首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A re-evaluation of the existence of true polar wander (TPW) since the Late Cretaceous and a comparison among the various approaches are made using updated paleomagnetic, hotspot and relative motion datasets. Previous attempts to determine the existence of TPW had resulted in different conclusions: comparison of hotspot locations and paleomagnetic poles required significant pole motion, although lithospheric plate displacement analysis yielded insignificant motion. However, these earlier determinations cannot be directly compared to find the reason for the discrepancies, because each used different datasets. For this study the different approaches are applied to a single updated model with three alternative relative motions of East and West Antarctica. Although the results are model-dependent, in general there was not significant motion of the pole relative to the lithosphere (1–5°) since the early Tertiary, but a large motion (10–12°) relative to the hotspot framework. It is unlikely that errors in the determinations could account for this disagreement: the A95 of the plate reconstruction is about 3°, the uncertainty in Antarctica motion is estimated to no larger than 3°, and cumulative errors in the relative plate motions may also amount to 3°. Only if all these errors are present in the maximum estimated amount, and in the same direction, could they account for the 10–12° gap between the two approaches. This conclusion of pole motion relative to the hotspots, but not the lithosphere, may indicate an independent shift of the mesosphere relative to the lithosphere (or “mantle roll” of Hargraves and Duncan).  相似文献   

2.
《地学前缘(英文版)》2020,11(4):1253-1256
Paleogeography can be reconstructed using various crust-or mantle-based reference frames that make fundamentally different assumptions.The various reconstruction models differ significantly in continental paleolongitude,but it has been difficult to assess which models are more valid.We suggest here a "LLSVP test",where an assumed correlation between present-day large low velocity shear-wave provinces and the paleogeography of supercontinent Pangea at breakup ca.200 million years ago can be used to assess the relative accuracy of published reconstructions.Closest correlations between continental paleolongitude and the African LLSVP are achieved with mantle-based reference frames(moving hotspots and true polar wander),whereas shallower crustbased reference frames are shown to be invalid.The relative success of mantle-based frames,and thus the importance of the depth of reference frame,supports the notion that mantle convection is largely vertical compared to the horizontal plate motion of tectonics.  相似文献   

3.
Both the system of plate motions and the global gravity field or the geoid are now so precisely known that it seems worthwhile to look for quantitative relationships. Some aspects, such as the general occurrence of positive gravity and geoid anomalies in regions of plate convergence, have long been known. Our aim is to describe the gravitational field in terms of plate-kinematic parameters and we present a preliminary step in this direction: for four plates (Pacific, Nazca, Indian, American) we have computed the correlation of the Gem 8 geoid heights (with reference to an ellipsoid of 1/298.255 ellipticity) with distance from the poles of motion and distance from the axes in an “absolute” frame. The geoid tends first to drop from the ridge axes to at least 10° distance and then to rise toward the convergence zones. This trend is strongest for the Indian plate in collision with Eurasia, is smaller, but very clear for the oceanic Pacific and Nazca plates, and is not developed for the American plate which does not subduct. We did not find a consistent relationship for the geoid with distance from the pivots. A possible interpretation of the results is the return flow of the large-scale mantle circulation.  相似文献   

4.
根据热点假设,热点对于中间层是固定的。相对热点的板块运动叫做绝对板块运动。绝对板块运动模型可以通过反演火山链传播的速率和走向数据以确定相对板块运动在角速度空间的原点来得到。利用一组近来(0~7.8Ma)全球分布的热点的迁移速率和走向数据,结合板块运动模型NNR—NUVELIA,已研制出一个叫做APM2的现今绝对板块运动模型。按照该模型,太平洋板块围绕60.063°S、102.210°E处的极以(0.8330°±0.0133°)/Ma的速率运动,非洲板块围绕46.849°N、44.372°W的极以(0.1015°±0.0134°)/Ma的速率运动,南极板块的运动则以46.871°N、146.942°E为极,速率为(0.0846°±0.0177°)/Ma,欧亚板块的运动更慢,极为27.291°N、171.925°W,速率为(0.0655°±0.0206°)/Ma。这一模型表明,岩石圈相对深部地幔有一个以49.423°S、90.625°E为极,速率为(0.1983°±0.0135°)/Ma的净旋转。表明太平洋热点同印度-大西洋热点不一致,显示太平洋热点的运动也不一致。为了分析和比较,还给出了仅用全球分布的热点的走向数据和仅用印度一大西洋热点的走向数据得到的板块绝对运动的角速度。  相似文献   

5.
Subduction zones with deep seismicity are believed to be associated with the descending branches of convective flows in the mantle and are subordinated to them. Therefore, the position of subduction zones can be considered as relatively fixed with respect to the steady-state system of convective flows. The lithospheric plate overhanging a subduction zone (as a rule of continental type) may:
1. (1) either move away from the subduction zone; or
2. (2) move onto it. In the first case extensional conditions originate behind the subduction zone and the new oceanic crust of back-arc basins forms. In the second case active Andean-type continental margins with thickening of the crust and lithosphere are observed.
Behind the majority of volcanic island-arcs, along the boundary with marginal-sea basins, independent shallow seismicity belts can be traced. They are parallel to the main seismicity belts coinciding with the Benioff zones. The seismicity belts frame island-arc microplates. Island-arc microplates are assumed to be a frame of reference to calculate relative movements of the consuming and overhanging plates. Using slip vector azimuths for shallow seismicity belts in the frontal parts of the Kurile, Japan, Izu-Bonin, Mariana and Tonga—Kermadec arcs, the position of the pole of rotation of the Pacific plate with respect to the western Pacific island-arc microplates was computed. Its coordinates are 66.1°N, 119.2°W. From the global closure of plate movements it has been determined that for the past 10 m.y. the Eurasian and Indian plates have been moving away from the Western Pacific island-arc system, both rotating clockwise, around poles at 31.1°N, 164.2°W and 1.3°S, 157.5°W, respectively. This provides for the opening of the back-arc basins. At the same time South America is moving onto the subduction zone at the rate of 4 cm/yr. Some “hot spots”, such as Hawaiian, Tibesti, and those of the South Atlantic, are moving relative to the island-arc system at a very low rate, viz. 0.5–0.7 cm/yr. Presumably, the western Pacific subduction zone and “hot spots” form a single frame of reference which can generally be used for the analysis of absolute motions.  相似文献   

6.
Zvi Ben-Avraham   《Tectonophysics》1978,45(4):269-288
The structural elements on the shallow (Sunda Shelf) and deep seas of east and south—east Asia are interpreted as the result of past interaction between lithospheric plates. During the Mesozoic the western Pacific Ocean and the eastern Indian Ocean were parts of the Tethys Sea and were moving to the north relative to Antarctica. A Mesozoic ridge system trending east—west produced east—west trending magnetic anomalies throughout the entire area. The ridge system was bisected by large north—south transform faults which divided the eastern Indian Ocean—western Pacific Ocean into sub-plates traveling at different speeds. The Mesozoic evolution of the Sunda Shelf and the deep seas resulted from such horizontal differential movement in a north—south direction. During Late Cretaceous—Eocene the various segments of the spreading ridge gradually submerged beneath the deep sea trenches to the north, causing a gradual change in the direction of motion of the Pacific plate. The change in motion of the Pacific plate resulted in the separation between the Pacific and the eastern Indian Ocean plates, the formation of large northeast—southwest tectonic elements on the Sunda Shelf and elsewhere in south—east Asia, the formation of the western Philippine Basin and the rapid northward motion of Australia. The only remnant of the Mesozoic ridge system exists today at the western Philippine Basin.  相似文献   

7.
All palaeomagnetic investigations from the Phanerozoic of Australia are summarized and critically reviewed. Some smaller studies have been combined to produce more viable palaeomagnetic poles all of which are only considered if standard cleaning procedures were used. Analysis of the resulting data shows that during the Early Palaeozoic the pole paths for northern and central Australia are similar confirming the regions were a single unit during that time. However, these paths and the one derived from a limited region of southeast Australia approach each other from opposite directions and appear to converge during the Devonian. This observation is consistent with interpretations of the geology of the Tasman Orogenic Zone in terms of plate-tectonic models and with palaeomagnetic data from the Gondwanic continents. The presence of possible ancient plate margins bounding the region, from which most palaeomagnetic results from southeast Australia are derived, confirms that this region only became welded to the main Australian plate in Devonian times. Data for the Mesozoic of southeast Australia continue to be incompatible both with the generally accepted Australia—Antarctica relationship and with all other Gondwanic results. There appears to be no geological evidence in support of the large-scale relative motion inferred by the data and they remain a puzzling inconsistency. Cenozoic results, however, are entirely compatible with the northward motion of Australia away from Antarctica as inferred from sea-floor spreading. Comparisons with results from India suggest that the drift history of India prior to 75 m.y. ago involved movement from a location adjacent to Antarctica. It is proposed that the Wharton Basin was occupied by a northerly extension of Peninsular India which lay adjacent to western Australia. This larger Indian subcontinent broke away from both Antarctica and Australia about 140 m.y. ago.  相似文献   

8.
A new tectonic model for the Aegean block is outlined in an effort to explain the widespread extension observed in this region. A key element in this model is the concept of “side arc collision” This term is used to describe the interaction of subducted oceanic lithosphere with continental lithosphere in a subduction arc in which oblique subduction occurs. In the Hellenic arc side arc collision is proposed for the northeast corner near Rhodes. The collision involves subducted African lithosphere, moving to the northeast almost parallel to the arc, with the continental mass of southwest Turkey. It affects the motion of the Anatolian-Aegean plate complex, but is not similar to continental collision since it occurs mostly at depth and involves only little, if any, of the shallow and rigid part of the continental lithosphere. The model assumes that Anatolia and the Aegean are part of one plate complex which undergoes counterclockwise rotation; if it were not for the side arc collision near Rhodes, the two blocks would exhibit similar deformation and might, in effect, be indistinguishable. At present, however, free and undisturbed rotation is possible only for the Anatolian block (excluding western Anatolia) where the motion is accommodated by subduction along the Cyprean arc. Further west the side arc collision inhibits this rotation along the subduction front. Still further west, undisturbed subduction along the central and western parts of the Hellenic arc is again possible and is well documented. On the other side of the Anatolian-Aegean plate complex, relatively free motion occurs along the North Anatolian fault zone including in the Aegean Sea. The combination of this motion in the north with the local obstruction of the rotation near Rhodes, must create a torque and a new pattern of rotation for the western part of the plate complex, thus creating a separate Aegean block. Since, however, the two blocks are not separated by a plate boundary, the Aegean block cannot move freely according to the new torque. Effective motion of the Aegean block relative to Europe and Anatolia, particularly in the north, is achieved through extension of the crust (lithosphere?). Thus the greatest amount of deformation (extension) is observed along the suture zone between the two blocks and, in particular, in the northeastern part of the Aegean block where motion relative to Anatolia must be greatest.  相似文献   

9.
A recent re-evaluation of the Late Mesozoic and Cenozoic sea-floor spreading data in the eastern Pacific has allowed us to make a new interpretation of the timing and sequence of the tectonic events which produced the present configuration of the plates (Whitman and Harrison, 1981; Whitman, 1981). Rotation parameters specifying the relative motion between all pairs of plates in the ocean basin have been calculated from the best fit of oceanic magnetic anomalies, with additional input from bathymetry and crustal ages of the Deep Sea Drilling Project sites. The rotation parameters for the relative motion between the Pacific and Antarctic plates are taken from Weissel et al. (1977) and the continental rotation parameters are from Barron et al. (1981).Plate motions have been determined back to 74 Ma. This time marks the initiation of spreading at the Pacific-Antarctic Ridge which caused the separation of the Campbell Plateau from Antarctica (Barron et al., 1981). Thus, this time is the earliest fix on the position of the Pacific plate relative to the continents surrounding the Pacific Ocean basin using sea-floor spreading. Since it is not possible to derive quantitative information about the relative motion between two plates separated by a trench, all rotations for the oceanic plates of the Pacific basin have been calculated relative to the Pacific plate and then relative to North America through the plate circuit: Pacific-Antarctica-Africa-North AmericaSince we also know the relative position of North America with respect to the other continents, we can show the relative position of the Pacific plate and the other oceanic plates with respect to all of the continental plates surrounding the Pacific Ocean basin.  相似文献   

10.
Creation of the Cocos and Nazca plates by fission of the Farallon plate   总被引:4,自引:0,他引:4  
Peter Lonsdale   《Tectonophysics》2005,404(3-4):237-264
Throughout the Early Tertiary the area of the Farallon oceanic plate was episodically diminished by detachment of large and small northern regions, which became independently moving plates and microplates. The nature and history of Farallon plate fragmentation has been inferred mainly from structural patterns on the western, Pacific-plate flank of the East Pacific Rise, because the fragmented eastern flank has been subducted. The final episode of plate fragmentation occurred at the beginning of the Miocene, when the Cocos plate was split off, leaving the much reduced Farallon plate to be renamed the Nazca plate, and initiating Cocos–Nazca spreading. Some Oligocene Farallon plate with rifted margins that are a direct record of this plate-splitting event has survived in the eastern tropical Pacific, most extensively off northern Peru and Ecuador. Small remnants of the conjugate northern rifted margin are exposed off Costa Rica, and perhaps south of Panama. Marine geophysical profiles (bathymetric, magnetic and seismic reflection) and multibeam sonar swaths across these rifted oceanic margins, combined with surveys of 30–20 Ma crust on the western rise-flank, indicate that (i) Localized lithospheric rupture to create a new plate boundary was preceded by plate stretching and fracturing in a belt several hundred km wide. Fissural volcanism along some of these fractures built volcanic ridges (e.g., Alvarado and Sarmiento Ridges) that are 1–2 km high and parallel to “absolute” Farallon plate motion; they closely resemble fissural ridges described from the young western flank of the present Pacific–Nazca rise. (ii) For 1–2 m.y. prior to final rupture of the Farallon plate, perhaps coinciding with the period of lithospheric stretching, the entire plate changed direction to a more easterly (“Nazca-like”) course; after the split the northern (Cocos) part reverted to a northeasterly absolute motion. (iii) The plate-splitting fracture that became the site of initial Cocos–Nazca spreading was a linear feature that, at least through the 680 km of ruptured Oligocene lithosphere known to have avoided subduction, did not follow any pre-existing feature on the Farallon plate, e.g., a “fracture zone” trail of a transform fault. (iv) The margins of surviving parts of the plate-splitting fracture have narrow shoulders raised by uplift of unloaded footwalls, and partially buried by fissural volcanism. (v) Cocos–Nazca spreading began at 23 Ma; reports of older Cocos–Nazca crust in the eastern Panama Basin were based on misidentified magnetic anomalies.There is increased evidence that the driving force for the 23 Ma fission of the Farallon plate was the divergence of slab-pull stresses at the Middle America and South America subduction zones. The timing and location of the split may have been influenced by (i) the increasingly divergent northeast slab pull at the Middle America subduction zone, which lengthened and reoriented because of motion between the North America and Caribbean plates; (ii) the slightly earlier detachment of a northern part of the plate that had been entering the California subduction zone, contributing a less divergent plate-driving stress; and (iii) weakening of older parts of the plate by the Galapagos hotspot, which had come to underlie the equatorial region, midway between the risecrest and the two subduction zones, by the Late Oligocene.  相似文献   

11.
A theory of two-dimensional geothermic problems is elaborated by the active temperature function at the vertical contact of two horizontally layered media. The approach offered before for oceanic ridges is extended to the case of continental margins and the upper part of a descending slab, i.e. “sink”, in island-arc areas. It is assumed that the plate motion in the oceanic area exists; in a descending area it is directed downward but remains zero on a continental side. Mathematically it symbolizes a “source—span—sink” thermal model. Numerical parameters are given for a theoretical thermal model of the heat-flow profile across the Kuril island arc, from the trench through Iturup Island, Sakhalin Island and the Tatarian Trough.  相似文献   

12.
地球表层运动和变形的GPS描述   总被引:3,自引:1,他引:3  
黄立人  郭良迁 《地学前缘》2003,10(Z1):17-21
利用IERS所公布的分在全球各大构造板块上的 6 5 7个GPS、SLR和VLBI连续观测站在ITRF框架下的速度场资料 ,采用刚体板块运动 +板块整体均匀应变 +板块内局部不均匀应变的变形分析模型 ,研究了全球各主要板块的运动和变形。结果表明板块的整体变形在统计上均不显著。在一级近似上板块间表现出来的整体相对运动显著 ,根据这些运动参数定量研究了板块边界的相对运动的大小和性质。认为地球的双重不对称变形可能主要表现为南北、东西两半球所含的板块边界的运动方式不同所致。板块内的局部不均匀变形明显 ,为板块内部可能应划分成次一级的活动地块提供了佐证。由于观测点分布的密度和均匀性不足 ,本文未能就板内不均匀变形作进一步的深入讨论。  相似文献   

13.
The Keystone-Muddy Mountain thrust sheet was displaced for several tens of kilometres across the land's surface in Cretaceous times. Its movement is related to the emplacement of the Sierra Nevada batholith, which provided a source of compressive stress over a period of about 140 Ma.The mechanical analysis presented here examines the stresses operating throughout the whole thrust sheet (i.e. the “toe”, “ramp” and “main thrust block”) which extends for approximately 200 km from front to rear. Frictional sliding can explain only the motion of the toe, the ramp and perhaps part of the main thrust block. A composite model, involving elastic upper and viscous lower layers, is used to account for the movement of most of the main thrust block.  相似文献   

14.
Data from the nation-wide GPS continuous tracking network that has been operated by the Geographical Survey Institute of Japan since April 1996 were used to study crustal deformation in the Japanese Islands. We first extracted site coordinate from daily SINEX files for the period from April 1, 1996 to February 24, 2001. Since raw time series of station coordinates include coseismic and postseismic displacements as well as seasonal variation, we model each time series as a combination of linear and trigonometric functions and jumps for episodic events. Estimated velocities were converted into a kinematic reference frame [Heki, K., 1996. Horizontal and vertical crustal movements from three-dimensional very long baseline interferometry kinematic reference frame: implication for reversal timescale revision. J. Geophys. Res., 101: 3187–3198.] to discuss the crustal deformation relative to the stable interior of the Eurasian plate. A Least-Squares Prediction technique has been used to segregate the signal and noise in horizontal as well as vertical velocities. Estimated horizontal signals (horizontal displacement rates) were then differentiated in space to calculate principal components of strain. Dilatations, maximum shear strains, and principal axes of strain clearly portray tectonic environments of the Japanese Islands. On the other hand, the interseismic vertical deformation field of the Japanese islands is derived for the same GPS data interval. The GPS vertical velocities are combined with 31 year tide gage records to estimate absolute vertical velocity. The results of vertical deformation show that (1) the existence of clear uplift of about 6 mm/yr in Shikoku and Kii Peninsula, whereas pattern of subsidence is observed in the coast of Kyushu district. This might reflect strong coupling between the Philippine Sea plate and overriding plate at the Nankai Trough and weak coupling off Kyushu, (2) no clear vertical deformation pattern exists along the Pacific coast of northeastern Japan. This might be due to the long distance between the plate boundary (Japan trench) and overriding plate where GPS sites are located, (3) significant uplift is observed in the southwestern part of Hokkaido and in northeastern Tohoku along the Japan Sea coast. This is possibly due to the viscoelastic rebound of the 1983 Japan Sea (Mw 7.7) and the 1993 Hokkaido–Nansei–Oki (Mw 7.8) earthquakes and/or associated with distributed compression of incipient subduction there. We then estimate the elastic deformation of the Japanese Islands caused by interseismic loading of the Pacific and Philippine Sea subduction plates. The elastic models account for most of the observed horizontal velocity field if the subduction movement of the Philippine Sea Plate is 100% locked and if that of the Pacific Plate is 70% locked. However, the best fit for vertical velocity ranges from 80% to 100% coupling factor in southwestern Japan and only 50% in northeastern Japan. Since horizontal data does not permit the separation of rigid plate motion and interplate coupling because horizontal velocities include both contributions, we used the vertical velocities to discriminate between them. So, we can say there is strong interplate coupling (80%–100%) over the Nankaido subduction zone, whereas it is about 50% only over the Kurile–Japan trench.  相似文献   

15.
The behaviour of geodetic reference systems as a function of time cannot be ignored in determinations of position for secular geodynamic modelling. While non-specialist users are likely to appreciate the uncertainty surrounding the concept of a “fixed” point in regional surveys for crustal motion, its extension to global surveys based on techniques in dynamic geodesy is not widely understood. Such solutions are related to the natural coordinate system defined by the instantaneous geocentre (earth's centre of mass) and the instantaneous rotation axis whose location in earth space cannot be expected to be time invariant.The effect of such movements of the natural system of reference on the coordinates of points at the earth's surface is computed for a plausible model of the former. The resulting changes in solutions for three-dimensional position from dynamic considerations are discussed. It is shown that for the model adopted, the earth-space variations of the natural reference system with time produce coordinate changes with magnitudes not dissimilar to those resulting from reasonable variations in the earth's figure, though with different wavelengths, when computed from three-dimensional considerations alone.The resulting displacements, along with an accepted model for plate motions, are used to study changes in the shape of the level surfaces of the earth's gravity field with time. It is shown that plausible models for the deformation of the earth's figure produce significant changes in the geopotential and the shape of the geoid. However, the transfer of mass implied in extreme models of plate motion produce no significant changes in the datum level surface for crustal motion studies over periods as long as 102 yr.  相似文献   

16.
Geometric constraints derived from the present plate configuration and from plate motion vectors of the Caribbean as well as the North and South American plates within a hotspot reference frame indicate that the thickened Caribbean oceanic crust was formed in a near-American position rather, than at the Galapagos hotspot. A lateral displacement of more than 1000 km between the Caribbean plate and the North and South American plates is related to differences in plate motion velocities during the Cenozoic era. The differential motion between the Caribbean and the American plates results from trench-parallel mantle flow as a response to the westward motion of the American plates.  相似文献   

17.
The movement of Antarctica with respect to South America has a number of implications for paleocirculation as well as for the reconstructions of Gondwanaland. Recent papers on the Southwest Indian Ridge have published new or revised poles of opening for Africa and Antarctica which can be combined with the poles of opening between South America and Africa to give resultant motions between South America and Antarctica.The first indication of a complete closure between South America and the Antarctic Peninsula is at anomaly 28 time (64 Ma) as the two continents are now configured. Between anomaly 28 time (64 Ma) and anomaly M0 time (119 Ma) the amount of closure does not change greatly, and the small computed overlap can be explained by minor uncertainties in the rotation poles used for the reconstructions or some slight extension between East and West Antarctica. By 135 Ma some rotation or translation of the Antarctic Peninsula with respect to East Antarctica must be postulated in addition to any presumed extension between East and West Antarctica in order to avoid an overlap of South America with the Antarctic Peninsula.Having determined what we feel to be a viable reconstruction of Western Gondwanaland and holding South America fixed, we rotated Africa and Antarctica, with respect to South America, for eight different times during the past. Africa moved away from South America in a more or less consistent manner throughout the time period, closure to present, while Antarctica moved away from Africa in a consistent manner only between 160 Ma and 64 Ma. At 64 Ma its motion changed abruptly: it slowed its north-south motion with respect to Africa and began slow east-west extension with respect to South America. This change supports the hypothesis that a major reorganization of the triple junction between Africa, Antarctica and South America occurred between 60 and 65 Ma. The triple junction changed from ridge-ridge-ridge to ridge-fault-fault at the time of the major westward jump of the Mid-Atlantic Ridge just south of the Falkland-Agulhas Fracture Zone.The Mesozoic opening of the Somali Basin moved Madagascar from its presumed original position with Africa in Gondwanaland. The closure of Sri Lanka with India produces a unique fit for India and Sri Lanka with respect to Africa, Madagascar and Antarctica. This fit juxtaposes geological localities in Southeast India against similar localities in Enderhy Land. East Antarctica. The late Jurassic opening in the Somali Basin is tied to opening of the same age in the Mozambique Basin. Since this late Jurassic movement represents the initial break-up of Gondwanaland, it is assumed that similar movement must have occurred in what is now the western Weddell Sea and may also explain the opening evidenced by the Rocas Verdes region of southern South America.  相似文献   

18.
To better understand the recent motion of the Pacific plate relative to the Rivera plate and to better define the limitations of the existing Rivera–Pacific plate motion models for accurately predicting this motion, total-field magnetic data, multibeam bathymetric data and sidescan sonar images were collected during the BART and FAMEX campaigns of the N/O L'Atalante conducted in April and May 2002 in the area surrounding the Moctezuma Spreading Segment of the East Pacific Rise, located offshore of Manzanillo, Mexico, at 106°16′W, between 17.8°N and 18.5°N. Among the main results are: (1) the principle transform displacement zone of the Rivera Transform is narrow and well defined east of 107o15′W and these azimuths should be used preferentially when deriving new plate motion models, and (2) spreading rates along the Moctezuma Spreading Segment should not be used in plate motion studies as either seafloor spreading has been accommodated at more than one location since the initiation of seafloor spreading in the area of the Moctezuma Spreading Segment, or this spreading center is not a Rivera–Pacific plate boundary as has been previously assumed. Comparison of observed transform azimuths with those predicted by the best-fit poles of six previous models of Rivera–Pacific relative motion indicate that, in the study area, a significant systematic bias is present in the predictions of Rivera–Pacific motion. Although the exact source of this bias remains unclear, this bias indicates the need to derive a new Rivera–Pacific relative plate motion model.  相似文献   

19.
过去还无人指出过板块相对运动的方向与缓倾斜叶理、逆断层和断层上的线状指示物有直接关系,这是因为缓倾斜构造上的运动方向只和变厚了的造山地层的重力塌陷有关,它们和俯冲板块传递给仰冲板块的推力没有关系。缓倾斜叶理上的运动方向的线状指示物和斑状变晶中的叶理弯曲或叶理交切轴(FIA)并无直接关系,这是因为FIA的指向受缓倾斜叶理和斑状变晶边缘上产生的、近乎垂直的叶理之间的交切面控制。在班状变晶边缘上形成的、近乎垂直的叶理在基质中的方位可能在较大范围内变动,因为它们会在稍早期间形成的叶理再活化作用影响下发生转动或遭到破坏。斑状变晶边缘上近乎垂直的叶理,与形成于早期或晚期的缓倾斜叶理的交线,在后期的生长中被圈闭在班状变晶里,此交线规定出了FIA的方位,而与叶理上的运动方向无关。从美国佛蒙特州阿巴拉契亚山脉采集的FIA资料指出,在125km×35km的一片地区内,在该地岩层所发生的多次变形中,从未曾使早期形成的FIA组的方位发生变动。这种情况要求:后来的每一代褶皱都是由于渐进的。总体不均匀缩短作用造成的。这种情况表明:FIA保存着原始的运动方向,此方向未因以后的变形而转动。非洲板块与欧洲板块的相对运动方向和由阿尔卑斯期变质岩中叶理交切轴(FIAs)所指示  相似文献   

20.
A world-wide set of plate boundaries and relative velocities was calculated for anomaly 23 time (about 55 m.y. ago, at the Paleocene/Eocene boundary, just before the breakup of Australia—Antarctica). The set was used as input data for Harper's recently published model of plate driving and resisting forces for the present day. The model enabled estimates to be made for the age of the oceanic lithospheric sinking at present-day and at 55 Ma old subduction zones. Plausible ages were found for most zones. The worst relative error in any torque component for the 55 Ma reconstruction was less than 8 per cent of the largest driving torque component. This is about one and a half times the corresponding error obtained for the present-day plate driving force model. It is speculated that the transference of a subduction zone from the Indian to the Australian—Antarctic plate at about 55 Ma could have caused the breakup of Australia—Antarctica. The model was also useful when preparing the plate reconstruction, by giving physically implausible results for some regions. On closer examination, our initial data in these regions were found to be in error. The substitution of more recent data generally improved the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号