首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C. S. Li  Q. J. Fu  H. W. Li 《Solar physics》1991,131(2):337-350
Recent observations show that the rapid fluctuations in radio, hard X-ray, and H emissions are closely associated with type III and microwave (or decimetric) bursts during the impulsive and/or preimpulsive phases of solar flares.In order to clarify the physical processes of these observed phenomena, this paper proposes a tentative model of two acceleration regions A (source of type III bursts) and B (source of microwave or decimetric bursts) formed in the neutral sheet and at the top of a flaring loop, respectively; and also suggests that the electron beams streaming from region A and/or region B downward to the chromosphere are responsible for the rapid fluctuations in the different emissions mentioned above during the impulsive and/or pre-impulsive phases of solar flares.  相似文献   

2.
The microwave and hard X-ray characteristics of 13 solar flares that produced microwave fluxes greater than 500 solar flux units have been analyzed. These Great Microwave Bursts were observed in the frequency range from 3 to 35 GHz at Bern, and simultaneous hard X-ray observations were made in the energy range from 30 to 500 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission spacecraft. The principal aim of this analysis is to determine whether or not the same distribution of energetic electrons can explain both emissions. The temporal and spectral behaviors of the microwaves as a function of frequency and the X-rays as a function of energy were tested for correlations, with results suggesting that optically thick microwave emission, at a frequency near the peak frequency, originates in the same electron population that produces the hard X-rays. The microwave emission at lower frequencies, however, is poorly correlated with emission at the frequency which appears to characterize this common source. A single-temperature and a multitemperature model were tested for consistency with the coincident X-ray and microwave spectra at microwave burst maximum. Four events are inconsistent with both of the models tested, and neither of the models attempts to explain the high-frequency part of the microwave spectrum. A source area derived on the basis of the single-temperature model agrees to within the uncertainties with the observed area of the one burst for which spatially resolved X-ray images are available.Swiss National Science Foundation Fellow from the University of Bern.Also Energy/Environmental Research Group, Incorporated, Tucson, Arizona, and Department of Physics and Astronomy, University of North Carolina, Chapel Hill. Present address: Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland.  相似文献   

3.
This paper explores the time evolution of microwave and hard X-ray spectral indexes in the solar flare observed by Nobeyama Radio Polarimeters (NoRP) and the Ramaty High Energy Solar Spectroscopy Imager (RHESSI) on 13 December 2006. The microwave spectral index, γ MW, is derived from the emissions at two frequencies, 17 and 35 GHz, and hard X-ray spectral index, γ HXR, is derived from RHESSI spectra. Fifteen subpeaks are detected at the microwave and hard X-ray emissions. The microwave spectral indexes tend to be harder than hard X-ray spectral indexes during the flare, which is consistent with previous findings. All detected subpeaks follow the soft-hard-soft spectral behaviours in the hard X-ray rise-peak-decay phases. However, the corresponding microwave subpeaks display different spectral behaviour, such as soft-hard-soft, soft-hard-harder, soft-hard-soft + hard or irregular patterns. These contradictions reveal the complicated acceleration mechanism for low- and high-energy electrons during this event. It is also interesting that the microwave interpeak spectral indexes are much more consistent with one another.  相似文献   

4.
Observations are briefly discussed of an event in which microwave and hard X-ray emissions were not correlated in the accepted way. Two impulsive peaks of roughly equal intensity were observed at three different microwave frequencies. The hard X-ray peaks accompanying these, however, differ in intensity by almost two orders of magnitude. Various possible interpretations of this burst are discussed, in the context of familiar models of these emissions. The most likely explanation is that the electron spectrum in the first burst has a break at about 350 keV. General implications for interpretation of X-rays and microwaves are discussed.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

5.
X-ray radiation is used to study coronal phenomena in conjunction with meter wave observations during some large solar flares. It is found that metric flare continua and moving type IV bursts are associated with gradual and long lasting (a few tens of minutes) microwave and hard X-ray emissions. The detailed temporal analysis reveals that although metric and hard X-ray sources are located at very different heights, both kinds of emission result from a common and continuous/repetitive injection of electrons in the corona. The late part of the metric event (stationary type IV burst) is only associated with soft X-ray radiation. This indicates that the mean energy of the radiating electrons is lower during stationary type IV bursts than during the earlier parts of the event.  相似文献   

6.
We have applied detailed theories of gyro-synchrotron emission and absorption in a magnetoactive plasma, X-ray production by the bremsstrahlung of non-thermal electrons on ambient hydrogen, and electron relaxation in a partially ionized and magnetized gas to the solar flare burst phenomenon. The hard X-ray and microwave bursts are shown to be consistent with a single source of non-thermal electrons, where both emissions arise from electrons with energies < mc 2. Further-more, the experimental X-ray and microwave data allow us to deduce the properties of the electron distribution, and the values of the ambient magnetic field, the hydrogen density, and the size of the emitting region. The proposed model, although derived mostly from observations of the 7 July 1966 flare, is shown to be representative of this type of event.NAS-NRC Resident Research Associate.  相似文献   

7.
The origin of relativistic solar protons during large flare/CME events has not been uniquely identified so far. We perform a detailed comparative analysis of the time profiles of relativistic protons detected by the worldwide network of neutron monitors at Earth with electromagnetic signatures of particle acceleration in the solar corona during the large particle event of 20 January 2005. The intensity – time profile of the relativistic protons derived from the neutron monitor data indicates two successive peaks. We show that microwave, hard X-ray, and γ-ray emissions display several episodes of particle acceleration within the impulsive flare phase. The first relativistic protons detected at Earth are accelerated together with relativistic electrons and with protons that produce pion-decay γ rays during the second episode. The second peak in the relativistic proton profile at Earth is accompanied by new signatures of particle acceleration in the corona within ≈1R above the photosphere, revealed by hard X-ray and microwave emissions of low intensity and by the renewed radio emission of electron beams and of a coronal shock wave. We discuss the observations in terms of different scenarios of particle acceleration in the corona.  相似文献   

8.
Silva  Adriana V.R.  Lin  R.P.  de Pater  Imke  White  Stephen M.  Shibasaki  K.  Nakajima  H. 《Solar physics》1998,183(2):389-405
We present a comprehensive analysis of the 17 August 1994 flare, the first flare imaged at millimeter (86 GHz) wavelengths. The temporal evolution of this flare displays a prominent impulsive peak shortly after 01:02 UT, observed in hard X-rays and at microwave frequencies, followed by a gradual decay phase. The gradual phase was also detected at 86 GHz. Soft X-ray images show a compact emitting region (20), which is resolved into two sources: a footpoint and a loop top source. Nonthermal emissions at microwave and hard X-ray wavelengths are analyzed and the accelerated electron spectrum is calculated. This energy spectrum derived from the microwave and hard X-ray observations suggests that these emissions were created by the same electron population. The millimeter emission during the gradual phase is thermal bremsstrahlung originating mostly from the top of the flaring loop. The soft X-rays and the millimeter flux density from the footpoint source are only consistent with the presence of a multi-temperature plasma at the footpoint.  相似文献   

9.
We investigate accelerated electron energy spectra for different sources in a large flare using simultaneous observations obtained with two instruments, the Nobeyama Radio Heliograph (NoRH) at 17 and 34 GHz, and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) at hard X-rays. This flare is one of the few in which emission up to energies exceeding 200 keV can be imaged in hard X-rays. Furthermore, we can investigate the spectra of individual sources up to this energy. We discuss and compare the HXR and microwave spectra and morphology. Although the event overall appears to correspond to the standard scenario with magnetic reconnection under an eruptive filament, several of its features do not seem to be consistent with popular flare models. In particular we find that (1) microwave emissions might be optically thick at high frequencies despite a low peak frequency in the total flux radio spectrum, presumably due to the inhomogeneity of the emitting source; (2) magnetic fields in high-frequency radio sources might be stronger than sometimes assumed; (3) sources spread over a very large volume can show matching evolution in their hard X-ray spectra that may provide a challenge to acceleration models. Our results emphasize the importance of studies of sunspot-associated flares and total flux measurements of radio bursts in the millimeter range.  相似文献   

10.
《New Astronomy》2007,12(6):483-489
A new kind of static distribution function for trapped and precipitating electrons is derived by solving a time-independent Fokker–Planck equation in a magnetic mirror, with injection of initially narrow-beamed electrons at an arbitrary initial pitch-angle. There are two independent parameters to determine the ratio of trapped and precipitating electrons, as well as their emissions, i.e., the mirror ratio and the initial pitch-angle, which is helpful for understanding some new features of asymmetrical hard X-ray and microwave footpoint emissions in solar observations.  相似文献   

11.
The M7.7 solar flare of July 19, 2012, at 05:58 UT was observed with high spatial, temporal, and spectral resolutions in the hard X-ray and optical ranges. The flare occurred at the solar limb, which allowed us to see the relative positions of the coronal and chromospheric X-ray sources and to determine their spectra. To explain the observations of the coronal source and the chromospheric one unocculted by the solar limb, we apply an accurate analytical model for the kinetic behavior of accelerated electrons in a flare. We interpret the chromospheric hard X-ray source in the thick-target approximation with a reverse current and the coronal one in the thin-target approximation. Our estimates of the slopes of the hard X-ray spectra for both sources are consistent with the observations. However, the calculated intensity of the coronal source is lower than the observed one by several times. Allowance for the acceleration of fast electrons in a collapsing magnetic trap has enabled us to remove this contradiction. As a result of our modeling, we have estimated the flux density of the energy transferred by electrons with energies above 15 keV to be ~5 × 1010 erg cm?2 s?1, which exceeds the values typical of the thick-target model without a reverse current by a factor of ~5. To independently test the model, we have calculated the microwave spectrum in the range 1–50 GHz that corresponds to the available radio observations.  相似文献   

12.
The fine structure of the time variations of microwave and hard X-ray emissions from the solar flare of November 5, 1992 was analyzed. On the basis of the wavelet analysis, pulsations of intensity with a period of about 6 s were revealed in both the data sets. The observed time delay between the coronal plasma emission measure maximum and the temperature maximum is consistent with the concept of chromospheric evaporation. The anticorrelation observed between the time profiles of the microwave and hard X-ray emissions and the nature of the time delays between the peaks are associated with the excitation of radial fast magneto-acoustic oscillations in the flare loop (a coronal trap). Consequences of the obtained results are discussed.  相似文献   

13.
K. Kai 《Solar physics》1986,104(1):235-241
In attempting to explain observed hard X-ray and microwave flux from solar flares by a single population of energetic electrons, one has met a serious discrepancy of the order of 103–105 between the calculated and observed microwave flux. In this paper it is shown that this discrepancy can be removed for impulsive flares by the assumption of a precipitation model for both X-ray and microwave sources and that the magnetic field of 500–1000 G is required in the microwave emitting region. The precipitation model is consistent with the rapid time variation exhibited in both hard X-rays and microwaves.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

14.
Kundu  M. R.  Gergely  T. E.  Kane  S. R.  Sawant  H. S. 《Solar physics》1986,103(1):153-164
We present the results of a study of the relationship of a complex meter-decameter wavelength radio burst observed with the Clark Lake E-W and N-S interferometers, with a hard X-ray burst observed with the X-ray spectrometer aboard ISEE-3. The radio burst consisted of several type III's, reverse drift type III's, a U burst, and type II and type IV bursts. The X-ray emission was also complex. The radio as well as hard X-ray emissions were observed before the flash phase of the flare; they were not always associated and we conjecture that this may constitute evidence for acceleration of electrons high in the corona. On the other hand, all components of the reverse drift burst were associated with hard X-ray subpeaks, indicating multiple injection of electron beams along field lines with different density gradients. While the type II burst appeared to be related to the hard X-ray burst, a detailed correspondence between individual features of the radio and hard X-ray burst emissions could not be found. The type IV burst started after all hard X-ray emissions ceased. Its source appeared to be a magnetic arch, presumably containing energetic electrons responsible for the gyrosynchrotron radiation of type IV.Presently at INPE/CRAAM, São Paulo, Brazil.  相似文献   

15.
We present a new method of estimating the energy of microwave-emitting electrons from the observed rate of increase of the microwave flux relative to the hard X-ray flux measured at various energies during the rising phase of solar flares. A total of 22 flares observed simultaneously in hard X-rays (20–400 keV) and in microwaves (17 GHz) were analyzed in this way and the results are as follows:
  1. The observed energy of X-rays which vary in proportion to the 17 GHz emission concentrates mostly below 100 keV with a median energy of 70 keV. Since the mean energy of electrons emitting 70 keV X-rays is ?130 keV or ?180 keV, depending on the assumed hard X-ray emission model (thin-target and thick-target, respectively), this photon energy strongly suggests that the 17 GHz emission comes mostly from electrons with an energy of less than a few hundred keV.
  2. Correspondingly, the magnetic field strength in the microwave source is calculated to be 500–1000 G for the thick-target case and 1000–2000 G for the thin-target case. Finally, judging from the values of the source parameters required for the observed microwave fluxes, we conclude that the thick-target model in which precipitating electrons give rise to both X-rays and microwaves is consistent with the observations for at least 16 out of 22 flares examined.
  相似文献   

16.
A. O. Benz 《Solar physics》1984,94(1):161-163
The spectral indices of microwave and hard X-ray emissions of a solar flare are found to correlate. Their observed values are in agreement with the expected relation from synchrotron and bremsstrahlung theory. These results are considered as strong evidence for the synchrotron mechanism in the microwave flare, contrary to recent alternative suggestions.  相似文献   

17.
G. Trottet 《Solar physics》1986,104(1):145-163
Observations relevant to the relative timing of hard X-ray, microwave and lower frequency radio bursts in different phases of flare are reviewed. It is shown that such timing comparisons give important information concerning the electron acceleration/injection process, the magnetic field topology at the acceleration site and the flare development itself. In particular it is shown that acceleration begins before the flash phase of flares and that it keeps going on continuously during the entire duration of a flare. Moreover, despite their wide separation in altitude, hard X-ray, microwave and lower frequency sources appear to arise from a common injection of electrons going on continuously through the different phases of flare. In situ acceleration by shock waves giving rise to type II radio emission is briefly discussed. As an alternative interactions between small and large scale magnetic structures is proposed.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

18.
This work investigates the spatial relation between coronal X-ray sources and coherent radio emissions, both generally thought to be signatures of particle acceleration. Two limb events were selected during which the radio emission was well correlated in time with hard X-rays. The radio emissions were of the type of decimetric pulsations as determined from the spectrogram observed by Phoenix-2 of ETH Zurich. The radio positions were measured from observations with the Nançay Radioheliograph between 236 and 432 MHz and compared to the position of the coronal X-ray source imaged with RHESSI. The radio pulsations originated at least 30?–?240 Mm above the coronal hard X-ray source. The altitude of the radio emission increases generally with lower frequency. The average positions at different frequencies are on a line pointing approximately to the coronal hard X-ray source. Thus, the pulsations cannot be caused by electrons trapped in the flare loops, but are consistent with emission from a current sheet above the coronal source.  相似文献   

19.
A solar flare occurring on 26 February, 1981 at 19:32 UT was observed simultaneously in hard X-rays and microwaves with a time resolution of a fraction of a second. The X-ray observations were made with the Hard X-ray Monitor on Hinotori, and the microwave observations were made at 22 GHz with the 13.7 m Itapetinga mm-wave antenna. Timing accuracy was restricted to 62.5 ms, the best time resolution obtained in hard X-rays for this burst. We find that: (a) all 22 GHz flux structures were delayed by 0.2–0.9 s relative to similar structures in hard X-rays throughout the burst duration; (b) different burst structures showed different delays, suggesting that they are independent of each other; (c) the time structures of the degree of polarization at 22 GHz precede the total microwave flux time structures by 0.1–0.5 s; (d) The time evolutions of time delays of microwaves with respect to hard X-rays and also the degree of microwave polarization show fluctuations with are not clearly related to any other time structures. If we take mean values for the 32 s burst duration, we find that hard X-ray emission precedes the degree of microwave polarization by 450 ms, which in turn precedes the total microwave flux by 110 ms.  相似文献   

20.
A typical event of solar microwave type III burst with both positive and negative frequency drifts was observed by the 1–2 GHz spectrograph at Beijing Observatory on January 5, 1994. The separatrix frequency (1.3 GHz) may correspond to an acceleration region. The energy of the electron beam responsible for the burst is calculated from the drift rate and the height of the source above the photosphere. Moreover, if the solar microwave type III burst is explained by the beam-plasma instability as suggested by Huang (1998), the energy density as well as the particle density of the electron beam may be estimated from the burst flux, the growth rates and the modularity (Huang et al., 1996). So that, a very good power- law distribution is simulated for the energetic spectrum of the electron beam in this event with a spectrum index 4.5. The electron beam may be accelerated by an electric field with a length of 107 m and a strength of <10-4 V m- 1. These results are necessary for understanding the acceleration process in solar flares. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号