首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
基于矢量信号处理的水声定位系统   总被引:2,自引:1,他引:2  
将传统的水声定位系统与矢量水听器相结合,设计了一种全新的轻便型长基线被动水声定位系统。介绍了系统的组成和工作原理,并结合近年来出现的矢量信号处理技术,设计了新的实时信号处理软件。经湖试和海试,系统的可行性得到了初步的验证。  相似文献   

3.
自由投放式声学多普勒海流剖面(FADCP)观测以“自由落体”方式进行采样,其不依赖于测船钢缆牵引即可对全深度海流进行观测,观测稳定性较下放式声学多普勒海流剖面(LADCP)大幅提升,有效减少了观测值之中的不规则运动。2021年4月与9月在南海西沙海域开展的FADCP观测实验获得了两个断面包含16个站的海流及CTD资料。基于静置期间的真实底流观测,各站全深度的海流剖面采用剪切法获得,潜标附近站位剖面与潜标观测剖面相比,平均流速偏差为3 cm/s。观测断面捕捉到了西沙海域两个时期的气旋涡,其垂直结构比HYCOM模拟更精细,表层流与绝对地转流契合。研究表明,FADCP对测船要求低、数据质量高,其后处理简便且结果良好,但无法对特定水层实施补充观测。  相似文献   

4.
An operational satellite remote sensing system for ocean fishery   总被引:3,自引:0,他引:3  
Ocean environmental information is very important to supporting the fishermen in fishing and satellite remote sensing technology can provide it in large scale and in near real-time. Ocean fishery locations are always far away beyond the coverage of the satellite data received by a land-based satellite receiving station. A nice idea is to install the satellite ground station on a fishing boat. When the boat moves to a fishery location, the station can receive the satellite data to cover the fishery areas. One satellite remote sensing system was once installed in a fishing boat and served fishing in the North Pacific fishery areas when the boat stayed there. The system can provide some oceanic environmental charts such as sea surface temperature (SST) and relevant derived products which are in most popular use in fishery industry. The accuracy of SST is the most important and affects the performance of the operational system, which is found to be dissatisfactory. Many factors affect the accuracy of SST and it is difficult to increase the accuracy by SST retrieval algorithms and clouds detection technology. A new technology of temperature error control is developed to detect the abnormity of satellite-measured SST. The performance of the technology is evaluated to change the temperature bias from-3.04 to 0.05 ℃ and the root mean square (RMS) from 5.71 to 1.75 ℃. It is suitable for employing in an operational satellite-measured SST system and improves the performance of the system in fishery applications. The system has been running for 3 a and proved to be very useful in fishing. It can help to locate the candidates of the fishery areas and monitor the typhoon which is very dangerous to the safety of fishing boats.  相似文献   

5.
6.
7.
8.
利用中尺度气象模式WRF(Weather Research and Forecasting Model)、无结构网格近岸海洋模式FVCOM(Finite-Volume Coastal and Ocean Model)和基于蒙特卡洛随机统计理论的海上搜救目标漂移轨迹模式Leeway,建立了长江口及邻近海域海上搜救物漂移轨迹预测模型系统。漂移轨迹预测以风和表层海流预报为基础,考虑了包括落水位置和时间、风致漂移方向、搜救目标物状态的不确定性以及风场预报误差带来的漂移路径预测误差,经统计获得搜救目标物可能漂移集合范围。对近年来发生在长江口邻近海域的海难事故后报模拟验证结果证明了Leeway模式在长江口邻近海域的适用性,同时表明所建立的搜救模型系统具有较高的精度,操作方便、时效性高,在搜救业务化预报工作中具有广阔的应用前景。  相似文献   

9.
A generic integrated sensory-intelligent system (ISIS) is developed for underwater acoustic signal-processing applications. ISIS constantly monitors the current acoustic channel conditions and smoothly integrates the outputs of the most appropriate signal-processing procedures or algorithms available to it for those conditions. The system is based on a generalization of a tuneable approximate piecewise linear (TAPL) model derived from the modified probabilistic neural network (MPNN). This model was designed to seamlessly integrate a set of local linear signal-processing algorithms within a given multidimensional data space. Depending on the input signal distortions, which are determined by environmental effects, ISIS automatically weighs and adds the outputs from a set of processing algorithms working in parallel. The weighting is related to the "closeness" of each algorithm to the sensed input signal characteristics or some other measured environmental state. A single tuning parameter is used to smoothly and seamlessly select appropriately among the parallel processing algorithm outputs. A very small tuning-parameter value selects the closest most appropriate algorithm output. At the other extreme, a fixed weighted average of all the algorithm outputs is produced with a very large value. Otherwise, a dynamic weighed average of all algorithm outputs is achieved with values in between. Some features and benefits of ISIS are demonstrated with an illustrative linear sweep chirp signal-detector estimation problem characterized by extremely variable Doppler conditions.  相似文献   

10.
Chirp sonar systems can be used to obtain high resolution seismic reflection images of the sub-seafloor during marine surveys. The exact knowledge of the Chirp signature allows the use of deterministic algorithms to process the data, similarly to that applied to Vibroseis data on land. Here, it is described an innovative processing sequence to be applied to uncorrelated Chirp data, which can improve vertical and lateral resolution compared to conventional methods. It includes application of a Wiener filter to transform a frequency-modulated sweep into a minimum-phase pulse sequence. In this way, the data become causal and can undergo predictive deconvolution to reduce ringing and enhance vertical resolution. Afterwards, FX-deconvolution and Stolt migration can be applied to obtain an improved imaging of the subsurface. The result of this procedure is a seismic reflection image with higher resolution than traditional ones, which are normally represented using the envelope function of the signal. This technique can be particularly useful for engineering-geotechnical surveys and archaeological investigations that require a fine detail imaging of the uppermost meters of the sub-seafloor.  相似文献   

11.
12.
Subbottom acoustic profiler provides acoustic imaging of the subbottom structure constituting the upper sediment layers of the seabed, which is essential for geological and offshore geo-engineering studies. Delineation of the subbottom structure from a noisy acoustic data and classification of the sediment strata is a challenging task with the conventional signal processing techniques. Image processing techniques utilise the spatial variability of the image characteristics, known for their potential in medical imaging and pattern recognition applications. In the present study, they are found to be good in demarcating the boundaries of the sediment layers associated with weak acoustic reflectivity, masked by noisy background. The study deals with application of image processing techniques, like segmentation in identification of subbottom features and extraction of textural feature vectors using grey level co-occurrence matrix statistics. And also attempted classification using Self Organised Map, an unsupervised neural network model utilising these feature vectors. The methodology was successfully demonstrated in demarcating the different sediment layers from the subbottom images and established the sediments constituting the inferred four subsurface sediment layers differ from each other. The network model was also tested for its consistency, with repeated runs of different configuration of the network. Also the ability of simulated network was tested using a few untrained test images representing the similar environment and the classification results show a good agreement with the anticipated.  相似文献   

13.
由武汉大学研发的海洋状态监测及分析雷达(OSMAR),被布置于东中国海沿岸的6个雷达站点,用于观测海表面速度(海流,波浪,风)。本研究以雷达观测的流场为例,阐述了一个业务化海表面流雷达观测及数据服务平台,给出了一个从数据获取、传输、处理、可视化以及服务的业务化流程。详细描述了业务化平台中包含三个系统(雷达观测系统、数据服务系统、可视化服务系统),以及各系统间的数据流。各站点获取的流速将在雷达观测系统中数据接收和预处理中心进行集成,然后传输到数据服务系统进行质量控制。用户可以在数据服务系统的主界面上对数据进行浏览,也能够获取这些数据。可视化服务系统能够在球体平台上对数据产品进行直观展示。通过业务化平台可以对东中国海的海流进行实时监测,也能够对海流的日变化以及季节性变化进行研究。  相似文献   

14.
15.
An IBM 1130 computer program system for preliminary processing of copious biological data is described. Its advantage ia comparison with the more usual manual calculation methods is the speed at which data can be handled, sorted, and analysed. Only a small computer need be available to the user.  相似文献   

16.
17.
OSTIA数据在中国近海业务化环流模型中的同化应用   总被引:3,自引:0,他引:3  
The prediction of sea surface temperature(SST) is an essential task for an operational ocean circulation model. A sea surface heat flux, an initial temperature field, and boundary conditions directly affect the accuracy of a SST simulation. Here two quick and convenient data assimilation methods are employed to improve the SST simulation in the domain of the Bohai Sea, the Yellow Sea and the East China Sea(BYECS). One is based on a surface net heat flux correction, named as Qcorrection(QC), which nudges the flux correction to the model equation; the other is ensemble optimal interpolation(En OI), which optimizes the model initial field. Based on such two methods, the SST data obtained from the operational SST and sea ice analysis(OSTIA) system are assimilated into an operational circulation model for the coastal seas of China. The results of the simulated SST based on four experiments, in 2011, have been analyzed. By comparing with the OSTIA SST, the domain averaged root mean square error(RMSE) of the four experiments is 1.74, 1.16, 1.30 and 0.91°C, respectively; the improvements of assimilation experiments Exps 2, 3 and 4 are about 33.3%, 25.3%, and 47.7%, respectively.Although both two methods are effective in assimilating the SST, the En OI shows more advantages than the QC,and the best result is achieved when the two methods are combined. Comparing with the observational data from coastal buoy stations, show that assimilating the high-resolution satellite SST products can effectively improve the SST prediction skill in coastal regions.  相似文献   

18.
Sensitive Ocean Bottom Implanted Tiltmeters (OBITs) with a sophisticated data retrieval system have been developed in order to observe directly the subduction of oceanic lithosphere. The OBIT is the first long-term geophysical instrument which was designed to be deployed by a manned deep-sea submersible. When the OBIT is put on oceanic lithosphere which is bending and is about to subduct under a deep sea trench, the OBIT records the subduction by observing the tilt of the surface of the lithosphere. The OBIT system has a sensitivity of 10-8 radian, which is enough to detect the ongoing subduction in months or years. The OBIT may give an answer to the question whether there are fluctuations in the subduction rate.Two OBITs were successfully deployed on a seaward slope of the Kuril Trench by the newly built French deep submersible, Nautile. The OBITs were installed on the northwest shoulder of Erimo seamount, at a depth of 3930 m, in the Kuril Trench. In order to attain stable long-term observations of crustal deformations, the sensing unit was cemented onto bare rock by mortar. We have not yet had an opportunity to recover the data.The life of the instruments is expected to be more than five years. An acoustic data transmission system has been developed for the OBIT data recovery. The stored data can be retrieved at any moment during the observation period, with no need to retrieve the instruments nor to interrupt the observation, by use of the acoustic system. The acoustic system has a high data transmission rate as well as extremely low power consumption. This will be the first long-term crustal deformation measurement on the sea floor.  相似文献   

19.
A remote sediment classification technique based on attenuation measurements from Chirp sub-bottom profiler data is described. This differs from previously published work in that attenuation measurements are obtained for each stratigraphic unit within a complex, thinly interbedded sedimentary sequence. Compressional wave attenuation measurements are obtained for a wide variety of lithologies, including muds, silts, sands, clayey sands, silty clays and gravel lags, with grain sizes ranging from 8 Phi to -4 Phi. In addition, attenuation measurements from sub-bottom profiler data were calibrated against laboratory acoustic measurements of vibracores and seabed samples from corresponding geographic locations, under simulated in-situ conditions using a Pulse Tube method. We adapt an instantaneous frequency matching method using a causal attenuation filter to model the decay of the Chirp transmitted waveform. From this modelling, a relationship between t* (a causal attenuation operator) and change in instantaneous frequency is established. The Hilbert transform is used to extract instantaneous frequency information from Chirp seismic, which is used to derive attenuation information for selected individual stratigraphic layers imaged by the sub-bottom profiler. This paper draws attention to the limitations in comparing attenuation measurements derived from Chirp sub-bottom profiler data against previously published literature on experimental attenuation measurements, which are limited by the wide variance of these data, and the difficulty in finding a meaningful best fit to these data. This demonstrates the importance of calibrating remote sediment classification observations using complimentary acoustic analysis of seabed samples to generate a site-specific geoacoustic database. A positive correlation between laboratory and sub-bottom profiler attenuation measurements was obtained, with a correlation coefficient of 0.885. Poorly sorted gravels with a mixed lithic and biogenic pebble component are characterised by very high attenuation with values of Q from 4 to 19. These sediments are considerably coarser-grained than those typically described in previously published experimental studies.  相似文献   

20.
A new method is presented to process and correct full-depth current velocity data obtained from a lowered acoustic Doppler current profiler (LADCP). The analysis shows that, except near the surface, the echo intensity of a reflected sound pulse is closely correlated with the magnitude of the difference in vertical shear of velocity between downcast and upcast, indicating an error in velocity shear. The present method features the use of echo intensity for the correction of velocity shear. The correction values are determined as to fit LADCP velocity to shipboard ADCP (SADCP) and LADCP bottom-tracked velocities. The method is as follows. Initially, a profile of velocity relative to the sea surface is obtained by integrating vertical shears of velocity after low-quality data are rejected. Second, the relative velocity is fitted to the velocity at 100–800 dbar measured by SADCP to obtain an “absolute” velocity profile. Third, the velocity shear is corrected using the relationship between the errors in velocity shears and echo intensity, in order to adjust the velocity at sea bottom to the bottom-tracked velocity measured by LADCP. Finally, the velocity profile is obtained from the SADCP-fitted velocity at depths less than 800 dbar and the corrected velocity shear at depths greater than 800 dbar. This method is valid for a full-depth LADCP cast throughout which the echo intensity is relatively high (greater than 75 dB in the present analysis). Although the processed velocity may include errors of 1–2 cm s−1, this method produced qualitatively good current structures in the Northeast Pacific Basin that were consistent with the deep current structures inferred from silicate distribution, and the averaged velocities were significantly different from those calculated by the Visbeck (2002) method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号