首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This investigation shows that statistically there are significant time delays between H and hard X-ray (HXR) emissions during solar flares; most impulsive flares produce HXR emissions up to 1 min before and up to 2 min after the onset of H emission. HXR emissions are also found to be peaked up to 2 min before the H emissions.  相似文献   

2.
H. Zirin 《Solar physics》1978,58(1):95-120
I have studied a number of flares for which good X-ray and optical data were available. An average lag of 5.5 s between hard X-ray (HXR) start and H start, and HXR peak and Ha peak was found for 41 flares for which determination was possible. Allowing for time constants the time lag is zero. The peak H lasts until 5–6 keV soft X-ray (SXR) peak. The level of H intensity is determined by the SXR flux.Multiple spikes in HXR appear to correspond to different occurrences in the flare development. Flares with HXR always have a fast H rise. Several flares were observed in the 3835 band; such emission appears when the 5.1–6.6 keV flux exceeds 5 × 104 ph cm-2 s-1 at the Earth. Smaller flares produce no 3835 emission; we conclude that coronal back conduction cannot produce the bright chromospheric network of that wavelength.The nearly simultaneous growth of H emission at distant points means an agent travelling faster than 5 × 103 km s-1 is responsible, presumably electrons.In all cases near the limb an elevated Ha source is seen with the same time duration as HXR flux; it is concluded that this H source is almost always an elevated cloud which is excited by the fast electrons. A rough calculation is given. Another calculation of H emission from compressed coronal material shows it to be inadequate.In several cases homologous flares occur within hours with the same X-ray properties.Radio models fit, more or less, with field strengths on the order of 100G. A number of flares are discussed in detail.  相似文献   

3.
We present two large flares which were exceptional in that each produced an extensive chain of H emission patches in remote quiet regions more than 105 km away from the main flare site. They were also unusual in that a large group of the rare type III reverse slope bursts accompanied each flare.The observations suggest that this is no coincidence, but that the two phenomena are directly connected. The onset of about half of the remote H emission patches were found to be nearly simultaneous with RS bursts. One of the flares (August 26, 1979) was also observed in hard X-rays; the RS bursts occurred during hard X-ray spikes. For the other flare (June 16, 1973), soft X-ray filtergrams show coronal loops connecting from the main flare site to the remote H brightenings. There were no other flares in progress during either flare; this, along with the X-ray observations, indicates that the RS burst electrons were generated in these flares and not elsewhere on the Sun. The remote H brightenings were apparently not produced by a blast wave from the main flare; no Moreton waves were observed, and the spatially disordered development of the remote H chains is further evidence against a blast wave. From geometry, time and energy considerations we propose: (1) That the remote H brightenings were initiated by direct heating of the chromosphere by RS burst electrons traveling in closed magnetic loops connecting the flare site to the remote patches; and (2) that after onset, the brightenings were heated by thermal conduction by slower thermal electrons (kT1 keV) which immediately follow the RS burst electrons along the same loops.  相似文献   

4.
In the present paper, H-evolutive curves of chromospheric events are compared with flux evolutive curves of X-ray events observed at the same time in different spectral regions. A correspondence between the emissions E(I H/I chr)'s at higher and higher H-intensity levels, and the X-ray fluxes F()'s in harder and harder -ranges is shown. Further, the present observations seem to indicate the existence of a single triggering mechanism during the flash-phase of a flare. It is also shown that these results may be in agreement with Brown's model for chromospheric flares.  相似文献   

5.
M. Dizer 《Solar physics》1969,10(2):416-428
We report measurements made on the brightness in H of all parts of the flare photographed through a birefringent filter centered on H, using a scanning isodensitometer. From obtained isophotes of the flares we derived some information on the morphological changes in the flare and estimated the total energy in H of the flare.  相似文献   

6.
We studied the evolutional characteristics of fine structures in H flare emitting regions and their relation to X-ray and microwave emissions for selected events observed with the 60 cm Domeless Solar Telescope at Hida Observatory, University of Kyoto. The principal conclusions of this investigation are: (1) H kernel consists of some finer bright points or Hflare points whose individual size is less than 1 arc sec. (2) Impulsive brightnenings of H flare points occurred simultaneously with the spikes of the hard X-ray and microwave bursts within the time resolution of our H observations which varied from 1 to 10 s. (3) It is concluded that fast electron beams must be the principal mechanism of heating H flares during the impulsive phase of a flare.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984. Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 265.  相似文献   

7.
Veronig  A.  Vršnak  B.  Temmer  M.  Hanslmeier  A. 《Solar physics》2002,208(2):297-315
The timing of 503 solar flares observed simultaneously in hard X-rays, soft X-rays and H is analyzed. We investigated the start and the peak time differences in different wavelengths, as well as the differences between the end of the hard X-ray emission and the maximum of the soft X-ray and H emission. In more than 90% of the analyzed events, a thermal pre-heating seen in soft X-rays is present prior to the impulsive flare phase. On average, the soft X-ray emission starts 3 min before the hard X-ray and the H emission. No correlation between the duration of the pre-heating phase and the importance of the subsequent flare is found. Furthermore, the duration of the pre-heating phase does not differ for impulsive and gradual flares. For at least half of the events, the end of the non-thermal emission coincides well with the maximum of the thermal emission, consistent with the beam-driven evaporation model. On the other hand, for 25% of the events there is strong evidence for prolonged evaporation beyond the end of the hard X-rays. For these events, the presence of an additional energy transport mechanism, most probably thermal conduction, seems to play an important role.  相似文献   

8.
A flare event occurred which involved the disappearance of a filament near central meridian on 29 August 1973. The event was well observed in X-rays with the AS & E telescope on Skylab and in H at BBSO. It was a four-ribbon flare involving both new and old magnetic inversion lines which were roughly parallel. The H, X-ray, and magnetic field data are used to deduce the magnetic polarities of the H brightenings at the footpoints of the brightest X-ray loops. These magnetic structures and the preflare history of the region are then used to argue that the event involved a reconnection of magnetic field lines rather than a brightening in place of pre-existing loops. The simultaneity of the H brightening onsets in the four ribbons and the apparent lack of an eruption of the filament are consistent with this interpretation. These observations are compared to other studies of filament disappearances. The preflare structures and the alignment of the early X-ray flare loops with the H filament are consistent with the schematic picture of a filament presented first by Canfield et al. (1974).  相似文献   

9.
Taeil Bai 《Solar physics》1979,62(1):113-121
The X-ray line at 6.4 keV has been observed from solar flares. It is found that K-fluorescence of neutral iron in the photosphere due to thermal (T 107 K) X-rays of the gradual phase is its dominant production mechanism. For a given flux and energy spectrum of incident X-rays, the flux at 1 AU of iron K-photons depends on the photospheric iron abundance, the height of the X-ray source, and the helio-centric angle between the flare and the observer. Therefore, the flux of iron K-photons, when measured simultaneously with the flux and energy spectrum of the X-ray continuum and the flare location, can give us information on the height of the X-ray source and the photospheric iron abundance. Here we present our Monte Carlo calculations of iron K-fluorescence efficiencies, so that they might be useful for interpretations of future measurements of the 6.4 keV line (e.g., by a detector to be flown on the Solar Maximum Mission).  相似文献   

10.
I have studied the observational relationship between the location of flare sites in active regions and three other observables, viz., H line width, hard X-ray burst parameters, and peak microwave fluxes. Results suggest that the strength of the magnetic field plays a role in governing the magnitudes of these emissions. Qualitative relationships are derived on the assumption of proportionality between the spectral maximum frequency of the associated microwave burst and the field strength in the microwave source.The relationship inferred between the power in thick target electrons (derived from the hard X-ray burst) and the column density of second-level hydrogen atoms (derived from the H line widths) is compared with calculations by Brown (1973) and Canfield (1974).The line widths observed for two white light flares suggest that a criterion for detectable continuum emission in disk flares is an H line width 20 Å.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

11.
We report on observations of a large eruptive event associated with a flare that occurred on 27 September 1998 made with the Richard B. Dunn Solar Telescope at Sacramento Peak Observatory (several wave bands including off-line-center H), in soft and hard X-rays (GOES and BATSE), and in several TRACE wave bands (including Feix/x 171 Å, Fexii 195 Å, and Civ 1550 Å). The flare initiation is signaled by two H foot-point brightenings which are closely followed by a hard X-ray burst and a subsequent gradual increase in other wavelengths. The flare light curves show a complicated, three-component structure which includes two minor maxima before the main GOES class C5.2 peak after which there is a characteristic exponential decline. During the initial stages, a large spray event is observed within seconds of the hard X-ray burst which can be directly associated with a two-ribbon flare in H. The emission returns to pre-flare levels after about 35 min, by which time a set of bright post-flare loops have begun to form at temperatures of about 1.0–1.5 MK. Part of the flare plasma also intrudes into the penumbra of a large sunspot, generally a characteristic of very powerful flares, but the flare importance in GOES soft X-rays is in fact relatively modest. Much of the energy appears to be in the form of a second ejection which is observed in optical and ultraviolet bands, traveling out via several magnetic flux tubes from the main flare site (about 60° from Sun center) to beyond the limb.  相似文献   

12.
Umbral flares     
Frances Tang 《Solar physics》1978,60(1):119-122
H flare patches usually do not occur in sunspot umbrae. Presented here are cases of a type of umbral flare in which the flare patch originated in, and was confined to, the p spot umbra. All are H subflares. Two of the four flares were accompanied by type III radio bursts. The simplicity and similarity of the magnetic fields of these regions were striking.  相似文献   

13.
A search was made for EUV surges among the EUV flares recorded by the Harvard spectroheliometer on ATM. Out of a large set of partial observations of such flares, a subset of 24 complete events was chosen. More than 24 associated surges were found, many of them multiple events. The flare-surge correlation is therefore considerably higher in the EUV than in H, presumably because EUV surges generally appear in emission, and in high contrast compared to H. In over 70% of the cases, the surges were found to grow out of the flare structure. Making reasonable assumptions, it was possible to infer the magnitude of the gas pressure gradient from the flare core into the surge by using the EUV intensity gradient. The inferred pressure gradient appears sufficient to drive the surge, although higher resolution observations will be required to corroborate this, and rule out the importance of magnetic Lorentz force.  相似文献   

14.
J.- P. Wülser 《Solar physics》1988,114(1):115-126
H line profile observations of solar flares with high temporal resolution are an important tool for the analysis of the energy transport mechanism from the site of the flare energy release to the chromosphere. A specially designed instrument (imaging spectrograph) allows two-dimensional imaging of an active region simultaneously in 15 spectral channels along the H line profile with a temporal resolution of 5.4 s. Two flares have been observed in November 1982. The first one shows H signatures which one would typically expect in the case of explosive chromospheric evaporation produced by massive injection of non-thermal electrons. The observations of the other flare indicate that the heating of the upper chromosphere is dominated by thermal conduction, although during the impulsive hard X-ray burst there are also signatures of heating by non-thermal electrons.  相似文献   

15.
Bright and dark curvilinear structures observed between the two major chromospheric ribbons during the flare of 29 July 1973 on films from the Big Bear Solar Observatory are interpreted as a typical system of coronal loops joining the inner boundaries of the separating flare ribbons. These observations, made through a 0.25 Å H filter, only show small segments of the loops having Doppler shifts within approximately ± 22 km s–1 relative to the filter passband centered at H, H -0.5 Å or H +0.5 Å. However, from our knowledge of the typical behavior of such loop systems observed at the limb in H and at 5303 Å, it has been possible to reconstruct an appoximate model of the probable development of the loops of the 29 July flare as they would have been viewed at the limb relative to the position of a prominence which began to erupt a few minutes before the start of the flare. It is seen that the loops ascended through the space previously occupied by the filament. On the assumption that H fine structures parallel the magnetic field, we can conclude that a dramatic reorientation of the direction of the magnetic field in the corona occurred early in the flare, subsequent to the start of the eruption of the filament and prior to the time that the H loops ascended through the space previously occupied by the filament.  相似文献   

16.
A study has been made of the variation in hard (E 10 keV) X-radiation, H and microwave emission during the impulsive phase of solar flares. Analysis shows that the rise-time in the 20–30-keV X-ray spike depends on the electron hardness, i.e., t rise exp (0.87 ). The impulsive phase is also marked by an abrupt, very intense increase in H emission in one or more knots of the flare. Properties of these H kernels include: (1) a luminosity several times greater than the surrounding flare, (2) an intensity rise starting about 20–30 s before, peaking about 20–25 s after, and lasting about twice as long as the hard spike, (3) an effective diameter of 3000–6000 km for class 1 flares, representing less than 1/8-1/2 of the main flare, (4) a location lower in the chromosphere than the remaining flare, (5) essentially no expansion prior to the hard spike, (6) a position within 6000 km of the boundary separating polarities, usually forming on both sides of the neutral line near both feet of the same tube of force, (7) a shape often resembling isogauss contours of the photospheric field indicated on magnetograms and (8) total radiated energy less than l/50 that of the hard electrons. Correspondingly, impulsive microwave events are characterized by: (1) the detection of a burst at 8800 MHz for every X-ray spike ifthe number of electrons above 100 keV is greater than 1033, (2) great similarity in burst structure with 20–32 keV X-rays but only at f > 5000 MHz, (3) typical low frequency burst cutoff between 1400–3800 MHz, and (4) maximum emission at f > 7500 MHz. Finally the H, X-ray and microwave data are combined to present a picture of the impulsive phase consistent with the above observations.  相似文献   

17.
Photographic observations of the time development of the profile of the L line of hydrogen during flares were obtained with the NRL spectrograph on ATM. The profiles for the 15 June, 1973 and 21 January, 1974 flares reported here cover both core and wings of the line. The time sequences begin before flare maximum, and continue well into the decay phase. Careful attention has been given to photometry and absolute calibration. In the case of the 15 June, 1973 flare, data are presented both first-order corrected and uncorrected for incomplete filling of the spectrograph slit by flaring material. Correction of the 21 January, 1974 flare was not possible. We discuss core symmetry and shift, and show that our observations imply integrated flare L/H intensity ratios within a factor of two of unity for these two flares.  相似文献   

18.
Moore  R. L.  Schmieder  B.  Hathaway  D. H.  Tarbell  T. D. 《Solar physics》1997,176(1):153-169
We present H and coronal X-ray images of the large two-ribbon flare of 25–26 June, 1992 during its long-lasting gradual decay phase. From these observations we deduce that the 3-D magnetic field configuration late in this flare was similar to that at and before the onset of such large eruptive bipolar flares: the sheared core field running under and out of the flare arcade was S-shaped, and at least one elbow of the S looped into the low corona. From previous observations of filament-eruption flares, we infer that such core-field coronal elbows, though rarely observed, are probably a common feature of the 3-D magnetic field configuration late in large two-ribbon flares. The rare circumstance that apparently resulted in a coronal elbow of the core field being visible in H in our flare was the occurrence of a series of subflares low in the core field under the late-phase arcade of the large flare; these subflares probably produced flaring arches in the northern coronal elbow, thereby rendering this elbow visible in H. The observed late-phase 3-D field configuration presented here, together with the recent sheared-core bipolar magnetic field model of Antiochos, Dahlburg, and Klimchuk (1994) and recent Yohkoh SXT observations of the coronal magnetic field configuration at and before the onset of large eruptive bipolar flares, supports the seminal 3-D model for eruptive two-ribbon flares proposed by Hirayama (1974), with three modifications: (1) the preflare magnetic field is closed over the filament-holding core field; (2) the preflare core field has the shape of an S (or backward S) with coronal elbows; (3) a lower part of the core field does not erupt and open, but remains closed throughout flare, and can have prominent coronal elbows. In this picture, the rest of the core field, the upper part, does erupt and open along with the preflare arcade envelope field in which it rides; the flare arcade is formed by reconnection that begins in the middle of the core field at the start of the eruption and progresses from reconnecting closed core field early in the flare to reconnecting opened envelope field late in the flare.  相似文献   

19.
A study is made of Lyman continuum observations of solar flares, using data obtained by the Harvard College Observatory EUV spectroheliometer on the Apollo Telescope Mount. We find that there are two main types of flare regions: an overall mean flare coincident with the H flare region, and transient Lyman continuum kernels which can be identified with the H and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet Sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density m 5/sx 10–6 g cm–2 in the quiet Sun to m 3/sx 10–4 g cm–2 in the mean flare, and to m 10–3g cm–2 in kernels. From these results we derive the amount of chromospheric material evaporated into the high temperature region, which is found to be - 1015g, in agreement with observations of X-ray emission measures. A comparison is made between kernel observations and the theoretical predictions made by model heating calculations, available in the literature; significant discrepancies are found between observation and current particle-heating models.  相似文献   

20.
A limb, two-ribbon H flare on June 4, 1991, associated with a white-light flare and followed by an emission spray and post-flare loops, is studied. A region of rapidly enhanced brightness at the bottom of the H ribbon above the white-light flare is revealed. The energy released by the white-light flare at eff = 4100 is estimated to be about 1.5 × 1028 erg s–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号