首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 1 毫秒
1.
Twelve 1–2 m, 10-cm-diameter gravity cores collected in 1988 and 1991, from the continental shelf and fjords of East Greenland near Kangerlussuaq Fjord/Trough (ca. 68°N, 32°W), have distinct changes in lithofacies and in the quantity of iceberg rafted (IRD) sediments. These changes are readily observed in X-radiographs of the split cores. We quantify the IRD contribution through grain-size analyses and counting the number of clasts >2 mm from the X-radiographs. Chronological control is provided by acclerated mass spectroscopy 14C dates on foraminifera. During deglaciation, after 14 cal.ka there was one interval of IRD accumulation ca. 12–13 cal.ka, followed by a brief return to IRD conditions centred at 9 cal.ka. Thereafter, a prominent feature of most cores on the shelf is an increase in IRD accumulation that started ca. 5–6 cal.ka, and which has increased toward the present. Indicators of iceberg rafting, such as the net sand flux and numbers of clasts >2 mm ka−1, follow a power law distribution when graphed against distance from the present East Greenland coast, a measure of the position of the glacier margins. The form of the relationship indicates that there is a dramatic decrease in the supply of sediment from the fjords to the shelf. These relationships are used to estimate changes in the location of the ice margin during the late Quaternary based on a site on the East Greenland slope, Denmark Strait, and to discuss factors that can negate such a simple transfer function. © 1997 by John Wiley & Sons Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号