首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We projected surface air temperature changes over South Korea during the mid (2026-2050) and late (2076-2100) 21st century against the current climate (1981-2005) using the simulation results from five regional climate models (RCMs) driven by Hadley Centre Global Environmental Model, version 2, coupled with the Atmosphere- Ocean (HadGEM2-AO), and two ensemble methods (equal weighted averaging, weighted averaging based on Taylor’s skill score) under four Representative Concentration Pathways (RCP) scenarios. In general, the five RCM ensembles captured the spatial and seasonal variations, and probability distribution of temperature over South Korea reasonably compared to observation. They particularly showed a good performance in simulating annual temperature range compared to HadGEM2-AO. In future simulation, the temperature over South Korea will increase significantly for all scenarios and seasons. Stronger warming trends are projected in the late 21st century than in the mid-21st century, in particular under RCP8.5. The five RCM ensembles projected that temperature changes for the mid/late 21st century relative to the current climate are +1.54°C/+1.92°C for RCP2.6, +1.68°C/+2.91°C for RCP4.5, +1.17°C/+3.11°C for RCP6.0, and +1.75°C/+4.73°C for RCP8.5. Compared to the temperature projection of HadGEM2-AO, the five RCM ensembles projected smaller increases in temperature for all RCP scenarios and seasons. The inter-RCM spread is proportional to the simulation period (i.e., larger in the late-21st than mid-21st century) and significantly greater (about four times) in winter than summer for all RCP scenarios. Therefore, the modeled predictions of temperature increases during the late 21st century, particularly for winter temperatures, should be used with caution.  相似文献   

2.
This study investigates projected changes in rainfall and temperature over Malaysia by the end of the 21st century based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2, A1B and B2 emission scenarios using the Providing Regional Climates for Impacts Studies (PRECIS). The PRECIS regional climate model (HadRM3P) is configured in 0.22° × 0.22° horizontal grid resolution and is forced at the lateral boundaries by the UKMO-HadAM3P and UKMOHadCM3Q0 global models. The model performance in simulating the present-day climate was assessed by comparing the modelsimulated results to the Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE) dataset. Generally, the HadAM3P/PRECIS and HadCM3Q0/PRECIS simulated the spatio-temporal variability structure of both temperature and rainfall reasonably well, albeit with the presence of cold biases. The cold biases appear to be associated with the systematic error in the HadRM3P. The future projection of temperature indicates widespread warming over the entire country by the end of the 21st century. The projected temperature increment ranges from 2.5 to 3.9°C, 2.7 to 4.2°C and 1.7 to 3.1°C for A2, A1B and B2 scenarios, respectively. However, the projection of rainfall at the end of the 21st century indicates substantial spatio-temporal variation with a tendency for drier condition in boreal winter and spring seasons while wetter condition in summer and fall seasons. During the months of December to May, ~20-40% decrease of rainfall is projected over Peninsular Malaysia and Borneo, particularly for the A2 and B2 emission scenarios. During the summer months, rainfall is projected to increase by ~20-40% across most regions in Malaysia, especially for A2 and A1B scenarios. The spatio-temporal variations in the projected rainfall can be related to the changes in the weakening monsoon circulations, which in turn alter the patterns of regional moisture convergences in the region.  相似文献   

3.
We present climate responses of Representative Concentration Pathways (RCPs) using the coupled climate model HadGEM2-AO for the Coupled Model Intercomparison Project phase 5 (CMIP5). The RCPs are selected as standard scenarios for the IPCC Fifth Assessment Report and these scenarios include time paths for emissions and concentrations of greenhouse gas and aerosols and land-use/land cover. The global average warming and precipitation increases for the last 20 years of the 21st century relative to the period 1986-2005 are +1.1°C/+2.1% for RCP2.6, +2.4°C/+4.0% for RCP4.5, +2.5°C/+3.3% for RCP6.0 and +4.1°C/+4.6% for RCP8.5, respectively. The climate response on RCP 2.6 scenario meets the UN Copenhagen Accord to limit global warming within two degrees at the end of 21st century, the mitigation effect is about 3°C between RCP2.6 and RCP8.5. The projected precipitation changes over the 21st century are expected to increase in tropical regions and at high latitudes, and decrease in subtropical regions associated with projected poleward expansions of the Hadley cell. Total soil moisture change is projected to decrease in northern hemisphere high latitudes and increase in central Africa and Asia whereas near-surface soil moisture tends to decrease in most areas according to the warming and evaporation increase. The trend and magnitude of future climate extremes are also projected to increase in proportion to radiative forcing of RCPs. For RCP 8.5, at the end of the summer season the Arctic is projected to be free of sea ice.  相似文献   

4.
The seasonal melt-freeze transitions are fundamental features of the Arctic climate system. The representation of the pan-Arctic melt and freeze onset (north of 60°N) is assessed in two reanalyses and eleven CMIP5 global circulation models (GCMs). The seasonal melt-freeze transitions are retrieved from surface air temperature (SAT) across the land and sea-ice domains and evaluated against surface observations. While monthly averages of SAT are reasonably well represented in models, large model-observation and model–model disparities of timing of melt and freeze onset are evident. The evaluation against surface observations reveals that the ERA-Interim reanalysis performs the best, closely followed by some of the climate models. GCMs and reanalyses capture the seasonal melt-freeze transitions better in the central Arctic than in the marginal seas and across the land areas. The GCMs project that during the 21st century, the summer length—the period between melt and freeze onset—will increase over land by about 1 month at all latitudes, and over sea ice by 1 and 3 months at low and high latitudes, respectively. This larger summer-length increase over sea ice at progressively higher latitudes is related to a retreat of summer sea ice during the 21st century, since open water freezes roughly 40 days later than ice-covered ocean. As a consequence, by the year 2100, the freeze onset is projected to be initiated within roughly 10 days across the whole Arctic Ocean, whereas this transition varies by about 80 days today.  相似文献   

5.
Numerical experiments are analyzed for 1860–2100 with the version of the climate model of intermediate complexity of the Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences (IAP RAS) including the model of general ocean circulation as the oceanic module (CM IAP RAS-GOC) taking account of concentration variations of anthropogenic greenhouse gases and tropospheric sulfate aerosols from the data of observations and reconstructions for the second half of the 19th and for the 20th century and, according to SRES scenarios, in the 21st century. In the 20th century, the model simulates realistically the variations of surface atmospheric temperature, characteristics of heat absorption by the ocean, and oceanic meridional heat transport. The linear trend of global surface atmospheric temperature in the 20th century (in its last 30 years) in this version of the model amounts to 0.5 ± 0.1 K/100 years (0.22 ± 0.05 K/10 years) that is agreed with the observational data. In the 21st century, the global increase in the surface temperature amounts to 2.5 K (3.5 and 4.1 K) for SRES B1 scenario (for SRES A1B and SRES A2 scenarios, respectively). The increase in the surface temperature is the most significant in high latitudes, especially in the Northern Hemisphere and it is higher, on the whole, over the land than over the ocean. The warming near the surface is larger in winter than in summer. The maximum warming is observed in the Arctic and over the land of subpolar latitudes of the Northern Hemisphere reaching 6–10 K by the end of the 21st century in these regions as compared with the end of the 20th century depending on the anthropogenic impact scenario. At the increase in surface temperature in the 20th–21st centuries, the increase in the heat flow to the ocean and the weakening of the heat transport by the ocean from the tropics to the polar area by 1.5–2 times are registered, on the whole. At the warming, the CM IAP RAS-GOC gives the general increase in the annual precipitation amount which is especially appreciable in the tropics and in the storm-track regions. At the global averaging, the precipitation in the 21st century increase by 20–25%.  相似文献   

6.
Troy Masters 《Climate Dynamics》2014,42(7-8):2173-2181
Climate sensitivity is estimated based on 0–2,000 m ocean heat content and surface temperature observations from the second half of the 20th century and first decade of the 21st century, using a simple energy balance model and the change in the rate of ocean heat uptake to determine the radiative restoration strength over this time period. The relationship between this 30–50 year radiative restoration strength and longer term effective sensitivity is investigated using an ensemble of 32 model configurations from the Coupled Model Intercomparison Project phase 5 (CMIP5), suggesting a strong correlation between the two. The mean radiative restoration strength over this period for the CMIP5 members examined is 1.16 Wm?2K?1, compared to 2.05 Wm?2K?1 from the observations. This suggests that temperature in these CMIP5 models may be too sensitive to perturbations in radiative forcing, although this depends on the actual magnitude of the anthropogenic aerosol forcing in the modern period. The potential change in the radiative restoration strength over longer timescales is also considered, resulting in a likely (67 %) range of 1.5–2.9 K for equilibrium climate sensitivity, and a 90 % confidence interval of 1.2–5.1 K.  相似文献   

7.
This study presents projections of twenty-first century wintertime surface temperature changes over the high-latitude regions based on the third Coupled Model Inter-comparison Project (CMIP3) multi-model ensemble. The state-dependence of the climate change response on the present day mean state is captured using a simple yet robust ensemble linear regression model. The ensemble regression approach gives different and more precise estimated mean responses compared to the ensemble mean approach. Over the Arctic in January, ensemble regression gives less warming than the ensemble mean along the boundary between sea ice and open ocean (sea ice edge). Most notably, the results show 3?°C less warming over the Barents Sea (~7?°C compared to ~10?°C). In addition, the ensemble regression method gives projections that are 30?% more precise over the Sea of Okhostk, Bering Sea and Labrador Sea. For the Antarctic in winter (July) the ensemble regression method gives 2?°C more warming over the Southern Ocean close to the Greenwich Meridian (~7?°C compared to ~5?°C). Projection uncertainty was almost half that of the ensemble mean uncertainty over the Southern Ocean between 30° W to 90° E and 30?% less over the northern Antarctic Peninsula. The ensemble regression model avoids the need for explicit ad hoc weighting of models and exploits the whole ensemble to objectively identify overly influential outlier models. Bootstrap resampling shows that maximum precision over the Southern Ocean can be obtained with ensembles having as few as only six climate models.  相似文献   

8.
Tropical cyclone heat potential (TCHP) in the ocean can affect tropical cyclone intensity and intensification. In this paper, TCHP change under global warming is presented based on 35 models from CMIP5 (Coupled Model Intercomparison Project, Phase 5). As the upper ocean warms up, the TCHP of the global ocean is projected to increase by 140.6% in the 21st century under the RCP4.5 (+4.5 W m-2 Representative Concentration Pathway) scenario. The increase is particularly significant in the western Pacific, northwestern Indian and western tropical Atlantic oceans. The increase of TCHP results from the ocean temperature warming above the depth of the 26°C isotherm (D26), the deepening of D26, and the horizontal area expansion of SST above 26°C. Their contributions are 69.4%, 22.5% and 8.1%, respectively. Further, a suite of numerical experiments with an Ocean General Circulation Model (OGCM) is conducted to investigate the relative importance of wind stress and buoyancy forcing to the TCHP change under global warming. Results show that sea surface warming is the dominant forcing for the TCHP change, while wind stress and sea surface salinity change are secondary.  相似文献   

9.
The climatological characteristics of precipitation and the water vapor budget in the Haihe River basin (HRB) are analyzed using daily observations at 740 stations in China in 1951-2007 and the 4-time daily ERA40 reanalysis data in 1958-2001. The results show that precipitation and surface air temperature present significant interannual and interdecadal variability, with cold and wet conditions before the 1970s but warm and dry conditions after the 1980s. Precipitation has reduced substantially since the 1990s, with a continued increase of surface air temperature. The total column water vapor has also reduced remarkably since the late 1970s. The multi-model ensemble from the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) has capably simulated the 20th century climate features and successfully reproduced the spatial patterns of precipitation and temperature. Unfortunately, the models do not reproduce the interdecadal changes. Based on these results, future projections of the climate in the HRB are discussed under the IPCC Special Report on Emissions Scenarios (SRES) B1, A1B, and A2. The results show that precipitation is expected to increase in the 21st century, with substantial interannual fluctuations relative to the models’ baseline climatology. A weak increasing trend in precipitation is projected before the 2040s, followed by an abrupt increase after the 2040s, especially in winter. Precipitation is projected to increase by 10%-18% by the end of the 21st century. Due to the persistent warming of surface air temperature, water vapor content in the lower troposphere is projected to increase. Relative humidity will decrease in the mid-lower troposphere but increase in the upper troposphere. On the other hand, precipitation minus evaporation remains positive throughout the 21st century. Based on these projection results, the HRB region is expected to get wetter in the 21st century due to global warming.  相似文献   

10.
吴婕  高学杰  徐影 《大气科学》2018,42(3):696-705
基于CSIRO-Mk3-6-0、EC-EARTH、HadGEM2-ES和MPI-ESM-MR共4个全球气候模式,分别驱动区域气候模式RegCM4,所进行的RCP4.5(典型浓度路径)中等排放情景下25 km较高水平分辨率东亚区域21世纪气候变化模拟结果,针对雄安新区及周边区域,在对当代(1986~2005)气候进行检验的基础上,进行了该区域未来气候变化的多模拟集合预估,并给出了模拟间的差别。结果表明:RegCM4可以较好地模拟出分析区域当代平均气温和降水的分布及年内月循环变化特征;对与气温相关的极端气候事件指数,日最高气温最高值(TXx)和日最低气温最低值(TNn),以及和降水相关的指数日最大降水量(RX1day)也有较好的模拟能力。雄安及周边区域未来平均气温、TXx和TNn将不断上升,高温热浪事件在增加的同时,低温事件将减少。未来分析区域平均降水量有所增加;而RX1day的增加更明显,且模拟间的一致性较好,不确定性相对较低,暴雨和洪涝事件的频率和强度均将增大。同时由于气温升高导致的潜在蒸发量相对于降水更大的增加,将使得区域水资源相对不足的现象加重。  相似文献   

11.
A suite of decadal predictions has been conducted with the NASA Global Modeling and Assimilation Office’s (GMAO’s) GEOS-5 Atmosphere–Ocean general circulation model. The hind casts are initialized every December 1st from 1959 to 2010, following the CMIP5 experimental protocol for decadal predictions. The initial conditions are from a multi-variate ensemble optimal interpolation ocean and sea-ice reanalysis, and from GMAO’s atmospheric reanalysis, the modern-era retrospective analysis for research and applications. The mean forecast skill of a three-member-ensemble is compared to that of an experiment without initialization but also forced with observed greenhouse gases. The results show that initialization increases the forecast skill of North Atlantic sea surface temperature compared to the uninitialized runs, with the increase in skill maintained for almost a decade over the subtropical and mid-latitude Atlantic. On the other hand, the initialization reduces the skill in predicting the warming trend over some regions outside the Atlantic. The annual-mean atlantic meridional overturning circulation index, which is defined here as the maximum of the zonally-integrated overturning stream function at mid-latitude, is predictable up to a 4-year lead time, consistent with the predictable signal in upper ocean heat content over the North Atlantic. While the 6- to 9-year forecast skill measured by mean squared skill score shows 50 % improvement in the upper ocean heat content over the subtropical and mid-latitude Atlantic, prediction skill is relatively low in the subpolar gyre. This low skill is due in part to features in the spatial pattern of the dominant simulated decadal mode in upper ocean heat content over this region that differ from observations. An analysis of the large-scale temperature budget shows that this is the result of a model bias, implying that realistic simulation of the climatological fields is crucial for skillful decadal forecasts.  相似文献   

12.
Based on integrated simulations of 26 global climate models provided by the Coupled Model Intercomparison Project(CMIP), this study predicts changes in temperature and precipitation across China in the 21 st century under different representative concentration pathways(RCPs), and analyzes uncertainties of the predictions using Taylor diagrams. Results show that increases of average annual temperature in China using three RCPs(RCP2.6, RCP4.5,RCP8.5) are 1.87 ℃, 2.88 ℃ and 5.51 ℃, respectively. Increases in average annual precipitation are 0.124, 0.214, and 0.323 mm/day, respectively. The increased temperature and precipitation in the 21 st century are mainly contributed by the Tibetan Plateau and Northeast China. Uncertainty analysis shows that most CMIP5 models could predict temperature well, but had a relatively large deviation in predicting precipitation in China in the 21 st century. Deviation analysis shows that more than 80% of the area of China had stronger signals than noise for temperature prediction;however, the area proportion that had meaningful signals for precipitation prediction was less than 20%. Thus, the multi-model ensemble was more reliable in predicting temperature than precipitation because of large uncertainties of precipitation.  相似文献   

13.
Near-term climate projections are needed by policymakers; however, these projections are difficult because internally generated climate variations need to be considered. In this study, temperature change scenarios in the near-term period 2017–35 are projected at global and regional scales based on a refined multi-model ensemble approach that considers both the secular trend (ST) and multidecadal variability (MDV) in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations. The ST and MDV components are adaptively extracted from each model simulation by using the ensemble empirical mode decomposition (EEMD) filter, reconstructed via the Bayesian model averaging (BMA) method for the historical period 1901–2005, and validated for 2006–16. In the simulations of the “medium” representative concentration pathways scenario during 2017–35, the MDV-modulated temperature change projected via the refined approach displays an increase of 0.44°C (90% uncertainty range from 0.30 to 0.58°C) for global land, 0.48°C (90% uncertainty range from 0.29 to 0.67°C) for the Northern Hemispheric land (NL), and 0.29°C (90% uncertainty range from 0.23 to 0.35°C) for the Southern Hemispheric land (SL). These increases are smaller than those projected by the conventional arithmetic mean approach. The MDV enhances the ST in 13 of 21 regions across the world. The largest MDV-modulated warming effect (46%) exists in central America. In contrast, the MDV counteracts the ST in NL, SL, and eight other regions, with the largest cooling effect (220%) in Alaska.  相似文献   

14.
The conformal-cubic atmospheric model, a variable-resolution global model, is applied at high spatial resolution to perform simulations of present-day and future climate over southern Africa and over the Southwest Indian Ocean. The model is forced with the bias-corrected sea-surface temperatures and sea-ice of six coupled global climate models that contributed to Assessment Report 4 of the Intergovernmental Panel on Climate Change. All six simulations are for the period 1961–2100, under the A2 emission scenario. Projections for the latter part of the 21st century indicate a decrease in the occurrence of tropical cyclones over the Southwest Indian Ocean adjacent to southern Africa, as well as a northward shift in the preferred landfall position of these systems over the southern African subcontinent. A concurrent increase in January to March rainfall is projected for northern Mozambique and southern Tanzania, with decreases projected further south over semi-arid areas such as the Limpopo River Basin where these systems make an important contribution as main cause of widespread heavy rainfall. It is shown that the projected changes in tropical cyclone attributes and regional rainfall occur in relation to changes in larger scale atmospheric temperature, pressure and wind profiles of the southern African region and adjacent oceans.  相似文献   

15.
CMIP5模式对中国地区气温模拟能力评估与预估   总被引:5,自引:0,他引:5  
利用第五次国际耦合模式比较计划(CMIP5)中29个气候模式的气温模拟结果,评估了各模式对中国地区年平均气温的模拟能力,对未来不同典型浓度路径(RCPs)下中国地区气温的可能变化给出了预估。结果表明:各模式能较好地模拟过去100多年中国地区增温趋势和年平均气温的空间分布,从模式间标准差来看,各模式对中国中部、南部气温模拟具有较高的一致性。利用相对均方根误差分析了各模式的模拟能力,对于多时间尺度(月、年)气温的气候平均态,有7个模式表现良好,高于中等水平,5个模式的模拟能力低于中等水平,模式集合平均值的模拟效果优于大多数单个模式。根据29个模式的评估结果,使用模拟性能相对较好的模式分析了未来不同排放情景下中国地区气温变化,21世纪前期,不同排放情景之间的预估结果差别较小,21世纪中期各情景之间的差别逐渐增大,到21世纪后期,3种排放情景的升温差别明显增大。  相似文献   

16.
Estimates of possible climate changes and cryolithozone dynamics in the 21st century over the Northern Hemisphere land are obtained using the IAP RAS global climate model under the RCP scenarios. Annual mean warming over the northern extratropical land during the 21st century amounts to 1.2–5.3°C depending on the scenario. The area of the snow cover in February amounting currently to 46 million km2 decreases to 33–42 million km2 in the late 21st century. According to model estimates, the near-surface permafrost in the late 21st century persists in northern regions of West Siberia, in Transbaikalia, and Tibet even under the most aggressive RCP 8.5 scenario; under more moderate scenarios (RCP 6.0, RCP 4.5, and RCP 2.6), it remains in East Siberia and in some high-latitude regions of North America. The total near-surface permafrost area in the Northern Hemisphere in the current century decreases by 5.3–12.8 million km2 depending on the scenario. The soil subsidence due to permafrost thawing in Central Siberia, Cisbaikalia, and North America can reach 0.5–0.8 m by the late 21st century.  相似文献   

17.
In this study, we constructed a perturbed physics ensemble (PPE) for the MIROC5 coupled atmosphere–ocean general circulation model (CGCM) to investigate the parametric uncertainty of climate sensitivity (CS). Previous studies of PPEs have mainly used the atmosphere-slab ocean models. A few PPE studies using a CGCM applied flux corrections, because perturbations in parameters can lead to large radiation imbalances at the top of the atmosphere and climate drifts. We developed a method to prevent climate drifts in PPE experiments using the MIROC5 CGCM without flux corrections. We simultaneously swept 10 parameters in atmosphere and surface schemes. The range of CS (estimated from our 35 ensemble members) was not wide (2.2–3.2?°C). The shortwave cloud feedback related to changes in middle-level cloud albedo dominated the variations in the total feedback. We found three performance metrics for the present climate simulations of middle-level cloud albedo, precipitation, and ENSO amplitude that systematically relate to the variations in shortwave cloud feedback in this PPE.  相似文献   

18.
We investigate the effects of realistic oceanic initial conditions on a set of decadal climate predictions performed with a state-of-the-art coupled ocean-atmosphere general circulation model. The decadal predictions are performed in both retrospective (hindcast) and forecast modes. Specifically, the full set of prediction experiments consists of 3-member ensembles of 30-year simulations, starting at 5-year intervals from 1960 to 2005, using historical radiative forcing conditions for the 1960–2005 period, followed by RCP4.5 scenario settings for the 2006–2035 period. The ocean initial states are provided by ocean reanalyses differing by assimilation methods and assimilated data, but obtained with the same ocean model. The use of alternative ocean reanalyses yields the required perturbation of the full three-dimensional ocean state aimed at generating the ensemble members spread. A full-value initialization technique is adopted. The predictive skill of the system appears to be driven to large extent by trends in the radiative forcing. However, after detrending, a residual skill over specific regions of the ocean emerges in the near-term. Specifically, natural fluctuations in the North Atlantic sea-surface temperature (SST) associated with large-scale multi-decadal variability modes are predictable in the 2–5 year range. This is consistent with significant predictive skill found in the Atlantic meridional overturning circulation over a similar timescale. The dependency of forecast skill on ocean initialization is analysed, revealing a strong impact of details of ocean data assimilation products on the system predictive skill. This points to the need of reducing the large uncertainties that currently affect global ocean reanalyses, in the perspective of providing reliable near-term climate predictions.  相似文献   

19.
Wide ranging climate changes are expected in the Arctic by the end of the 21st century, but projections of the size of these changes vary widely across current global climate models. This variation represents a large source of uncertainty in our understanding of the evolution of Arctic climate. Here we systematically quantify and assess the model uncertainty in Arctic climate changes in two CO2 doubling experiments: a multimodel ensemble (CMIP3) and an ensemble constructed using a single model (HadCM3) with multiple parameter perturbations (THC-QUMP). These two ensembles allow us to assess the contribution that both structural and parameter variations across models make to the total uncertainty and to begin to attribute sources of uncertainty in projected changes. We find that parameter uncertainty is an major source of uncertainty in certain aspects of Arctic climate. But also that uncertainties in the mean climate state in the 20th century, most notably in the northward Atlantic ocean heat transport and Arctic sea ice volume, are a significant source of uncertainty for projections of future Arctic change. We suggest that better observational constraints on these quantities will lead to significant improvements in the precision of projections of future Arctic climate change.  相似文献   

20.
Evaluating the projection capability of climate models is an important task in climate model development and climate change studies. The projection capability of the Beijing Climate Center (BCC) Climate System Model BCC CSM1.0 is analyzed in this study. We focus on evaluating the projected annual mean air temperature and precipitation during the 21st century under three emission scenarios (Special Report on Emission Scenarios (SRES) B1, A1B, and A2) of the BCC CSM1.0 model, along with comparisons with 22 CMIP3 (Coupled Model Intercomparison Project Phase 3) climate models. Air temperature averaged both globally and within China is projected to increase continuously throughout the 21st century, while precipitation increases intermittently under each of the three emission scenarios, with some specific temporal and spatial characteristics. The changes in globally-averaged and China-averaged air temperature and precipitation simulated by the BCC CSM1.0 model are within the range of CMIP3 model results. On average, the changes of precipitation and temperature are more pronounced over China than over the globe, which is also in agreement with the CMIP3 models. The projection capability of the BCC CSM1.0 model is comparable to that of other climate system models. Furthermore, the results reveal that the climate change response to greenhouse gas emissions is stronger over China than in the global mean, which implies that China may be particularly sensitive to climate change in the 21st century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号