首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Net subsidence of most major deltas in the world and related vulnerability are thought to be increasing, and this is often linked causally to human activities. This paper examines this causality against a range of co-varying factors. We do so with a principal component analysis of co-variability of a range of geophysical and socio-economical indicators of 33 deltas mainly derived from the DIVA tool. Land potentially lost and people at risk of flooding are our indicators of vulnerability. The former correlated positively with maximum surge height and negatively with net sea level rise. The latter correlated positively with delta area, average river discharge, and maximum surge and negatively with net uplift (or subsidence). Thus, variation in societal vulnerability across deltas depends on short-term, instantaneous risks linked to lowland area, river discharge and storm surges rather than on longer-term, slow, net sea level rise. Delta management should focus on precautionary spatial planning, and on maintenance or restoration of historical sediment delivery and accretion rates. Especially larger deltas with high population densities combine a high risk with the potential to accommodate flood water and mitigate flooding risks. The deltas of the Yangtze-Kiang and Ganges-Brahmaputra share these characteristics. Here space should allow engineering of flood retention, sedimentation and diversion channels as well as refuges and safe economic hotspots. At the other end, in deltas with a high population density and limited space, like the Chao Praya, means for adaptation must be sought outside the delta proper. In deltas with low population densities, such as the Lena, Yukon or Fly, natural delta dynamics can prevail.  相似文献   

2.
This paper presents a scenario-based study that investigates the interaction between sea-level rise and land subsidence on the storm tides induced fluvial flooding in the Huangpu river floodplain. Two projections of relative sea level rise (RSLR) were presented (2030 and 2050). Water level projections at the gauging stations for different return periods were generated using a simplified algebraic summation of the eustatic sea-level rise, land subsidence and storm tide level. Frequency analysis with relative sea level rise taken into account shows that land subsidence contributes to the majority of the RSLR (between 60 % and 70 %). Furthermore, a 1D/2D coupled flood inundation model (FloodMap) was used to predict the river flow and flood inundation, after calibration using the August 1997 flood event. Numerical simulation with projected RSLR suggests that, the combined impact of eustatic sea-level rise and land subsidence would be a significantly reduced flood return period for a given water level, thus effective degradation of the current flood defences. In the absence of adaptation measures, storm flooding will cause up to 40 % more inundation, particularly in the upstream of the river.  相似文献   

3.
Global warming may result in substantial sea level rise and more intense hurricanes over the next century, leading to more severe coastal flooding. Here, observed climate and sea level trends over the last century (c. 1900s to 2000s) are used to provide insight regarding future coastal inundation trends. The actual impacts of Hurricane Katrina (2005) in New Orleans are compared with the impacts of a similar hypothetical hurricane occurring c. 1900. Estimated regional sea level rise since 1900 of 0.75 m, which contains a dominant land subsidence contribution (0.57 m), serves as a ‘prototype’ for future climate-change induced sea level rise in other regions. Landform conditions c. 1900 were estimated by changing frictional resistance based on expected additional wetlands at lower sea levels. Surge simulations suggest that flood elevations would have been 15 to 60 % lower c. 1900 than the conditions observed in 2005. This drastic change suggests that significantly more flood damage occurred in 2005 than would have occurred if sea level and climate conditions had been like those c. 1900. We further show that, in New Orleans, sea level rise dominates surge-induced flooding changes, not only by increasing mean sea level, but also by leading to decreased wetland area. Together, these effects enable larger surges. Projecting forward, future global sea level changes of the magnitude examined here are expected to lead to increased flooding in coastal regions, even if the storm climate is unchanged. Such flooding increases in densely populated areas would presumably lead to more widespread destruction.  相似文献   

4.
Tens of millions of people around the world are already exposed to coastal flooding from tropical cyclones. Global warming has the potential to increase hurricane flooding, both by hurricane intensification and by sea level rise. In this paper, the impact of hurricane intensification and sea level rise are evaluated using hydrodynamic surge models and by considering the future climate projections of the Intergovernmental Panel on Climate Change. For the Corpus Christi, Texas, United States study region, mean projections indicate hurricane flood elevation (meteorologically generated storm surge plus sea level rise) will, on average, rise by 0.3 m by the 2030s and by 0.8 m by the 2080s. For catastrophic-type hurricane surge events, flood elevations are projected to rise by as much as 0.5 m and 1.8 m by the 2030s and 2080s, respectively.  相似文献   

5.
Estimates of future flood hazards made under the assumption of stationary mean sea level are biased low due to sea-level rise (SLR). However, adjustments to flood return levels made assuming fixed increases of sea level are also inadequate when applied to sea level that is rising over time at an uncertain rate. SLR allowances—the height adjustment from historic flood levels that maintain under uncertainty the annual expected probability of flooding—are typically estimated independently of individual decision-makers’ preferences, such as time horizon, risk tolerance, and confidence in SLR projections. We provide a framework of SLR allowances that employs complete probability distributions of local SLR and a range of user-defined flood risk management preferences. Given non-stationary and uncertain sea-level rise, these metrics provide estimates of flood protection heights and offsets for different planning horizons in coastal areas. We illustrate the calculation of various allowance types for a set of long-duration tide gauges along U.S. coastlines.  相似文献   

6.
Coastal areas around the world are urbanizing rapidly, despite the threat of sea level rise and intensifying floods. Such development places an increasing number of people and capital at risk, which calls for public flood management as well as household level adaptation measures that reduce social vulnerability to flooding and climate change. This study explores several private adaptation responses to flood risk, that are driven by various behavioral triggers. We conduct a survey among households in hazard-prone areas in eight coastal states in the USA, of which, some have recently experienced major flooding. While numerous empirical studies have investigated household-level flood damage mitigation, little attention has been given to examining the decision to retreat from flood zones. We examine what behavioral motives drive the choices for flood damage mitigation and relocation separately among property buyers and sellers. Hence, we focus on the drivers that shape demand for future development in flood-prone cities. We find that households’ choices to retreat from or to avoid flood zones (1) are highly sensitive to information that provokes people's feelings of fear, and (2) rely on hazardous events to trigger a protective action, which ideally would take place well before these events occur. We highlight that major flooding may cause a potential risk of large-scale outmigration and demographic changes in flood-prone areas, putting more low-income households at risk. Therefore, coordinated policies that integrate bottom-up drivers of individual climate adaptation are needed to increase urban resilience to floods.  相似文献   

7.
对长江口海平面上升动态及其对沿海潮汐特性的影响进行了简析。结合长江口崇明三岛地区除涝安全面临海平面上升的影响和威胁,分别建立了基于海平面上升的上海市崇明三岛水系一维平原感潮河网水动力模型,深入开展了海平面上升对三岛地区除涝安全影响的模拟研究。结果显示,至2030年,长江口海平面上升10~16 cm,崇明三岛片区的面平均除涝最高水位、局部除涝最高水位均呈上升趋势,其中,崇明岛片受影响最大,对应水位将分别上升3~5 cm、4~6 cm;长兴岛片受影响次之,对应水位将分别上升3~4 cm、3~5 cm;横沙岛片受影响相对最小,对应水位均将上升1~2 cm;长江口海平面上升对崇明三岛的除涝安全影响在可控范围内。  相似文献   

8.
Four accelerated sea level rise scenarios, 30 and 100 cm by the year 2100, and 10 and 30 cm by the year 2030, have been assumed as boundary conditions (along with some wind climate changes) for the entire Polish coast, under two recent programmes completed in 1992 and 1995. Three adaptation strategies, i.e., retreat, limited protection and full protection have been adopted and compared in physical and socio-economic terms. Over 2,200 km2 and 230,000 people are found vulnerable in the most severe case of 100-cm rise by 2100. The total cost of land at loss in that case is estimated at nearly 30 USD billion (plus some 18 USD billion at risk of flooding), while the cost of full protection reaches 6 USD billion. Particular features of vulnerability and adaptation schemes have been examined as well, including specific sites and the effects of not only sea level rise but also other climate change factors, and interactions with other climate change studies in Poland. Planning of coastal zone management facing climate change can be facilitated by the use of a GIS-supported coastal information and analysis system. An example of the application of such a system for a selected Polish coastal site is shown to illustrate the most recent smaller-scale research activities undertaken in the wake of the overall assessment of the vulnerability to climate change for the entire Polish coastal zone.  相似文献   

9.
Relative sea level rise (RSLR) due to climate change and geodynamics represents the main threat for the survival of Venice, emerging today only 90 cm above the Northern Adriatic mean sea level (msl). The 25 cm RSLR occurred over the 20th century, consisting of about 12 cm of land subsidence and 13 cm of sea level rise, has increased the flood frequency by more than seven times with severe damages to the urban heritage. Reasonable forecasts of the RSLR expected to the century end must be investigated to assess the suitability of the Mo.S.E. project planned for the city safeguarding, i.e., the closure of the lagoon inlets by mobile barriers. Here we consider three RSLR scenarios as resulting from the past sea level rise recorded in the Northern Adriatic Sea, the IPCC mid-range A1B scenario, and the expected land subsidence. Available sea level measurements show that more than 5 decades are required to compute a meaningful eustatic trend, due to pseudo-cyclic 7–8 year long fluctuations. The period from 1890 to 2007 is characterized by an average rate of 0.12 ± 0.01 cm/year. We demonstrate that linear regression is the most suitable model to represent the eustatic process over these 117 year. Concerning subsidence, at present Venice is sinking due to natural causes at 0.05 cm/year. The RSLR is expected to range between 17 and 53 cm by 2100, and its repercussions in terms of flooding frequency are associated here to each scenario. In particular, the frequency of tides higher than 110 cm, i.e., the value above which the gates would close the lagoon to the sea, will increase from the nowadays 4 times per year to a range between 20 and 250. These projections provide a large spread of possible conditions concerning the survival of Venice, from a moderate nuisance to an intolerable aggression. Hence, complementary solutions to Mo.S.E. may well be investigated.  相似文献   

10.
Projections by the Intergovernmental Panel on Climate Change suggest that there will be an increase in the frequency and intensity of climate extremes in the 21st century. Kolkata, a megacity in India, has been singled out as one of the urban centers vulnerable to climate risks. Modest flooding during monsoons at high tide in the Hooghly River is a recurring hazard in Kolkata. More intense rainfall, riverine flooding, sea level rise, and coastal storm surges in a changing climate can lead to widespread and severe flooding and bring the city to a standstill for several days. Using rainfall data, high and low emissions scenarios, and sea level rise of 27 cm by 2050, this paper assesses the vulnerability of Kolkata to increasingly intense precipitation events for return periods of 30, 50, and 100 years. It makes location-specific inundation depth and duration projections using hydrological, hydraulic, and urban storm models with geographic overlays. High resolution spatial analysis provides a roadmap for designing adaptation schemes to minimize the impacts of climate change. The modeling results show that de-silting of the main sewers would reduce vulnerable population estimates by at least 5 %.  相似文献   

11.
In the fall of 2009 the City of Satellite Beach (City), Florida, authorized a study designed to assess municipal vulnerability to rising sea level and facilitate discussion of potential adaptation strategies. The project is one of the first in Florida to seriously address the potential consequences of global sea level rise, now forecast to rise a meter or more by the year 2100. Results suggest the tipping point between relatively benign impacts and those that disrupt important elements of the municipal landscape is +?2 ft (0.6 m) above present. Seasonal flooding to an elevation of +?2 ft is forecast to begin around 2050 and thus the City has about 40 years to formulate and implement an adaptation plan. As an initial step, the Comprehensive Planning Advisory Board, a volunteer citizen committee serving as the City??s local planning authority, has recommended a series of updates and revisions to the City??s Comprehensive Plan. If approved by the City Council and Florida??s Department of Community Affairs, the amendments will provide a legal basis for implementing specific policies designed to reduce the City??s vulnerability to sea level rise.  相似文献   

12.
Abstract

Changes to the Beaufort Sea shoreline occur due to the impact of storms and rising relative sea level. During the open‐water season (June to October), storm winds predominantly from the north‐west generate waves and storm surges which are effective in eroding thawing ice‐rich cliffs and causing overwash of gravel beaches. Climate change is expected to be enhanced in Arctic regions relative to the global mean and include accelerated sea‐level rise, more frequent extreme storm winds, more frequent and extreme storm surge flooding, decreased sea‐ice extent, more frequent and higher waves, and increased temperatures. We investigate historical records of wind speeds and directions, water levels, sea‐ice extent and temperature to identify variability in past forcing and use the Canadian Global Coupled Model ensembles 1 and 2 (CGCM1 and CGCM2) climate modelling results to develop a scenario forcing future change of Beaufort Sea shorelines. This scenario and future return periods of peak storm wind speeds and water levels likely indicate increased forcing of coastal change during the next century resulting in increased rates of cliff erosion and beach migration, and more extreme flooding.  相似文献   

13.
To develop improved estimates of (1) flooding due to storm surges, and (2) wetland losses due to accelerated sea-level rise, the work of Hoozemans et al. (1993) is extended to a dynamic analysis. It considers the effects of several simultaneously changing factors, including: (1) global sea-level rise and subsidence; (2) increasing coastal population; and (3) improving standards of flood defence (using GNP/capita as an “ability-to-pay” parameter). The global sea-level rise scenarios are derived from two General Circulation Model (GCM) experiments of the Hadley Centre: (1) the HadCM2 greenhouse gas only ensemble experiment and (2) the more recent HadCM3 greenhouse gas only experiment. In all cases there is a global rise in sea level of about 38 cm from 1990 to the 2080s. No other climate change is considered. Relative to an evolving reference scenario without sea-level rise, this analysis suggests that the number of people flooded by storm surge in a typical year will be more than five times higher due to sea-level rise by the 2080s. Many of these people will experience annual or more frequent flooding, suggesting that the increase in flood frequency will be more than nuisance level and some response (increased protection, migration, etc.) will be required. In absolute terms, the areas most vulnerable to flooding are the southern Mediterranean, Africa, and most particularly, South and South-east Asia where there is a concentration of low-lying populated deltas. However, the Caribbean, the Indian Ocean islands and the Pacific Ocean small islands may experience the largest relative increase in flood risk. By the 2080s, sea-level rise could cause the loss of up to 22% of the world's coastal wetlands. When combined with other losses due to direct human action, up to 70% of the world's coastal wetlands could be lost by the 2080s, although there is considerable uncertainty. Therefore, sea-level rise would reinforce other adverse trends of wetland loss. The largest losses due to sea-level rise will be around the Mediterranean and Baltic and to a lesser extent on the Atlantic coast of Central and North America and the smaller islands of the Caribbean. Collectively, these results show that a relatively small global rise in sea level could have significant adverse impacts if there is no adaptive response. Given the “commitment to sea-level rise” irrespective of any realistic future emissions policy, there is a need to start strategic planning of appropriate responses now. Given that coastal flooding and wetland loss are already important problems, such planning could have immediate benefits.  相似文献   

14.
Interactive tools developed within the RegIS project for assessing the impacts of flooding provide information to support flood management policies and analyse the performance of possible adaptation activities to climate change. This paper describes the methodologies used in the development of these tools including tidal and fluvial flooding processes with different levels of climate pressures, represented by changes in sea level and peak river flows. Potential impacts of climate change for East Anglia and North West England are explored to the 2050s using four socio-economic scenarios to represent plausible futures. This includes changes in urban land use as well as adaptive responses to flooding comprising dike upgrade and realignment options. The results indicate that future climate will increase flood risk in both regions. East Anglia is more vulnerable to climate change than North West England at the present level of protection, especially in the extensive coastal lowlands of the Fens and Broads because of the combined effects of sea-level rise and increased fluvial flows. Although the present adaptive policy of upgrading defences in East Anglia will reduce the impacts of flooding, this policy is not effective in the case of the more extreme climate change scenarios by 2050s. In this case, more extensive adaptation would be required.  相似文献   

15.
On the island of Ameland (The Netherlands), natural gas has been extracted from a dune and salt marsh natural area since 1986. This has caused a soil subsidence of c. 1–25?cm, which can be used as a model to infer effects of future sea level rise. The aims of our study were (a) to relate the changes in the vegetation, and more specifically, in plant diversity, during the extraction period to soil subsidence and weather fluctuations, and (b) to use these relations to predict future changes due to the combination of ongoing soil subsidence and climate change. We characterised climate change as increases in mean sea level, storm frequency and net precipitation. Simultaneous observations were made of vegetation composition, elevation, soil chemistry, net precipitation, groundwater level, and flooding frequency over the period 1986–2001. By using multiple regression the changes in the vegetation could be decomposed into (1) an oscillatory component due to fluctuations in net precipitation, (2) an oscillatory component due to incidental flooding, (3) a monotonous component due to soil subsidence, and (4) a monotonous component not related to any measured variable but probably due to eutrophication. The changes were generally small during the observation period, but the regression model predicts large changes by the year 2100 that are almost exclusively due to sea level rise. However, although sea level rise is expected to cause a loss of species, this does not necessarily lead to a loss of conservancy value.  相似文献   

16.
2030年上海地区相对海平面变化趋势的研究和预测   总被引:1,自引:0,他引:1  
从全球气候变化区域响应角度,依据1912-2000年吴淞验潮站年平均潮位资料,构建灰色线性回归组合模型,并将其与最小二乘法和小波变换相结合,分析以吴淞为代表的上海绝对海平面长期变化趋势和周期变化规律。由此预测2030年上海绝对海平面相对2011年的上升值为4 cm,结合已公布的构造沉降和城市地面沉降、流域水土保持和大型水利工程及人工挖沙导致的河口河槽冲刷、河口围海造地和深水航道及跨江跨海大桥导致水位抬升等叠加效应及其变化趋势,预测2030年上海市相对海平面上升10~16 cm,陆地海平面上升有7个风险分区。  相似文献   

17.
Fluvial flood risk in Europe in present and future climates   总被引:2,自引:0,他引:2  
In this work we evaluate the implications of climate change for future fluvial flood risk in Europe, considering climate developments under the SRES A2 (high emission) and B2 (low emission) scenario. We define flood risk as the product of flood probability (or hazard), exposure of capital and population, and vulnerability to the effect of flooding. From the European flood hazard simulations of Dankers and Feyen (J Geophys Res 114:D16108. doi:, 2009) discharges with return periods of 2, 5, 10, 20, 50, 100, 250 and 500 years were extracted and converted into flood inundation extents and depths using a planar approximation approach. Flood inundation extents and depths were transformed into direct monetary damage using country specific flood depth-damage functions and land use information. Population exposure was assessed by overlaying the flood inundation information with data on population density. By linearly interpolating damages and population exposed between the different return periods, we constructed damage and population exposure probability functions under present and future climate. From the latter expected annual damages (EAD) and expected annual population exposed (EAP) were calculated. To account for flood protection the damage and population exposure probability functions were truncated at design return periods based on the country GDP/capita. Results indicate that flood damages are projected to rise across much of Western Europe. Decreases in flood damage are consistently projected for north-eastern parts of Europe. For EU27 as a whole, current EAD of approximately €6.4 billion is projected to amount to €14–21.5 billion (in constant prices of 2006) by the end of this century, depending on the scenario. The number of people affected by flooding is projected to rise by approximately 250,000 to 400,000. Notwithstanding these numbers are subject to uncertainty, they provide an indication of potential future developments in flood risk in a changing climate.  相似文献   

18.
While current rates of sea level rise and associated coastal flooding in the New York City region appear to be manageable by stakeholders responsible for communications, energy, transportation, and water infrastructure, projections for sea level rise and associated flooding in the future, especially those associated with rapid icemelt of the Greenland and West Antarctic Icesheets, may be outside the range of current capacity because extreme events might cause flooding beyond today??s planning and preparedness regimes. This paper describes the comprehensive process, approach, and tools for adaptation developed by the New York City Panel on Climate Change (NPCC) in conjunction with the region??s stakeholders who manage its critical infrastructure, much of which lies near the coast. It presents the adaptation framework and the sea-level rise and storm projections related to coastal risks developed through the stakeholder process. Climate change adaptation planning in New York City is characterized by a multi-jurisdictional stakeholder?Cscientist process, state-of-the-art scientific projections and mapping, and development of adaptation strategies based on a risk-management approach.  相似文献   

19.
This study presents an assessment of the potential impacts of sea level rise on the New Jersey, USA coastal region. We produce two projections of sea level rise for the New Jersey coast over the next century and apply them to a digital elevation model to illustrate the extent to which coastal areas are susceptible to permanent inundation and episodic flooding due to storm events. We estimate future coastline displacement and its consequences based on direct inundation only, which provides a lower bound on total coastline displacement. The objective of this study is to illustrate methodologies that may prove useful to policy makers despite the large uncertainties inherent in analysis of local impacts of climate and sea level change. Our findings suggest that approximately 1% to 3% of the land area of New Jersey would be permanently inundated over the next century and coastal storms would temporarily flood low-lying areas up to 20 times more frequently. Thus, absent human adaptation, by 2100 New Jersey would experience substantial land loss and alteration of the coastal zone, causing widespread impacts on coastal development and ecosystems. Given the results, we identify future research needs and suggest that an important next step would be for policy makers to explore potential adaptation strategies.  相似文献   

20.
This study illustrates a methodology to assess the economic impacts of climate change at a city scale and benefits of adaptation, taking the case of sea level rise and storm surge risk in the city of Copenhagen, capital of Denmark. The approach is a simplified catastrophe risk assessment, to calculate the direct costs of storm surges under scenarios of sea level rise, coupled to an economic input–output (IO) model. The output is a risk assessment of the direct and indirect economic impacts of storm surge under climate change, including, for example, production and job losses and reconstruction duration, and the benefits of investment in upgraded sea defences. The simplified catastrophe risk assessment entails a statistical analysis of storm surge characteristics, geographical-information analysis of population and asset exposure combined with aggregated vulnerability information. For the city of Copenhagen, it is found that in absence of adaptation, sea level rise would significantly increase flood risks. Results call for the introduction of adaptation in long-term urban planning, as one part of a comprehensive strategy to manage the implications of climate change in the city. Mitigation policies can also aid adaptation by limiting the pace of future sea level rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号