首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Information concerning a total number of 13700 instrumentally recorded earthquakes is used to study the geographical and the vertical distribution of the Earth's seismicity. From these earthquakes, which form four complete samples of data (M 7.0, 1894–1992; M 6.5, 1930–1992; M 6.0, 1953–1992; M 5.5, 1966–1992), 11511 are shallow (h 60 km), 2085 are of intermediate focal depth (61 h 300 km) and 564 are deep focus earthquakes (301 h 720 km). The parameters a and b of the frequency-magnitude relationship were calculated in a grid of equally spaced points at 1° by using the data of earthquakes located inside circles centered at each point. The radius of the circles increased from 30 km with a step of 10 km until the information for the earthquakes located inside the circle fulfil three criteria which concern the size of the sample used to compute these parameters at each point of the grid. The results are given in a qualitative way (epicenter maps) as well as in a quantitative way (mean return periods).  相似文献   

2.
We review earthquake distributions associated with hydrocarbon fields in the context of pore pressure diffusion models, poroelastic stress transfer and isostasy theory. These three mechanisms trigger or induce seismic instabilities at both local scale (D5 km) and at regional scale (D20 km). The modeled changes in stress are small (1 MPa), whatever the tectonic setting. Each mechanism corresponds to different production processes. (1) Local hydraulic fracturing due to fluid injection induces seismic-slip on cracks (M L3) within the injected reservoir through decreasing the effective stress. (2) Pure fluid withdrawal causes pore pressure to decrease within the reservoir. It triggers adjustments of the geological structure to perturbations related to the reservoir response to depletion. Poroelastic mechanisms transfer this stress change from the reservoir to the surrounding levels whereM L5 seismic instabilities occur either above or below the reservoir. (3) Massive hydrocarbon recovery induces crustal readjustments due to the removal of load from the upper crust. It can induce larger earthquakes (M L6) at greater distance from the hydrocarbon fields than the two other mechanisms.Due to the mechanical properties of the shallow rock matrices involved, seismic slip triggered either by mechanism (1) or (2), is a second-order process of the main elastoplastic deformation. for a minimum of 80% of commercially productive basins, most of the local deformation is reported as aseismic, i.e., there is no evidence forM L3 earthquakes. Nevertheless, the induced stresses vary as a function of time in a manner that depends on the hydraulic diffusivity (i.e., permeability) of the reservoir and surrounding rocks. Because small earthquakes (M L3) indicate changes in stress and pore pressure, monitoring of seismicity is a means of assessingin situ reservoir behavior.The less constrained seismic response to hydrocarbon recovery is the possible connection between local fluid manipulations, triggered earthquakes and major regional earthquakes. Positive feedback mechanisms suggest that the region of seismic hazard changes is much larger than the area where hydrocarbons are extracted. These observations and models testify that fluid movement and pore pressure changes (increase or decrease) play important roles in the mechanics of earthquakes and in the triggering of natural earthquakes.  相似文献   

3.
Barriers and asperities along the Japan trench east of Tohoku (north-eastern Honshu) are outlined by investigating the distribution of source areas of earthquakes withM6 in the time period 1926 to 1981. The earthquakes were grouped into three magnitude ranges: A: 6.0M6.4, B: 6.5M7.0 and C: 7.1M8.1.The following feature is found to be common to all three groups: Either the source areas do not substantially overlap, or they superpose almost perfectly. Only a very small number of events show partial overlapping of source areas. The events of group A tend to align along several NW-SE oriented zones with distinct interspaces. These zones do not follow the regional stress field but show excellent correlation with the direction perpendicular to the magnetic anomaly lineations of the ocean floor in this area. The events of group B and C generally fill in the spatial gaps of group A. In terms of the barrier model this can be explained by barriers of varying strength through which the fracture process of smaller magnitude events does not propagate and that of larger events is not inhibited. The direction of the group A barriers suggests that they have been developed at the time of creation of the oceanic lithosphere and possibly relate to ancient transform faults now buried by sediments. Since the accuracy of epicenter locations is crucial for this kind of investigation, 45 events between 1963 and 1979 have been relocated by the joint epicenter determination method.Contribution No. 456, Institut fur Geophysik, ETHZ.  相似文献   

4.
The distributions of discrete frequency, N, versus interoccurrence time, t (in days), of M 7 earthquakes in the Taiwan region during the 1900–1994 period, M 6 earthquakes in the north-south seismic belt of China during the 1900–1990 period, and M 5.5 earthquakes in Southern California, U.S.A., during the 1914–1995 period are studied through two statistical models (gamma function and exponential function). Results show that both the exponential function and gamma function can describe the distributions. However, the former is more appropriate than the latter. This indicates that the three time series of earthquakes have a significant component of Poisson processes, even though the tectonic conditions, the fault distributions and the size of the three seismic regions are different.  相似文献   

5.
A predictive equation to estimate the next interoccurrence time () for the next earthquake (M6) in the Ometepec segment is presented, based on Bayes' theorem and the Gaussian process.Bayes' theorem is used to relate the Gaussian process to both a log-normal distribution of recurrence times () and a log-normal distribution of magnitudes (M) (Nishenko andBuland, 1987;Lomnitz, 1964). We constructed two new random variablesX=InM andY=In with normal marginal densities, and based on the Gaussian process model we assume that their joint density is normal. Using this information, we determine the Bayesian conditional probability. Finally, a predictive equation is derived, based on the criterion of maximization of the Bayesian conditional probability. The model forecasts the next interoccurrence time, conditional on the magnitude of the last event.Realistic estimates of future damaging earthquakes are based on relocated historical earthquakes. However, at the present time there is a controversy between Nishenko-Singh and Gonzalez-Ruiz-Mc-Nally concerning the rupturing process of the 1907 earthquake. We use our Bayesian analysis to examine and discuss this very important controversy. To clarify to the full significance of the analysis, we put forward the results using two catalogues: (1) The Ometepec catalogue without the 1907 earthquake (González-Ruíz-McNally), and (2) the Ometepec catalogue including the 1907 earthquake (Nishenko-Singh).The comparison of the prediction error reveals that in the Nishenko-Singh catalogue, the errors are considerably smaller than the average error for the González-Ruíz-McNally catalogue of relocated events.Finally, using the Nishenko-Singh catalogue which locates the 1907 event inside the Ometepec segment, we conclude that the next expected damaging earthquake (M6.0) will occur approximately within the next time interval =11.82 years from the last event (which occurred on July 2, 1984), or equivalently will probably occur in April, 1996.  相似文献   

6.
The regional variation of the seismic velocity-ratio () over a 200 km long traverse has been studied by means of microearthquake surveys. The Wadati-plot method is used with a minimum of four P and S arrivals for each of 49 earthquakes. The area as a whole is found to be characterized by a value of 1.74–1.76 for earthquakes of depth 12–40 km, except in a 50 km long section near Wellington, where is low at 1.60. This low has been attributed to the fault zones in the region. A small change of is observed between the upper crust (5 km) and lower crust (12 km), but there is no change of between the lower crust and uppermost mantle.  相似文献   

7.
Reservoir induced earthquakes began to occur in the vicinity of Shivajisagar Lake formed by Koyna Dam in Maharashtra state, western India, soon after its filling started in 1962. Induced earthquakes have continued to occur for the past 34 years in the vicinity of this reservoir, and so far a total of 10 earthquakes of M 5.0, over 100 of M 4 and about 100,000 of M 0.0 have occurred. Every year, following the rainy season, the water level in the reservoir rises and induced earthquakes occur. Seismic activity during 1967–68 was most intense when globally, the largest reservoir induced earthquake occurred on 10 December, 1967. Other years of intense seismic activity are 1973 and 1980. During 1986 another reservoir, Warna, some 20 km south of Koyna, began to be filled. The recent burst of seismic activity in Koyna-Warna region began in August, 1993, and was monitored with a close network of digital and analog seismographs. During August, 1993–December, 1995, 1,272 shocks of magnitude 2 were located, including two earthquakes of M 5.0 and M 5.4 on 8 December, 1993 and 1 February, 1994, respectively. Two parallel epicentral trends in NNE-SSW direction, one passing through Koyna and the other through Warna reservoir are delineated. The 1993 increase in seismicity has followed a loading of 44.15 m in Warna reservoir during 11 June 11, 1993 through August 4, 1993, with a maximum rate of filling being 16 m/week. The larger shocks have been found to be preceded by a precursory nucleation process.  相似文献   

8.
The high likelihood of a gap-filling thrust earthquake in the Alaska subduction zone within this decade is indicated by two independent methods: analysis of historic earthquake recurrence data and time-to-failure analysis applied to recent decades of instrumental data. Recent (May 1993) earthquake activity in the Shumagin Islands gap is consistent with previous projections of increases in seismic release, indicating that this segment, along with the Alaska Peninsula segment, is approaching failure. Based on this pattern of accelerating seismic release, we project the occurrence of one or moreM7.3 earthquakes in the Shumagin-Alaska Peninsula region during 1994–1996. Different segments of the Alaska-Aleutian seismic zone behave differently in the decade or two preceding great earthquakes, some showing acceleration of seismic release (type A zones), while others show deceleration (type D zones). The largest Alaska-Aleutian earthquakes—in 1957, 1964, and 1965—originated in zones that exhibit type D behavior. Type A zones currently showing accelerating release are the Shumagin, Alaska Peninsula, Delarof, and Kommandorski segments. Time-to-failure analysis suggests that the large earthquakes could occur in these latter zones within the next few years.  相似文献   

9.
A sequence of moderate shallow earthquakes (3.5M L5.3) was located within the Vercors massif (France) in the period 1961–1984. This subalpine massif has been a low seismic area for at least 5 centuries. During the period 1962–1963, 12 shallow earthquakes occurred in the neighborhood (10 km) of the Monteynard reservoir, 30 km south of the city of Grenoble. The latest fourM L4.0 earthquakes occurred in 1979–1984 either at larger distance (35 km) or greater depth (10 km) from the reservoir. Two triggering mechanisms are suggested for this sequence: (i) the direct effect of elastic loading through either increased shear stress or strength reducing by increased pore pressure at depth; (ii) the pore pressure diffusion induced by poroelastic stress change due to the reservoir filling.The weekly water levels, local balanced geological cross sections, and focal mechanisms argue for two types of mechanical connection between the earthquake sequence and the filling cycles of the Monteynard reservoir. The seismic sequence started with the 1962–1963 shallow earthquakes that occurred during the first filling of the reservoir and are typical of the direct effect of elastic loading. The 1979 deeper earthquake is located at a 10 km depth below the reservoir. This event occurred 16 years after the initial reservoir impoundment, but one month after the previous 1963 maximum water level was exceeded. Moreover the yearly reservoir level increased gradually in the period 1962–1979 and has decreased since 1980. Accordingly we suggest that the gradual diffusion of water from reservoir to hypocentral depths decreases the strength of the rock matrices through increased pore pressure. The transition between the two types of seismic response is supported by the analysis ofM L3.5 earthquakes which all occurred in the period 1964–1971, ranging between 10 and 30 km distance from the reservoir. The three other delayed earthquakes of the 1961–1984 seismic sequence (M L4 during the 1979–1984 period) are all located 35 km away from the reservoir. Based on the seismic activity, the estimates for the hydraulic diffusivities range between 0.2–10 m2/s, except for the first event that occurred 30 km north of the reservoir, the filling just started. The lack ofin situ measurements of crustal hydrological properties in the area, shared by most of the Reservoir-Induced-Seismicity cases, prevents us from obtaining absolute evidence for the triggering processes. These observations and conceptual models attest that previous recurrence times for moderate natural shocks (4.5M L5.5) estimated within this area using historical data, could be modified by 0.1–1 MPa stress changes. These small changes in deviatoric stress suggest that the upper crust is in this area nearly everywhere at a state of stress near failure. Although the paucity of both number and size of earthquakes in the French subalpine massif shows that aseismic displacements prevail, our study demonstrates that triggered earthquakes are important tools for assessing local seismic risk through mapping fault zones and identifying their possible seismic behavior.  相似文献   

10.
Summary On the basis of the 1966–73 data, the effect of the difference between pro- and anti-sectors of the IMF is found to be negligible in the winter midlatitude (Central Europe) ionosphere contrary to the dominant effect of this difference in the high-latitude ionosphere found earlier.
a ¶rt;a a 1966–73. u¶rt;m u m amu ¶rt; pro- u anti- mau . na a u ¶rt;um (¶rt; na) u, , a naa a, naum um u.
  相似文献   

11.
¶rt;m nmaumuu uma a nuu amma. aa, m ua u ua um ¶rt; nm am ¶rt;au u nuu uma. aumaa mu ¶rt; u a au nu u mau. aa ua u ua . n¶rt; nnau anum¶rt; aamumu aa nuu . aa, m nm a¶rt; u um a aau a amm 56°/h, ma aa a au mau. aamuam au u m u.

Presented at the meeting of Working Group 3.3. of the KAPG (Prague, November 1975).  相似文献   

12.
au u uu mu a amu am a¶rt; mum ma¶rt;amuauau nmm m a, ¶rt;a m u ¶rt;u naam — aum¶rt; a, nu¶rt; a¶rt;u uu na¶rt;u am — nu muaua muam ¶rt; m ¶rt;a. ¶rt;aa n ma¶rt;amuauu nm naam ¶rt;u munaua nmmu ¶rt;.  相似文献   

13.
n ¶rt;a, n¶rt;mau 531 au ¶rt; u aum m u¶rt;uu n mumu ana¶rt;, ¶rt; u -m n, aauum ¶rt;um u u amuaa n¶rt;naa ma ua aama. uu nmam an¶rt;u ¶rt; u aum aam ¶rt;au cuu uP n m , n¶rt;am mn n=1, 2, 3 u 5 (m n). u uua ¶rt;a¶rt;amu uu n¶rt;mauu uum au (a. 1) u u n aumam uu nmu, m n¶rt;mam u¶rt; am uuu ¶rt; u aum (u. 1–4). annuau 2 u 5 mn nm ma am mmmu m (u. 5, 6). ama uuu u m aam amu uu uma.  相似文献   

14.
Summary The dependence between Pn-wave velocities and the surface heat flow, temperature at the core-mantl boundary and thickness of the Earth's crust for continents (Europe, Asia, North America and Australia) was investigated statistically in connection with the problem of lateral inhomogeneities in the upper mantle. The relations obtained were compared with those determined under laboratory conditions. The conclusion is that temperature and pressure effects may provide additional explanations of the regional variations of Pn-wave velocities observed in most continents.
auum ¶rt;auu mu n¶rt; a nmu uua(Pn ), nm mn nm, mnam a u m mum a u¶rt;aa u n uuuma ¶rt;¶rt;m mu Pn. nua ¶rt;a mama aam u¶rt;au nu m n¶rt; amuu u u ¶rt;au u mnam a¶rt;um mmmuu mamau n¶rt;aa am. am ¶rt;, m ua uu m Pn- ¶rt; amu muma n¶rt;m auu m¶rt;uauu u a nmu muua.
  相似文献   

15.
au am nu¶rt;, nuau ¶rt;u¶rt;aum ¶rt;ua, a u ¶rt; ma aum u¶rt;uu aam ma¶rt;am . a a au ¶rt; uuauu u nm nmu a u m muna, mm m¶rt; ma a anma n u. uunua muau u m¶rt; nua [4, 5]. n¶rt; am nuam m¶rt; u, u¶rt;u u m¶rt;a a u a nm nu nu¶rt;um au m u m¶rt;.  相似文献   

16.
Summary Basing on the analysis of the most reliable data concerning the atmospheric absorption of long-wave radiation by water vapour, carbon dioxide and ozone, was obtained the integral transmission function of long-wave radiation by the atmosphere. The results are used for plotting the new radiation chart intended for calculating the thermal radiative fluxes in the atmosphere. Comparison of the results of calculations of thermal radiative fluxes has been carried out according to the new chart as well as by the preceding ones.
, . , . .
  相似文献   

17.
a mamumuu m, m n¶rt; u a¶rt;a au, um ¶rt;umuau. aam, m a au ¶rt;unu a¶rt;a au n ¶rt;umuauu u n¶rt; nu a an¶rt; a u uu aa ,¶rt; h a ¶rt;umuauu.  相似文献   

18.
Summary The estimate of the tidal long-term decrease in the angular velocity of the Earth's rotation due to the Sun is given as –(0.8±0.3)×10 –22 rad s –2. It was computed on the basis of the observed total long-term decrease in , of the observed tidal deceleration of the Moon and the observed decrease in the second-degree zonal Stokes geopotential harmonic term. Adopting the estimate given, the product of the Love number and the tidal phase lag angle due to the Sun (in degrees) comes out as 0.53±0.20.
am a z nuuu u z mu au u, az : –(0,8±0,3) 10 –22 a¶rt; –2 . ¶rt; ua n a¶rt;a u , n a¶rt;a nuu u ¶rt;z ¶rt;uu u n a¶rt;a u mz az znmuaz naama ma. u num n au, m nu¶rt;u ua a a z u ( za¶rt;a) a z nuua a (0,53±0,20).
  相似文献   

19.
ama nm u nmam nuau aamumuuaum nau muna Pc4 n ¶rt;a u mauu m, a¶rt; a m m anam ¶rt;u amu u¶rt;a umu. n¶rt;a auum nu¶rt;a u anum¶rt; nau u u nuau aamumu mu ¶rt; u m aum amumu, u au uu m¶rt; naam. mam auam mamau amu nau Pc3 u Pi2 n ¶rt;a u mau ¶rt; u u.  相似文献   

20.
Summary A procedure of fast computation of body-wave ray synthetic seismograms in vertically inhomogeneous media is suggested. The procedure uses a special approximation of the velocitydepth distribution which guarantees continuity of the first and second derivatives of velocity and does not generate false low-velocity layers (oscillations in the velocity-depth function). The ZESY82 program package, which is based on the suggested procedure, is described. The point source with an arbitrary radiation pattern may be situated at any points of the model, the receivers are situated regularly or irregularly along any profile on the Earth's surface, containing the epicentre. Numerical examples of the synthetic record sections for a model of the Earth's crust and the uppermost mantle are given.
¶rt;aam m¶rt; m ama ummuu a mua ¶rt;¶rt; ¶rt;, u¶rt; u nua annuauu m aa, ma nuam nm mu u n u m nu¶rt; u nu¶rt;um aau um nu mu. am nua aumn na ZESY82, a a m m¶rt;. umu aamumu uu an m ¶rt;u; nuuu ¶rt; m an¶rt; ¶rt; nu, ¶rt;a num. u¶rt; nu ummuu a ¶rt; ¶rt; ¶rt;u u amuu.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号