison of the experimentally determined curve with thermochemical calculations suggests that there may be a small error in the tabulated ΔH f(970,1) 0 value for enstatite. A value of?8.32 rather than?8.81 kcal/mole (Charlu et al. 1975) is consistent with the present data. Application of garnet-enstatite-spinel-forsterite equilibria to natural materials is fraught with difficulties. The effects of nonternary components are poorly understood, and the low solubilities of Al2O3 in enstatite under most geologically reasonable conditions make barometric or thermometric calculations highly sensitive. More detailed studies, including reversed determinations in low-friction assemblies, are sorely needed before the effects of important diluents such as Fe, Ca and Cr can be fully understood.  相似文献   

13.
Six crystalline mixtures, picrite, olivine-rich tholeiite, nepheline basanite, alkali picrite, olivine-rich basanite, and olivine-rich alkali basalt were recrystallized at pressures to 40 kb, and the phase equilibria and sequences of phases in natural basaltic and peridotitic rocks were investigated.The picrite was recrystallized along the solidus to the assemblages (1) olivine+orthopyroxene+ clinopyroxene +plagioclase+spinel below 13 kb, (2) olivine+orthopyroxene+clinopyroxene+spinel between 13 kb and 18 kb, (3) olivine+orthopyroxene+clinopyroxene+ garnet+spinel between 18 kb and 26 kb, and (4) olivine+clinopyroxene+garnet above 26 kb. The solidus temperature at 1 atm is slightly below 1,100° and rises to 1,320° at 20 kb and 1,570° at 40 kb. Olivine is the primary phase crystallizing from the melt at all pressures to 40 kb.The olivine-rich tholeiite was recrystallized along the solidus into the assemblages (1) olivine+ clinopyroxene+plagioclase+spinel below 13 kb, (2) clinopyroxene+orthopyroxene+ spinel between 13 kb and 18 kb, (3) clinopyroxene+garnet+spinel above 18 kb. The solidus temperature is slightly below 1,100° at 1 atm, 1,370° at 20 kb, and 1,590° at 40 kb. The primary phase is olivine below 20 kb but is orthopyroxene at 40 kb.In the nepheline basanite, olivine is the primary phase below 14 kb, but clinopyroxene is the first phase to appear above 14 kb. In the alkali-picrite the primary phase is olivine to 40 kb. In the olivine-rich basanite, olivine is the primary phase below 35 kb and garnet is the primary phase above 35 kb. In the olivine-rich alkali basalt the primary phase is olivine below 20 kb and is garnet at 40 kb.Mineral assemblages in a granite-basalt-peridotite join are summarized according to reported experimental data on natural rocks. The solidus of mafic rock is approximately given by T=12.5 P Kb+1,050°. With increasing pressure along the solidus, olivine disappears by reaction with plagioclase at 9 kb in mafic rocks and plagioclase disappears by reaction with olivine at 13 kb in ultramafic rocks. Plagioclase disappears at around 22 kb in mafic rocks, but it persists to higher pressure in acidic rocks. Garnet appears at somewhat above 18 kb in acidic rocks, at 17 kb in mafic rocks, and at 22 kb in ultramafic rocks.The subsolidus equilibrium curves of the reactions are extrapolated according to equilibrium curves of related reactions in simple systems. The pyroxene-hornfels and sanidinite facies is the lowest pressure mineral facies. The pyroxene-granulite facies is an intermediate low pressure mineral facies in which olivine and plagioclase are incompatible and garnet is absent in mafic rocks. The low pressure boundary is at 7.5 kb at 750° C and at 9.5 kb at 1,150° C. The high pressure boundary is 8.0 kb at 750° C and 15.0 kb at 1,150° C. The garnet-granulite facies is an intermediate high pressure facies and is characterized by coexisting garnet and plagioclase in mafic rocks. The upper boundary is at 10.3 kb at 750° C and 18.0 kb at 1,150° C. The eclogite facies is the highest pressure mineral facies, in which jadeite-rich clinopyroxene is stable.Compositions of minerals in natural rocks of the granulite facies and the eclogite facies are considered. Clinopyroxenes in the granulite-facies rocks have smaller jadeite-Tschermak's molecule ratios and higher amounts of Tschermak's molecule than clinopyroxenes in the eclogite-facies rocks. The distribution coefficients of Mg between orthopyroxene and clinopyroxene are normally in the range of 0.5–0.6 in metamorphic rocks in the granulite facies. The distribution coefficients of Mg between garnet and clinopyroxene suggest increasing crystallization temperature of the rocks in the following order: eclogite in glaucophane schist, eclogite and granulite in gneissic terrain, garnet peridotite, and peridotite nodules in kimberlite.Temperatures near the bottom of the crust in orogenic zones characterized by kyanitesillimanite metamorpbism are estimated from the mineral assemblages of metamorphic rocks in Precambrian shields to be about 700° C at 7 kb and 800° C at 9 kb, although heat-flow data suggest that the bottom of Precambrian shield areas is about 400° C and the eclogite facies is stable.The composition of liquid which is in equilibrium with peridotite is estimated to be close to tholeiite basalt at the surface pressure and to be picrite at around 30 kb. The liquid composition becomes poorer in normative olivine with decreasing pressure and temperature.During crystallization at high pressure, olivine and orthopyroxene react with liquid to form clinopyroxene, and a discontinuous reaction series, olivine orthopyroxene clinopyroxene is suggested. By fractional crystallization of pyroxenes the liquid will become poorer in SiO2. Therefore, if liquid formed by partial melting of peridotite in the mantle slowly rises maintaining equilibrium with the surrounding peridotite, the liquid will become poorer in MgO by crystallization of olivine, and tholeiite basalt magma will arrive at the surface. On the other hand, if the liquid undergoes fractional crystallization in the mantle, the liquid may change in composition to alkali-basalt magma and alkali-basalt volcanism may be seen at a late stage of volcanic activity.Publication No. 681, Institute of Geophysics and Planetary Physics, University of California, Los Angeles.  相似文献   

14.
The crystallization of plagioclase-bearing assemblages in mantle rocks is witness of mantle exhumation at shallow depth. Previous experimental works on peridotites have found systematic compositional variations in coexisting minerals at decreasing pressure within the plagioclase stability field. In this experimental study we present new constraints on the stability of plagioclase as a function of different Na2O/CaO bulk ratios, and we present a new geobarometer for mantle rocks. Experiments have been performed in a single-stage piston cylinder at 5–10 kbar, 1050–1150?°C at nominally anhydrous conditions using seeded gels of peridotite compositions (Na2O/CaO?=?0.08–0.13; X Cr = Cr/(Cr?+?Al)?=?0.07–0.10) as starting materials. As expected, the increase of the bulk Na2O/CaO ratio extends the plagioclase stability to higher pressure; in the studied high-Na fertile lherzolite (HNa-FLZ), the plagioclase-spinel transition occurs at 1100?°C between 9 and 10 kbar; in a fertile lherzolite (FLZ) with Na2O/CaO?=?0.08, it occurs between 8 and 9 kbar at 1100?°C. This study provides, together with previous experimental results, a consistent database, covering a wide range of PT conditions (3–9 kbar, 1000–1150?°C) and variable bulk compositions to be used to define and calibrate a geobarometer for plagioclase-bearing mantle rocks. The pressure sensitive equilibrium:
$$\mathop {{\text{M}}{{\text{g}}_{\text{2}}}{\text{Si}}{{\text{O}}_{\text{4}}}^{{\text{Ol}}}}\limits_{{\text{Forsterite}}} +\mathop {{\text{CaA}}{{\text{l}}_{\text{2}}}{\text{S}}{{\text{i}}_{\text{2}}}{{\text{O}}_{\text{8}}}^{{\text{Pl}}}}\limits_{{\text{Anorthite}}~} =\mathop {{\text{CaA}}{{\text{l}}_{\text{2}}}{\text{Si}}{{\text{O}}_{\text{6}}}^{{\text{Cpx}}}}\limits_{{\text{Ca-Tschermak}}} +{\text{ }}\mathop {{\text{M}}{{\text{g}}_{\text{2}}}{\text{S}}{{\text{i}}_{\text{2}}}{{\text{O}}_{\text{6}}}^{{\text{Opx}}}}\limits_{{\text{Enstatite}}} ,$$
has been empirically calibrated by least squares regression analysis of experimental data combined with Monte Carlo simulation. The result of the fit gives the following equation:
$$P=7.2( \pm 2.9)+0.0078( \pm 0.0021)T{\text{ }}+0.0022( \pm 0.0001)T{\text{ }}\ln K,$$
$${R^2}=0.93,$$
where P is expressed in kbar and T in kelvin. K is the equilibrium constant K?=?a CaTs × a en/a an × a fo, where a CaTs, a en, a an and a fo are the activities of Ca-Tschermak in clinopyroxene, enstatite in orthopyroxene, anorthite in plagioclase and forsterite in olivine. The proposed geobarometer for plagioclase peridotites, coupled to detailed microstructural and mineral chemistry investigations, represents a valuable tool to track the exhumation of the lithospheric mantle at extensional environments.
  相似文献   

15.
Equilibria in the Sirf (Silica-Ilmenite-Rutile-Ferrosilite) system: $${\text{SiO}}_{\text{2}} + ({\text{Mg,Fe}}){\text{TiO}}_{\text{3}} {\text{ + (Mg,Fe)SiO}}_{\text{3}} $$ have been calibrated in the range 800–1100° C and 12–26 kbar using a piston-cylinder apparatus to assess the potential of the equilibria for geobarometry in granulite facies assemblages that lack garnet. Thermodynamic calculations indicate that the two end-member equilibria involving quartz + geikielite = rutile + enstatite, and quartz + ilmenite = rutile + ferrosilite, are metastable. We therefore reversed equilibria over the compositional range Fs40–70, using Ag80Pd20 capsules with \(f_{{\text{O}}_{\text{2}} } \) buffered at or near iron-wüstite. Ilmenite compositions coexisting with orthopyroxene are \(X_{{\text{MgTiO}}_{\text{3}} }^{{\text{Ilm}}} \) of 0.06 to 0.15 and \(X_{{\text{Fe}}_{\text{2}} {\text{O}}_{\text{3}} }^{{\text{Ilm}}} \) of 0.00 to 0.01, corresponding toK D values of 13.3, 10.2, 9.0 and 8.0 (±0.5) at 800, 900, 1000 and 1100° C, respectively, whereK D =(XMg/XFe)Opx/(XMg/XFe)Ilm. Pressures have been calculated using equilibria in the Sirf system for granulites from the Grenville Province of Ontario and for granulite facies xenoliths from central Mexico. Pressures are consistent with other well-calibrated geobarometers for orthopyroxeneilmenite pairs from two Mexican samples in which oxide textures appear to represent equilibrium. Geologically unreasonable pressures are obtained, however, where oxide textures are complex. Application of data from this study on the equilibrium distribution of iron and magnesium between ilmenite and orthopyroxene suggests that some ilmenite in deep crustal xenoliths is not equilibrated with coexisting pyroxene, while assemblages from exposed granulite terranes have reequilibrated during retrogression. The Sirf equilibria are sensitive to small changes in composition and may be used for determination of activity/composition (a/X) relations of orthopyroxene if an ilmenite model is specified. A symmetric regular solution model has been used for orthopyroxene in conjunction with activity models for ilmenite available from the literature to calculatea/X relations in orthopyroxene of intermediate composition. Data from this study indicate that FeSiO3?MgSiO3 orthopyroxene exhibits small, positive deviations from ideality over the range 800–1100°C.  相似文献   

16.
An experimental study initiated to calibrate the distribution coefficient \(K_D = \frac{{({\text{FeO}}/{\text{MgO}})_{{\text{ga}}} }}{{{\text{(FeO}}/{\text{MgO)}}_{{\text{cpx}}} }}\) in eclogites as a geothermometer has been done on (a) a mineral mis, (b) a glass of the typical tholeiite composition and (c) a series of glasses of tholeiite compositions with \(6.2 < \frac{{100{\text{Mg}}}}{{{\text{Mg}} + {\text{Fe}}^{ + + } }} < 93.\) The mineral mix was found to be unsuitable as reactant due to incomplete equilibration but the minimum K D of the mineral mix and the K D from glass of tholeiite composition are identical within experimental uncertainty. These data constitute a reversal of the garnet/clinopyroxene partition relationship and provide justification of the use of glass as a reactant for the project. To eliminate any uncertainty in interpretation of mineral analyses due to possible variation in Fe+++/Fe++ between runs, experiments were carried out in iron capsules on the nine tholeiite glasses, thus maintaining iron as Fe++. Microprobe analytical techniques yielded mineral analyses of comparable accuracy to analyses of natural phases for experiments within the temperature range from 600° C to 1500° C and a pressure range from 20 kb to 40 kb. It has been shown that for \(6.2 < \frac{{100{\text{Mg}}}}{{{\text{Mg}} + {\text{Fe}}^{ + + } }} < 85\) , the bulk chemical composition does not perceptibly affect the K D value. At 30 kb the K D value ranges from 18.0 at 600° C to 1.45 at 1400° C, defining the linear relationship in a ln K D vs 1/T(°K) plot. The pressure dependence of the K D -value has been shown to be greater than previously predicted. There is a straight line relationship in ln K D vs Pressure (Kb) between 20 and 40 kb at constant temperature (1100°C). This enables us to determine K D =fn (T, P) and \(T(^\circ {\text{K}}) = \frac{{3686 + 28.35 \times P({\text{Kb}})}}{{\ln K_D + 2.33}}\) . This expression uniquely determines the temperature of equilibration of natural eclogites of basaltic bulk composition when the K D ga,cpx is known and a pressure estimate can be given.  相似文献   

17.
This paper gives an analytical overview of the experimental data obtained by different authors at high P and T in the model system MgO–Al2O3–SiO2–Cr2O3 (MASCr). A set of four simple polynomial equations is proposed for the temperature and pressure dependence of chromium content in garnet and spinel in the assemblage Gar + Opx + Es and Gar + Fo + Opx + Sp.From the first equation, one can estimate the minimum pressure at a given temperature which is required for the formation of peridotite garnets of uncertain paragenesis with a known knorringite content. A combination of the second and third equations helps estimate P and T from the chromium content of garnet and spinel from assemblages containing both minerals. If the spinel composition is unknown, but there is reason to assign garnet to a spinel-bearing paragenesis, the fourth equation is applicable for estimating pressure at given temperature.Originally, the proposed garnet–spinel geothermobarometer was developed for a harzburgite paragenesis. However, it is applicable to garnets with CaO/Cr2O3 < 0.903 (including lherzolitic ones), that is, those within the Pyr–Kn–Uv triangle of the reciprocal quaternary diagram Pyr–Cros–Uv–Kn.Using the above equations and an empirical PCG geobarometer (Grütter et al., 2006), comparative geothermobarometric estimates were obtained for a set of garnet and garnet–spinel inclusions in diamonds and intergrowths with diamond, as well as garnet inclusions in spinel. If garnet has CaO/Cr2O3 = 0.35–0.40, the results are in good accord. For Cr-richest and Ca-poorest garnets, the PCG barometer shows pressures 10–15% higher compared with our estimates.  相似文献   

18.
The near-solidus transition from garnet lherzolite to spinel lherzolite   总被引:20,自引:1,他引:19  
The position of the transition from spinel lherzolite to garnet lherzolite in the system CaO-MgO-Al2O3-SiO2 (CMAS) has been determined experimentally at near-solidus temperatures. In reversed experiments, the transition occurs between 18 and 20 kbar at 1200 °C and between 26 and 27 kbar at 1500 °C, corresponding to higher pressures than previously envisaged. A position for the transition deeper within the Earth further complicates the explanation of the so-called garnet signatures in the trace element and isotope patterns of mid-ocean ridge basalts. If melting during adiabatic upwelling beneath a mid-ocean ridge begins at the depth required for the stability of garnet in peridotitic compositions, simple melting models predict that the amount of melt produced should be much greater than the observed thickness of the oceanic crust. A partial solution to the apparent conflict might be that (1) the rather simplistic melting models are in error, (2) that melting begins in garnet pyroxenite veins that are believed to be stable at lower pressures than garnet lherzolite or (3) that melting does not involve garnet at all, but it is clinopyroxene causing the trace element patterns observed in basalts erupted at mid-ocean ridges. A second set of reversal experiments were conducted to investigate the solubility of alumina in both orthopyroxenes and clinopyroxenes at the high temperatures near the solidus in the system CMAS. The results are compatible with most previous studies, and may be used as a starting point to calibrate thermodynamic models for pyroxenes in chemical systems, approximating upper mantle chemistry. Received: 9 August 1999 / Accepted: 29 October 1999  相似文献   

19.
Sapphirine occurs in the orthopyroxene-cordierite and feldspar-sillimanite granulites in the Sipiwesk Lake area of the Pikwitonei granulite terrain, Manitoba (97°40W, 55°05N). The orthopyroxene-cordierite granulites have extremely high Al2O3 (24.5 wt%) and MgO (24.6 wt%) contents and contain sapphirine (up to 69.2 wt% Al2O3), aluminous orthopyroxene (up to 8.93 wt% Al2O3), cordierite, spinel, phlogopite, and corundum. Sapphirine forms coronas mantling spinel and corundum. Corona sapphirine is zoned and its composition varies through the substitution (Mg, Fe, Mn) Si=2 Al as a function of the phases with which it is in contact. Textural and chemical relationships of sapphirine with coexisting phases indicate that spinel + cordierite reacted to form orthopyroxene + sapphirine under conditions of increasing pressure. Moreover, decreasing core to rim variation of Al2O3 in orthopyroxene porphyroblasts suggests decreasing temperature during sapphirine formation. On the basis of experimentally determined P-T stability of the assemblage enstatite + sapphirine + cordierite, and the Al content of hypothetical Fe2+-free orthopyroxene associated with sapphirine and cordierite, metamorphic temperatures and pressures are estimated to be 860–890° C and 3.0–11.2 kbar.In the feldspar-sillimanite granulites, sapphirine occurs as a relict phase mantled by sillimanite and/or by successive coronas of sillimanite and garnet. These textural relations suggest the reaction sapphirine + garnet + quartz = orthopyroxene + sillimanite with decreasing temperature. Compositions of minerals in the assemblage garnet-orthopyroxene-sillimanite-plagioclase-quartz, indicate metamorphic P-T conditions of 780–880° C and 9±1 kb.The metamorphic conditions estimated in this study suggest that the sapphirine bearing granulites in the Sipiwesk Lake area represent Archean lower crustal rocks. Their formation might be related to the crustal thickening processes in this area as suggested by Hubregtse (1980) and Weber (1983).  相似文献   

20.
A series of basaltic compositions and compositions within the simple system CaO-MgO-FeO-Al2O3-SiO2 have been crystallized to garnetclinopyroxene bearing mineral assemblages in the range 24–30 kb pressure, 750°–1,300° C temperature. Microprobe analyses of coexisting garnet and clinopyroxene show that K D(Fe2+/MgG+/Fe2+/MgCpx) for the Fe-Mg exchange reaction between coexisting garnet and clinopyroxene is obviously dependent upon the Ca-content and apparently independent of the Mg/(Mg+Fe) content of the clinopyroxene and garnet. The Ca-effect is believed to be due to a combination of non-ideal Ca-Mg substitutions in the garnet and clinopyroxene. Our data and interpretation reconciles previous inconsistencies in the temperature dependence of K D ? values determined in experimental studies of simple systems, complex basalt, grospydite and garnet peridotite compositions. Previous differences between the effect of pressure upon K Das predicted from simple system theory (Banno, 1970), and that observed in experiments on multicomponent natural rock compositions (Råheim and Green, 1974a) can now be resolved. We have determined K Das a function of P, T, and X Gt Ca (grossular) and derived the empirical relation $$T\left( {^\circ {\text{K}}} \right) = \frac{{3104X_{{\text{Ca}}}^{{\text{Gt}}} + 3030 + 10.86P\left( {{\text{kb}}} \right)}}{{\ln K_{\text{D}} + 1.9034}}$$ . This empirical relationship has been applied to garnet-clinopyroxene bearing rocks from a wide range of geological environments. The geothermometer yields similar estimates for garnet-clinopyroxene equilibration for neighbouring rocks of different composition and different K Dvalues. In addition, temperature estimates using the above relationship are more consistent with independent temperature estimates based on other geothermometers than previous estimates which did not correct for the Ca-effect. An alternative approach to the above empirical geothermometer was attempted using regular solution models to derive Margules parameters for various solid solutions in garnets and clinopyroxenes. The derived Margules parameters are broadly consistent with those determined from binary solution studies, but caution must be exercised in interpreting them in terms of actual thermodynamic properties of the relevant crystalline solid solutions because of the assumptions which necessarily have to be made in this approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号