首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our central goal is to determine the importance of including both mean and variability changes in climate change scenarios in an agricultural context. By adapting and applying a stochastic weather generator, we first tested the sensitivity of the CERES-Wheat model to combinations of mean and variability changes of temperature and precipitation for two locations in Kansas. With a 2°C increase in temperature with daily (and interannual) variance doubled, yields were further reduced compared to the mean only change. In contrast, the negative effects of the mean temperature increase were greatly ameliorated by variance decreased by one-half. Changes for precipitation are more complex, since change in variability naturally attends change in mean, and constraining the stochastic generator to mean change only is highly artificial. The crop model is sensitive to precipitation variance increases with increased mean and variance decreases with decreased mean. With increased mean precipitation and a further increase in variability Topeka (where wheat cropping is not very moisture limited) experiences decrease in yield after an initial increase from the 'mean change only case. At Goodland Kansas, a moisture-limited site where summer fallowing is practiced, yields are decreased with decreased precipitation, but are further decreased when variability is further reduced. The range of mean and variability changes to which the crop model is sensitive are within the range of changes found in regional climate modeling (RegCM) experiments for a CO2 doubling (compared to a control run experiment). We then formed two types of climate change scenarios based on the changes in climate found in the control and doubled CO2 experiments over the conterminous U. S. of RegCM: (1) one using only mean monthly changes in temperature, precipitation, and solar radiation; and (2) another that included these mean changes plus changes in daily (and interannual) variability. The scenarios were then applied to the CERES-Wheat model at four locations (Goodland, Topeka, Des Moines, Spokane) in the United States. Contrasting model responses to the two scenarios were found at three of the four sites. At Goodland, and Des Moines mean climate change increased mean yields and decreased yield variability, but the mean plus variance climate change reduced yields to levels closer to their base (unchanged) condition. At Spokane mean climate change increased yields, which were somewhat further increased with climate variability change. Three key aspects that contribute to crop response are identified: the marginality of the current climate for crop growth, the relative size of the mean and variance changes, and timing of these changes. Indices for quantifying uncertainty in the impact assessment were developed based on the nature of the climate scenario formed, and the magnitude of difference between model and observed values of relevant climate variables.  相似文献   

2.
This paper examines the effects of climatic and non-climatic factors on the mean and variance of corn, soybean and winter wheat yield in southwestern Ontario, Canada over a period of 26 years. Average crop yields increase at a decreasing rate with the quantity of inputs used, and decrease with the area planted to the crop. Climate variables have a major impact on mean yield with the length of the growing season being the primary determinant across all three crops. Increases in the variability of temperature and precipitation decrease mean yield and increase its variance. Yield variance is poorly explained by both seasonal and monthly climate variable models. Projections of future climate change suggest that average crop yield will increase with warmer temperatures and a longer growing season which is only partially offset by forecast increases in the variability of temperature and rainfall. The projections would also depend on future technological developments, which have generated significant increases in yield over time despite changing annual weather conditions.  相似文献   

3.
This paper analyzes the impact of climate, crop production technology, and atmospheric carbon dioxide (CO2) on current and future crop yields. The analysis of crop yields endeavors to advance the literature by estimating the effect of atmospheric CO2 on observed crop yields. This is done using an econometric model estimated over pooled historical data for 1950–2009 and data from the free air CO2 enrichment experiments. The main econometric findings are: 1) Yields of C3 crops (soybeans, cotton, and wheat) directly respond to the elevated CO2, while yields of C4 crops (corn and sorghum) do not, but they are found to indirectly benefit from elevated CO2 in times and places of drought stress; 2) The effect of technological progress on mean yields is non-linear; 3) Ignoring atmospheric CO2 in an econometric model of crop yield likely leads to overestimates of the pure effects of technological progress on crop yields of about 51, 15, 17, 9, and 1 % of observed yield gain for cotton, soybeans, wheat, corn and sorghum, respectively; 4) Average climate conditions and climate variability contribute in a statistically significant way to average crop yields and their variability; and 5) The effect of CO2 fertilization generally outweighs the effect of climate change on mean crop yields in many regions resulting in an increase of 7–22, 4–47, 5–26, 65–96, and 3–35 % for yields of corn, sorghum, soybeans, cotton, and wheat, respectively.  相似文献   

4.
We investigate the effect of changes in daily and interannual variability of temperature and precipitation on yields simulated by the CERES-Wheat model at two locations in the central Great Plains. Changes in variability were effected by adjusting parameters of the Richardson daily weather generator. Two types of changes in precipitation were created: one with both intensity and frequency changed; and another with change only in persistence. In both types mean total monthly precipitation is held constant. Changes in daily (and interannual) variability of temperature result in substantial changes in the mean and variability of simulated wheat yields. With a doubling of temperature variability, large reductions in mean yield and increases in variability of yield result primarily from crop failures due to winter kill at both locations. Reduced temperature variability has little effect. Changes in daily precipitation variability also resulted in substantial changes in mean and variability of yield. Interesting interactions of the precipitation variability changes with the contrasting base climates are found at the two locations. At one site where soil moisture is not limiting, mean yield decreased and variability of yield increased with increasing precipitation variability, whereas mean yields increased at the other location, where soil moisture is limiting. Yield changes were similar for the two different types of precipitation variability change investigated. Compared to an earlier study for the same locations wherein variability changes were effected by altering observed time series, and the focus was on interannual variability, the present results for yield changes are much more substantial. This study demonstrates the importance of taking into account change in daily (and interannual) variability of climate when analyzing the effect of climate change on crop yields.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

5.
An understanding of the relative impacts of the changes in climate variables on crop yield can help develop effective adaptation strategies to cope with climate change. This study was conducted to investigate the effects of the interannual variability and trends in temperature, solar radiation and precipitation during 1961–2003 on wheat and maize yields in a double cropping system at Beijing and Zhengzhou in the North China Plain (NCP), and to examine the relative contributions of each climate variable in isolation. 129 climate scenarios consisting of all the combinations of these climate variables were constructed. Each scenario contained 43 years of observed values of one variable, combined with values of the other two variables from each individual year repeated 43 times. The Agricultural Production Systems Simulator (APSIM) was used to simulate crop yields using the ensemble of generated climate scenarios. The results showed that the warming trend during the study period did not have significant impact on wheat yield potential at both sites, and only had significant negative impact on maize yield potential at Beijing. This is in contrast with previous results on effect of warming. The decreasing trend in solar radiation had a much greater impact on simulated yields of both wheat and maize crops, causing a significant reduction in potential yield of wheat and maize at Beijing. Although decreasing trends in rainfed yield of both simulated wheat and maize were found, the substantial interannual variability of precipitation made the trends less prominent.  相似文献   

6.
This modeling study addresses the potential impacts of climate change and changing climate variability due to increased atmospheric CO2 concentration on soybean (Glycine max (L.) Merrill) yields in theMidwestern Great Lakes Region. Nine representative farm locations and six future climate scenarios were analyzed using the crop growth model SOYGRO. Under the future climate scenarios earlierplanting dates produced soybean yield increases of up to 120% above current levels in the central and northern areas of the study region. In the southern areas, comparatively small increases (0.1 to 20%) and small decreases (–0.1 to–25%) in yield are found. The decreases in yield occurred under the Hadley Center greenhouse gas run (HadCM2-GHG), representing a greater warming, and the doubled climate variability scenario – a more extreme and variableclimate. Optimum planting dates become later in the southern regions. CO2fertilization effects (555 ppmv) are found to be significant for soybean, increasing yields around 20% under future climate scenarios.For the study region as a whole the climate changes modeled in this research would have an overall beneficial effect, with mean soybean yield increases of 40% over current levels.  相似文献   

7.
A crop-growth-simulation model based on SUCROS87 was used to study effects of temperature rise and increase of atmospheric CO2 concentration on wheat yields in several regions in Europe. The model simulated potential and water-limited crop production (growth with ample supply of nutrients and in the absence of damage by pests, diseases and weeds). Historic daily weather data from 13 sites in Western Europe were used as starting point.For potential production (optimal water) a 3 °C temperature rise led to a yield decline due to a shortening of the growing period on all locations. Doubling of the CO2 concentration caused an increase in yield of 40% due to higher assimilation rates. It was found that effects of higher temperature and higher CO2 concentration were nearly additive and the combination of both led to a yield increase of 1–2 ton ha-1. A very small CO2-temperature interaction was found: the effect of doubled CO2 concentration on crop yield was larger at higher temperatures. The inter-annual yield variability was hardly affected.When water was limiting crop-production effects of temperature rise and higher CO2 levels were different than for the potential production. Rise in temperature led to a smaller yield reduction, doubled CO2 concentration to a larger yield increase and combination of both led to a large yield increase (3 ton ha-1) in comparison with yields simulated for the present situation. Both rise in temperature and increase in the CO2 concentration reduced water requirements of the crop. Water shortages became smaller, leading to a reduction in inter-annual variability. It is concluded that when no major changes in precipitation pattern occur a climate change will not affect wheat yields since negative effects of higher temperatures are compensated by positive effects of CO2 enrichment.  相似文献   

8.
We investigated the effect of two different spatial scales of climate change scenarios on crop yields simulated by the EPIC crop model for corn, soybean, and wheat, in the central Great Plains of the United States. The effect of climate change alone was investigated in Part I. In Part II (Easterling et al., 2001) we considered the effects ofCO2 fertilization effects and adaptation in addition to climate change. The scenarios were formed from five years of control and 2 ×CO2 runs of a high resolution regional climate model (RegCM) and the same from an Australian coarse resolution general circulation model (GCM), which provided the initial and lateral boundary conditions for the regional model runs. We also investigated the effect of two different spatial resolutions of soil input parameters to the crop models. We found that for corn and soybean in the eastern part of the study area, significantly different mean yield changes were calculated depending on the scenario used. Changes in simulated dryland wheat yields in the western areas were very similar, regardless of the scale of the scenario. The spatial scale of soils had a strong effect on the spatial variance and pattern of yields across the study area, but less effect on the mean aggregated yields. We investigated what aspects of the differences in the scenarios were most important for explaining the different simulated yield responses. For instance, precipitation changes in June were most important for corn and soybean in the eastern CSIRO grid boxes. We establish the spatial scale of climate changescenarios as an important uncertainty for climate change impacts analysis.  相似文献   

9.
Summary The crop model CERES-Wheat in combination with the stochastic weather generator were used to quantify the effect of uncertainties in selected climate change scenarios on the yields of winter wheat, which is the most important European cereal crop. Seven experimental sites with the high quality experimental data were selected in order to evaluate the crop model and to carry out the climate change impact analysis. The analysis was based on the multi-year crop model simulations run with the daily weather series prepared by the stochastic weather generator. Seven global circulation models (GCMs) were used to derive the climate change scenarios. In addition, seven GCM-based scenarios were averaged in order to derive the average scenario (AVG). The scenarios were constructed for three time periods (2025, 2050 and 2100) and two SRES emission scenarios (A2 and B1). The simulated results showed that: (1) Wheat yields tend to increase (40 out of 42 applied scenarios) in most locations in the range of 7.5–25.3% in all three time periods. In case of the CCSR scenario that predicts the most severe increase of air temperature, the yields would be reduced by 9.6% in 2050 and by 25.8% in 2100 if the A2 emission scenario would become reality. Differences between individual scenarios are large and statistically significant. Particularly for the time periods 2050 and 2100 there are doubts about the trend of the yield shifts. (2) The site effect was caused by the site-specific soil and climatic conditions. Importance of the site influence increases with increasing severity of imposed climatic changes and culminates for the emission scenario A2 and the time period 2100. The sustained tendency benefiting two warmest sites has been found as well as more positive response to the changed climatic conditions of the sites with deeper soil profiles. (3) Temperature variability proved to be an important factor and influenced both mean and standard deviation of the yields. Change of temperature variability by more than 25% leads to statistically significant changes in yield distribution. The effect of temperature variability decreases with increased values of mean temperature. (4) The study proved that the application of the AVG scenarios – despite possible objections of physical inconsistency – might be justifiable and convenient in some cases. It might bring results comparable to those derived from averaging outputs based on number of scenarios and provide more robust estimate than the application of only one selected GCM scenario.  相似文献   

10.
Climate change has the potential to be a source of increased variability if crops are more frequently exposed to damaging weather conditions. Yield variability could respond to a shift in the frequency of extreme events to which crops are susceptible, or if weather becomes more variable. Here we focus on the United States, which produces about 40% of the world’s maize, much of it in areas that are expected to see increased interannual variability in temperature. We combine a statistical crop model based on historical climate and yield data for 1950–2005 with temperature and precipitation projections from 15 different global circulation models. Holding current growing area constant, aggregate yields are projected to decrease by an average of 18% by 2030–2050 relative to 1980–2000 while the coefficient of variation of yield increases by an average of 47%. Projections from 13 out of 15 climate models result in an aggregate increase in national yield coefficient of variation, indicating that maize yields are likely to become more volatile in this key growing region without effective adaptation responses. Rising CO2 could partially dampen this increase in variability through improved water use efficiency in dry years, but we expect any interactions between CO2 and temperature or precipitation to have little effect on mean yield changes.  相似文献   

11.
The aim of this paper is to improve understanding of the adaptive capacity of European agriculture to climate change. Extensive data on farm characteristics of individual farms from the Farm Accountancy Data Network (FADN) have been combined with climatic and socio-economic data to analyze the influence of climate and management on crop yields and income and to identify factors that determine adaptive capacity. A multilevel analysis was performed to account for regional differences in the studied relationships. Our results suggest that socio-economic conditions and farm characteristics should be considered when analyzing effects of climate conditions on farm yields and income. Next to climate, input intensity, economic size and the type of land use were identified as important factors influencing spatial variability in crop yields and income. Generally, crop yields and income are increasing with farm size and farm intensity. However, effects differed among crops and high crop yields were not always related to high incomes, suggesting that impacts of climate and management differ by impact variable. As farm characteristics influence climate impacts on crop yields and income, they are good indicators of adaptive capacity at farm level and should be considered in impact assessment models. Different farm types with different management strategies will adapt differently.  相似文献   

12.
We use the CERES family of crop models to assess the effect of different spatial scales of climate change scenarios on the simulated yield changes of maize (Zea mays L.), winter wheat (Triticum aestivum L.),and rice (Oryza sativa L.) in the Southeastern United States. The climate change scenarios were produced with the control and doubled CO2 runs of a high resolution regional climate model anda coarse resolution general circulation model, which provided the initial and lateral boundary conditions for the regional model. Three different cases were considered for each scenario: climate change alone, climate change plus elevated CO2, and the latter with adaptations. On the state level,for most cases, significant differences in the climate changed yields for corn were found, the coarse scale scenario usually producing larger modeled yield decreases or smaller increases. For wheat, however, which suffered large decreases in yields for all cases, very little contrast in yield based on scale of scenario was found. Scenario scale resulted in significantly different rice yields, but mainly because of low variability in yields. For maize the primary climate variable that explained the contrast in the yields calculated from the two scenarios is the precipitation during grain fill leading to different water stress levels. Temperature during vernalization explains some contrasts in winter wheat yields. With adaptation, the contrasts in the yields of all crops produced by the scenarios were reduced but not entirely removed. Our results indicate that spatial resolution of climate change scenarios can be an important uncertainty in climate change impact assessments, depending on the crop and management conditions.  相似文献   

13.
农业作为响应气候变化最敏感的领域之一,未来作物产量可能受到深刻影响。量化气候变化冲击作物产量导致的最终经济影响,需要综合“气候变化—作物产量—经济影响”开展链式研究。文中采用系统回顾和Meta回归分析方法整合了55篇文献的667项研究结果,推导出我国七大地区主要作物(水稻、玉米、小麦)产量与地区内未来温度和降水变化的定量关系,并将其作为农业部门的损失量代入改进的多区域投入产出模型,量化七大地区内与地区间遭受的经济波及影响(ERE)。结果显示:(1)气候变化对我国作物产量的影响主要体现在温度升高上,每升温1℃减产2.6%~12.7%,东北和西北地区作物受升温影响最显著;(2) 气候变化导致的作物减产将对经济产生更严重的波及影响,GDP因作物减产每下降1%将额外产生17.8%的波及影响;(3) 21世纪末,若不考虑CO2肥效作用,作物减产导致的ERE将占GDP的-0.1%~13.6%(负值表示收益),最悲观情况下ERE与当前我国农业总产值相当(2012年为基准年);(4)不同地区受ERE影响程度的差异较大,因各区之间产业结构、贸易联系及经济发展程度存在差异,西南地区遭受本区及来自其他地区的ERE比华东地区高2.8~8.5倍。  相似文献   

14.
Agricultural risk management policies under climate uncertainty   总被引:1,自引:0,他引:1  
Climate change is forecasted to increase the variability of weather conditions and the frequency of extreme events. Due to potential adverse impacts on crop yields it will have implications for demand of agricultural risk management instruments and farmers’ adaptation strategies. Evidence on climate change impacts on crop yield variability and estimates of production risk from farm surveys in Australia, Canada and Spain, are used to analyse the policy choice between three different types of insurance (individual, area-yield and weather index) and ex post payments. The results are found to be subject to strong uncertainties and depend on the risk profile of different farmers and locations; the paper provides several insights on how to analyse these complexities. In general, area yield performs best more often across our countries and scenarios, in particular for the baseline and marginal climate change (without increases in extreme events). However, area yield can be very expensive if farmers have limited information on how climate change affects yields (misalignment in expectations), and particularly so under extreme climate change scenarios. In these more challenging cases, ex post payments perform well to increase low incomes when the risk is systemic like in Australia; Weather index performs well to reduce the welfare costs of risks when the correlation between yields and index is increased by the extreme events. The paper also analyses the robustness of different instruments in the face of limited knowledge of the probabilities of different climate change scenarios; highlighting that this added layer of uncertainty could be overcome to provide sound policy advice under uncertainties introduced by climate change. The role of providing information to farmers on impacts of climate change emerges as a crucial result of this paper as indicated by the significantly higher budgetary expenditures occurring across all instruments when farmers’ expectations are misaligned relative to actual impacts of climate change.  相似文献   

15.
Climate change scenarios with a high spatial and temporal resolution are required in the evaluation of the effects of climate change on agricultural potential and agricultural risk. Such scenarios should reproduce changes in mean weather characteristics as well as incorporate the changes in climate variability indicated by the global climate model (GCM) used. Recent work on the sensitivity of crop models and climatic extremes has clearly demonstrated that changes in variability can have more profound effects on crop yield and on the probability of extreme weather events than simple changes in the mean values. The construction of climate change scenarios based on spatial regression downscaling and on the use of a local stochastic weather generator is described. Regression downscaling translated the coarse resolution GCM grid-box predictions of climate change to site-specific values. These values were then used to perturb the parameters of the stochastic weather generator in order to simulate site-specific daily weather data. This approach permits the incorporation of changes in the mean and variability of climate in a consistent and computationally inexpensive way. The stochastic weather generator used in this study, LARS-WG, has been validated across Europe and has been shown to perform well in the simulation of different weather statistics, including those climatic extremes relevant to agriculture. The importance of downscaling and the incorporation of climate variability are demonstrated at two European sites where climate change scenarios were constructed using the UK Met. Office high resolution GCM equilibrium and transient experiments.  相似文献   

16.
For the 1980–2003 period, we analyzed the relationship between crop yield and three climatic variables (minimum temperature, maximum temperature, and precipitation) for 12 major Californian crops: wine grapes, lettuce, almonds, strawberries, table grapes, hay, oranges, cotton, tomatoes, walnuts, avocados, and pistachios. The months and climatic variables of greatest importance to each crop were used to develop regressions relating yield to climatic conditions. For most crops, fairly simple equations using only 2–3 variables explained more than two-thirds of observed yield variance. The types of variables and months identified suggest that relatively poorly understood processes such as crop infection, pollination, and dormancy may be important mechanisms by which climate influences crop yield. Recent climatic trends have had mixed effects on crop yields, with orange and walnut yields aided, avocado yields hurt, and most crops little affected by recent climatic trends. Yield-climate relationships can provide a foundation for forecasting crop production within a year and for projecting the impact of future climate changes.  相似文献   

17.
During the last decades, a large number of climate change impact studies on agriculture have been conducted qualitatively and quantitatively in many regions of the Asia-Pacific. Changes in average climate conditions and climate variability will have a significant consequence on crop yields in many parts of the Asia-Pacific. Crop yield and productivity changes will vary considerably across the region. Vulnerability to climate change depends not only on physical and biological response but also on socioeconomic characteristics. Adaptation strategies that consider changes in crop varieties or in the timing of agricultural activities imply low costs and, if readily undertaken, can compensate for some of the yield loss simulated with the climate change scenarios. The studies reviewed here suggest that the regions of Tropical Asia appear to be among the more vulnerable; some areas of Temperate Asia also appear to be vulnerable.  相似文献   

18.
During the recent decade, with the growing recognition of the possibility of climate change and clear evidence of observed changes in climate during 20th century, an increasing emphasis on food security and its regional impacts has come to forefront of the scientific community. In recent times, the crop simulation models have been used extensively to study the impact of climate change on agricultural production and food security. The output provided by the simulation models can be used to make appropriate crop management decisions and to provide farmers and others with alternative options for their farming system. It is expected that in the coming decades with the increased use of computers, the use of simulation models by farmers and professionals as well as policy and decision makers will increase. In India, substantial work has been done in last decade aimed at understanding the nature and magnitude of change in yield of different crops due to projected climate change. This paper presents an overview of the state of the knowledge of possible effect of the climate variability and change on food grain production in India. An erratum to this article can be found at  相似文献   

19.
Climate change impacts food production systems, particularly in locations with large, vulnerable populations. Elevated greenhouse gases (GHG), as well as land cover/land use change (LCLUC), can influence regional climate dynamics. Biophysical factors such as topography, soil type, and seasonal rainfall can strongly affect crop yields. We used a regional climate model derived from the Regional Atmospheric Modeling System (RAMS) to compare the effects of projected future GHG and future LCLUC on spatial variability of crop yields in East Africa. Crop yields were estimated with a process-based simulation model. The results suggest that: (1) GHG-influenced and LCLUC-influenced yield changes are highly heterogeneous across this region; (2) LCLUC effects are significant drivers of yield change; and (3) high spatial variability in yield is indicated for several key agricultural sub-regions of East Africa. Food production risk when considered at the household scale is largely dependent on the occurrence of extremes, so mean yield in some cases may be an incomplete predictor of risk. The broad range of projected crop yields reflects enormous variability in key parameters that underlie regional food security; hence, donor institutions’ strategies and investments might benefit from considering the spatial distribution around mean impacts for a given region. Ultimately, global assessments of food security risk would benefit from including regional and local assessments of climate impacts on food production. This may be less of a consideration in other regions. This study supports the concept that LCLUC is a first-order factor in assessing food production risk.  相似文献   

20.
Estimates of impact of climate change on crop production could be biased depending upon the uncertainties in climate change scenarios, region of study, crop models used for impact assessment and the level of management. This study reports the results of a study where the impact of various climate change scenarios has been assessed on grain yields of irrigated rice with two popular crop simulation models- Ceres-Rice and ORYZA1N at different levels of N management. The results showed that the direct effect of climate change on rice crops in different agroclimatic regions in India would always be positive irrespective of the various uncertainties. Rice yields increased between 1.0 and 16.8% in pessimistic scenarios of climate change depending upon the level of management and model used. These increases were between 3.5 and 33.8% in optimistic scenarios. At current as well as improved level of management, southern and western parts of India which currently have relatively lower temperatures compared to northern and eastern regions, are likely to show greater sensitivity in rice yields under climate change. The response to climate change is small at low N management compared to optimal management. The magnitude of this impact can be biased upto 32% depending on the uncertainty in climate change scenario, level of management and crop model used. These conclusions are highly dependent on the specific thresholds of phenology and photosynthesis to change in temperature used in the models. Caution is needed in using the impact assessment results made with the average simulated grain yields and mean changes in climatic parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号