首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Polar Science》2014,8(2):166-182
The larch forests on the permafrost in northeastern Mongolia are located at the southern limit of the Siberian taiga forest, which is one of the key regions for evaluating climate change effects and responses of the forest to climate change. We conducted long-term monitoring of seasonal and interannual variations in hydrometeorological elements, energy, and carbon exchange in a larch forest (48°15′24′′N, 106°51′3′′E, altitude: 1338 m) in northeastern Mongolia from 2010 to 2012. The annual air temperature and precipitation ranged from −0.13 °C to −1.2 °C and from 230 mm to 317 mm. The permafrost was found at a depth of 3 m. The dominant component of the energy budget was the sensible heat flux (H) from October to May (H/available energy [Ra] = 0.46; latent heat flux [LE]/Ra = 0.15), while it was the LE from June to September (H/Ra = 0.28, LE/Ra = 0.52). The annual net ecosystem exchange (NEE), gross primary production (GPP), and ecosystem respiration (RE) were −131 to −257 gC m−2 y−1, 681–703 gC m−2 y−1, and 423–571 gC m−2 y−1, respectively. There was a remarkable response of LE and NEE to both vapor pressure deficit and surface soil water content.  相似文献   

2.
We present a simple method to derive spatial precipitation (P) and evapotranspiration (ET) for the typical steppe of the Xilin river catchment at 1 km and 8-day resolution during the main vegetation period (23 April to 28 August) of 2006. The hydrological model BROOK90 was parameterised from eddy covariance measurements. The daily model input data, precipitation, minimum (Tamin) and maximum air temperature (Tamax), were derived by manipulating MODIS leaf area index (LAI) and surface temperature data. P was estimated based on a linear regression of P measured at several sites against the mean gain of the MODIS LAI of surrounding 3 × 3 pixels areas (R2 = 0.76). Tamin and Tamax were derived using a relationship between measured Tamin and Tamax and MODIS surface temperatures (R2 = 0.92 and R2 = 0.88, respectively). The mean precipitation was 145 mm; it varied between 52 mm in the north-western region and 239 mm in the eastern region. In spring, the modelled ET was low (<0.8 mm d−1); evaporation dominated over transpiration and spatial differences were small. At the end of June, the mean ET reached its maximum (2 mm d−1) and spatial differences were pronounced. From July on, transpiration dominated over declining evaporation, and spatial differences decreased in August.  相似文献   

3.
基于1960~2015年西安气象站点逐日最高温、最低温数据,采用RHtest软件对非均一化气温序列进行订正,进而选取16项极端气温指数,对西安极端气温变化特征进行分析。结果表明:由于气象站点迁移,西安气温资料存在非均一性,导致极端气温变化趋势被低估;全球变暖背景下,西安极端气温变化表现出:“快速增温与平稳波动并存,冷暖变化趋势相反,夜晚增暖趋势比白天明显,白天波动变化明显于夜晚,持续性高温事件变化不大,持续性低温事件大幅下降”的变化特征;通过不同区域趋势变化对比、冷暖、昼夜变化关系对比发现,受城市热岛影响,西安极端低温事件减少更为突出,远高于中国其他对比区域(秦岭南北、黄土高原、东北地区等);在昼夜变化上,西安极端气温变化与中国、全球变化具有一致性,但是通过冷暖指标对比发现,西安极端气温变化具有区域性,表现为冷昼日数下降高于暖昼日数上升,冷夜日数下降高于暖夜日数上升,冷持续日数和暖持续日数共同表现为下降趋势。  相似文献   

4.
Mean tree biomass and soil carbon (C) densities for 39 map sheet grids (1° lat. × 1.5° long.) covering the Acacia woodland savannah region of Sudan (10–16° N; 21–36° E) are presented. Data from the National Forest Inventory of Sudan, Harmonized World Soil Database and FAO Local Climate Estimator were used to calculate C densities, mean annual precipitation (MAP) and mean annual temperature (MAT). Above-ground biomass C and soil organic carbon (SOC, 1 m) densities averaged 112 and 5453 g C m−2, respectively. Below-ground biomass C densities, estimated using root shoot ratios, averaged 33 g C m−2. Biomass C densities and MAP increased southwards across the region while SOC densities were lowest in the centre of the region and increased westwards and eastwards. Both above-ground biomass C and SOC densities were significantly (p < 0.05) correlated with MAP (rs = 0.84 and rs = 0.34, respectively) but showed non-significant correlations with MAT (rs = −0.22 and rs = 0.24, respectively). SOC densities were significantly correlated with biomass C densities (rs = 0.34). The results indicated substantial under stocking of trees and depletion of SOC, and potential for C sequestration. Up-to-date regional and integrated soil and forest inventories are required for planning improved land-use management and restoration.  相似文献   

5.
Following the southward shift of rainfall isolines in the Sahel at the end of the 1960s, Gerbillus nigeriae appeared in northern Senegal in the mid-1990s, and two resident Gerbillidae (Taterillus pygargus and Taterillus gracilis) subsequently declined. We investigated the causal role of the capacity to conserve water in such climate-related shifts in the distribution of these Gerbillidae by comparing the effects of a water-poor diet on the water-efflux rate (W−out) of freshly trapped adults pre-acclimatized to a water-rich diet. During the 12-day period of water restriction in all species, 30-50% of individuals became hyperactive and showed greater weight loss and higher W−out than the remaining inactive individuals. Such emergence of migratory strategists within populations could accelerate the expansion of G. nigeriae. On a water-poor diet, T. gracilis showed a lower capacity to conserve water (higher W−out) than T. pygargus and G. nigeriae, in both inactive (W−out = 44.5 ± 1.8 vs 29.6 ± 0.8 vs 27.4 ± 0.7 ml kg−0.82.day−1, respectively) and hyperactive individuals (W−out = 60.4 ± 1 vs 45.4 ± 0.7 vs 44 ± 0.8 ml kg−0.82.day−1, respectively). We propose that the capacity to conserve water accounted for both expansion of G. nigeriae and decline of T. gracilis, whereas competition between T. pygargus and G. nigeriae could account for the decline of T. pygargus.  相似文献   

6.
黄土高原生态环境脆弱,极端气候频发,越来越多的影响到人类的生产生活。通过基于 138 个气象站点观测资料,利用一元线性方程和 Mann-Kendall 法分析了黄土高原地区 27 个极端气 候指数的时空变化,得到以下主要结论:(1)极端气温指数中霜冻日数、冰冻日数、日最低气温的极 高值和冷持续日数在逐渐减少,生长季长度、夏季日数,热夜日数、日最高气温的极高值、暖持续日 数在逐渐增加。(2)极端气温指数中冷昼日数、冷夜日数、日最低气温极低值、日最高气温极高值、 气温日较差在子区域与全区变化趋势存在不同,主要表现在黄土塬区、黄土峁状丘陵区和石质山 地区。(3)极端降水指数变化趋势平缓,与多年均值接近。在空间分布上,除极强降水量、强降水量 和年均雨日降水强度在各子区域上与全区变化趋势一致外,其余指数在各子区域上与全区变化趋 势存在不同,主要表现在黄土塬和黄土梁状丘陵区。(4)多数极端气温指数的突变主要发生在 1980—1985 年和 2010—2015 年;多数极端降水指数的突变主要发生在 1985—1990 年和 2010— 2015 年。  相似文献   

7.
In arid and semi-arid areas, woody encroachment is the increase in density, cover, extent and/or biomass of woody plants. Woody encroachment is often associated with increased runoff and soil erosion. Hydrological and erosional responses of woody encroachment and of pastures established after management of encroachment in semi-arid Australia are not well understood. This study compared the hydrological and erosional responses across vegetation states comprising woody plant encroachment (>1200 stems ha−1), recently established pastures (<23 years of age), long-established pasture (50-100 years of age) and open woodland (<330 stems ha−1) in semi-arid eastern Australia. Responses were measured using rainfall simulation with intensity of 35 mm h−1 for 30 min applied on 1 -m2 plots. Runoff and sediment production did not differ significantly between vegetation states. Average runoff in woody encroachment was 9.0 mm h−1, followed by recent pasture (8.2 mm h−1), long-established pasture (5.9 mm h−1) and open woodland (4.2 mm h−1). Total sediment production in recent pasture was 11.6 g m−2, followed by woody encroachment (9.0 g m−2), long-established pasture (7.3 g m−2) and open woodland (4.3 g m−2). Runoff and sediment production were significantly lower at one pasture site (0.9 mm h−1 and 1.3 g m−2) where rotational grazing and minimum tillage had been implemented than in the adjacent paired woody encroachment site (10.3 mm h−1and 6.5 g m−2, respectively). This example of a pasture that had been managed to increase ground cover illustrated the effect of pasture management on reducing runoff and sediment production. Across all vegetation states, small scale runoff and sediment production were minimal or zero where total ground cover was 73% or higher.  相似文献   

8.
Experiments were conducted to determine the effects of temperature, light, osmotic stress, hydration-dehydration regime and stress relief on the seed germination of Periploca sepium Bunge (Chinese silk vine Asclepiadaceae), which is a native shrub in the Loess Plateau of Northwest China. Freshly harvested seeds germinated equally well in both light and darkness. Seeds germinated under all of tested temperature regimes, and much faster when temperature was maintained at 30, 35, and 30/20, 30/25, 35/25, 35/30 °C range, with more than 90% of seeds germinating within 2 days. Moderate osmotic stress did not inhibit germination at any tested temperature. At 30 °C, seed germination was not affected significantly above −0.8 MPa. The hydration-dehydration pretreatment showed none side effects on P. sepium seeds and the seeds germinated more rapidly as soon as optimal water condition was restored. These results show the advantages of P. sepium, which is a competitive and widespread shrub in dry areas, and provide useful information for vegetation restoration in these drought-prone regions.  相似文献   

9.
在陆-气相互作用中,土壤热状况(土壤温度、土壤导热率等)和土壤湿度等陆面状况对大气环流和气候变化都有着重要影响。黄土高原横跨干旱、半干旱及半湿润地区,为我国第二大高原,幅员辽阔。该复杂下垫面上的陆-气相互作用不仅直接影响到黄土高原地区的气候和环境变化,而且对东亚、乃至全球的气候和环境变化都可能产生重要影响。而对黄土高原区域的土壤热状况及土壤温度的研究是黄土高原陆-气相互作用研究的重要组成部分。分析了黄土高原典型塬区不同下垫面的土壤温度状况,分析了造成各种下垫面温度分布和变化不同的原因,得到如下结论:在近地层,随着土壤深度的增加,土壤温度振幅逐渐减小,40 cm土壤温度相对以上各层变化不明显。就季节变化而言,土壤温度在1 a中有两次稳定状态。第一次出现在4月上旬,其值约为6 ℃左右;第二次出现在11月中旬,温度值为14 ℃。相对于全年土壤温度而言,在12月到次年2月有一个低温中心,温度低于零度;7~8月间有一个暖中心。各层土壤温度在1月份是最低的,其后一路上升,4、5月份是土壤温度快速上升期,至8月上旬土壤温度达到最大值,为土壤升温期;其后温度开始下降。土壤温度梯度具有明显的日变化特征,夜间,土壤的热量是从深层传向地表的,而随着太阳高度角的加大,土壤温度梯度转为负值,深层土壤从地表获得能量,到了傍晚19时左右,温度梯度又转为正值;土壤温度梯度的变幅在有植被时要明显小于无植被时。各站的日平均土壤导热率,柴寺、塬下和中心站分别是1.43,1.24,1.17 W·m-1·k-1,土壤物理性质和土壤质地的不同是各站土壤温度分布和土壤热传导率存在差异的原因之一。  相似文献   

10.
基于黄土高原地区52个气象站点逐日平均气温、最高和最低气温数据,采用一元线性趋势分析、相关分析等方法,分析该地区极端气温趋势变化及空间差异。结果表明:① 日最高(低)气温极低值、日最高(低)气温极高值、热夜日数、暖昼(夜)日数、热持续日数、夏季日数和生物生长季日数呈增加的趋势,其余极端气温指数呈减小的趋势。② 空间分布上,表征低温事件的冰冻日数、霜冻日数、冷昼(夜)日数和冷持续日数下降最显著的区域位于黄土高原北部;表征高温事件的热夜日数、夏季日数、暖昼(夜)日数和热持续日数上升最显著的区域主要位于黄土高原西北部;生物生长季日数上升最显著的区域主要位于黄土高原中部地区。③ 相关分析表明除了极值指数和气温日较差与其余极端气温指数相关性较差外,其余各极端气温指数之间均具有较好的相关性。④ 多数极端气温指数的变化趋势与平均气温关系密切,平均气温突变前后极端气温指数存在明显差异。⑤ Hurst指数结果表明黄土高原地区极端气温变化均呈同向变化特征。  相似文献   

11.
Soil erosion is a major threat to our terrestrial ecosystems and an important global environmental problem. The Loess Plateau in China is one of the regions that suffered more severe soil erosion and undergoing climate warming and drying in the past decades. The vegetation restoration named Grain-to-Green Program has now been operating for more than 10 years. It is necessary to assess the variation of soil erosion and the response of precipita- tion and vegetation restoration to soil erosion on the Loess Plateau. In the study, the Revised Universal Soil Loss Equation (RUSLE) was applied to evaluate annual soil loss caused by water erosion. The results showed as follows. The soil erosion on the Loess Plateau between 2000 and 2010 averaged for 15.2 t hm-2 a 1 and was characterized as light for the value less than 25 t hm-2 a-1. The severe soil erosion higher than 25 t hm-2 a-~ was mainly distributed in the gully and hilly regions in the central, southwestern, and some scattered areas of earth-rocky mountainous areas on the Loess Plateau. The soil erosion on the Loess Plateau showed a deceasing trend in recent decade and reduced more at rates more than 1 t hm 2 a 1 in the areas suffering severe soil loss. Benefited from the improved vegetation cover and ecological construction, the soil erosion on the Loess Plateau was significantly declined, es- pecially in the east of Yulin, most parts of Yah'an prefectures in Shaanxi Province, and the west of Luliang and Linfen prefectures in Shanxi Province in the hilly and gully regions. The variation of vegetation cover responding to soil erosion in these areas showed the relatively higher contribution than the precipitation. However, most areas in Qingyang and Dingxi pre- fectures in Gansu Province and Guyuan in Ningxia Hui Autonomous Region were predomi- nantly related to precipitation.  相似文献   

12.
Laboratory experiments were conduced to assess the synergic effect of chilling and light on photosystem II photochemistry of the halophyte, Sarcocornia fruticosa, grown at different salinity concentrations (0, 170, 340, 510 and 1030 mM). Chlorophyll fluorescence was measured after chilling (at 5 °C in darkness) and light-chilling (at 5 °C and 700 μmol m?2 s?1) treatments, and after 24 h of recovery (at 20 °C and 75 μmol m?2 s?1). At 5 °C and 700 μmol m?2 s?1, plants grown with 0 and 170 mM NaCl showed the lowest Fv/Fm values, whereas quantum efficiency of PSII (ΦPSII) was higher for plants grown at 170 and 340 mM NaCl, these results being consistent after two exposures to chilling treatments. Susceptibility to photoinhibition decreases when low temperature and high light are combined with high salinity. Therefore, populations of S. fruticosa that occur in arid environments with salinities c. 340 mM could show a higher tolerance to light-chilling.  相似文献   

13.
The analysis of chironomid taxa and environmental datasets from 46 New Zealand lakes identified temperature (February mean air temperature) and lake production (chlorophyll a (Chl a)) as the main drivers of chironomid distribution. Temperature was the strongest driver of chironomid distribution and consequently produced the most robust inference models. We present two possible temperature transfer functions from this dataset. The most robust model (weighted averaging-partial least squares (WA-PLS), n = 36) was based on a dataset with the most productive (Chl a > 10 μg l−1) lakes removed. This model produced a coefficient of determination () of 0.77, and a root mean squared error of prediction (RMSEPjack) of 1.31°C. The Chl a transfer function (partial least squares (PLS), n = 37) was far less reliable, with an of 0.49 and an RMSEPjack of 0.46 Log10μg l−1. Both of these transfer functions could be improved by a revision of the taxonomy for the New Zealand chironomid taxa, particularly the genus Chironomus. The Chironomus morphotype was common in high altitude, cool, oligotrophic lakes and lowland, warm, eutrophic lakes. This could reflect the widespread distribution of one eurythermic species, or the collective distribution of a number of different Chironomus species with more limited tolerances. The Chl a transfer function could also be improved by inputting mean Chl a values into the inference model rather than the spot measurements that were available for this study.  相似文献   

14.
Soil texture greatly influences soil water movement, thus may affect the water balance and vegetation growth in the desert–Loess Plateau transition zone. This study is to determine if the water balance differs in homogeneous and layered soils with Caragana korshinkii stands in semiarid region. Soil water measurements up to 500-cm depth were taken in 2006 and 2007 on homogeneous sandy soil, homogeneous silt loam soil, and layered soil with sand overlying silt loam. HYDRUS-1D was used to simulate the soil water balance. The results indicated the annual water balance components were greatly affected by soil layering. The ratio of average actual evapotranspiration (ETa) to precipitation (P) during the two years in the layered soil was slightly lower than that in homogeneous soils. The ratios of annual actual transpiration (Tr) to evapotranspiration were 50.9%, 41.2% and 30.6% in layered soil, homogeneous sandy soil, and homogeneous silt loam soil, respectively. C. korshinkii grown in layered soil had deeper soil water recharge and higher Tr/ETa ratio, thus had more available water for transpiration than that in homogeneous soils. This study suggested the layered soil with sand overlying silt loam is more favorable to C. korshinkii growth in terms of water use than homogeneous soils in the desert–Loess Plateau transition zone.  相似文献   

15.
《Polar Science》2014,8(3):283-297
Long-term changes in phytoplankton biomass and community composition are important in the ecosystem and biogeochemical cycle in the Southern Ocean. We aim to ultimately evaluate changes in phytoplankton assemblages in this region on a decadal scale. However, yearly continuous data are lacking, and long-term datasets often include seasonal variability. We evaluated the seasonal changes in phytoplankton abundance/composition across latitudes in the Indian Ocean sector of the Southern Ocean via multi-ship observations along the 110°E meridian from 2011 to 2013. The chlorophyll a concentration was 0.3–0.5 mg m−3 in the Subantarctic Zone (40–50°S) and 0.4–0.6 mg m−3 in the Polar Frontal Zone (50–60°S); pico-sized phytoplankton (<10 μm), mainly haptophytes, were dominant in both zones. In the Antarctic Divergence area (60–65°S), the chlorophyll a concentration was 0.6–0.8 mg m−3, and nano-sized phytoplankton (>10 μm), mainly diatoms, dominated. Chlorophyll a concentrations and phytoplankton community compositions were the same within a latitudinal zone at different times, except during a small but distinct spring bloom that occurred north of 45°S and south of 60°S. This small seasonal variation means that this part of the Southern Ocean is an ideal site to monitor the long-term effects of climate change.  相似文献   

16.
MODIS-based estimation of air temperature of the Tibetan Plateau   总被引:1,自引:0,他引:1  
The immense and towering Tibetan Plateau acts as a heating source and, thus, deeply shapes the climate of the Eurasian continent and even the whole world. However, due to the scarcity of meteorological observation stations and very limited climatic data, little is quantitatively known about the heating effect and temperature pattern of the Tibetan Plateau. This paper collected time series of MODIS land surface temperature (LST) data, together with meteorological data of 137 stations and ASTER GDEM data for 2001-2007, to estimate and map the spatial distribution of monthly mean air temperatures in the Tibetan Plateau and its neighboring areas. Time series analysis and both ordinary linear regression (OLS) and geographical weighted regression (GWR) of monthly mean air temperature (Ta) with monthly mean land surface temperature (Ts) were conducted. Regression analysis shows that recorded Ta is rather closely related to Ts, and that the GWR estimation with MODIS Ts and altitude as independent variables, has a much better result with adjusted R 2 〉 0.91 and RMSE = 1.13-1.53℃ than OLS estimation. For more than 80% of the stations, the Ta thus retrieved from Ts has residuals lower than 2℃. Analysis of the spatio-temporal pattern of retrieved Ta data showed that the mean temperature in July (the warmest month) at altitudes of 4500 m can reach 10℃. This may help explain why the highest timberline in the Northern Hemisphere is on the Tibetan Plateau.  相似文献   

17.
本文根据官厅蒸发站20米2蒸发池的观测资料与气象要素特征值之间关系,建立道尔顿类型的水面蒸发计算模式,计算了京津唐地区60个气象站的年、月蒸发值,并绘制年、季(典型月分)的蒸发分布图。  相似文献   

18.
Aboveground biomass in Tibetan grasslands   总被引:2,自引:0,他引:2  
This study investigated spatial patterns and environmental controls of aboveground biomass (AGB) in alpine grasslands on the Tibetan Plateau by integrating AGB data collected from 135 sites during 2001–2004 and concurrent enhanced vegetation index derived from MODIS data sets. The AGB was estimated at 68.8 g m?2, with a larger value (90.8 g m?2) in alpine meadow than in alpine steppe (50.1 g m?2). It increased with growing season precipitation (GSP), but did not show a significant overall trend with growing season temperature (GST) although it was negatively correlated with GST at dry environments (<200 mm of GSP). Soil texture also influenced AGB, but the effect was coupled with precipitation; increased silt content caused a decrease of AGB at small GSP, and generated a meaningful increase under humid conditions. The correlation between AGB and sand content indicated an opposite trend with that between AGB and silt content. An analysis of general linear model depicted that precipitation, temperature, and soil texture together explained 54.2% of total variance in AGB. Our results suggest that moisture availability is a critical control of plant production, but temperature and soil texture also affect vegetation growth in high-altitude regions.  相似文献   

19.
Sediment dynamics have an important influence on the morphological evolution of tidal wetlands, which consist of mudflats and salt marshes. To understand the nature of sediment behavior under combined current-wave action at an exposed tidal wetland, we measured the waves, currents, water depths, bed-level changes, and sediment properties at a mudflat-salt marsh transition on the Yangtze Delta, China, during five consecutive tides under onshore winds of ~ 8 m/s, and calculated the bed shear stresses due to currents (τc), waves (τw), combined current-wave action (τcw), and the critical shear stress for erosion of the bottom sediment (τce). The bed shear stresses under combined current-wave action (τcw) were approximately five times higher on the mudflat (up to 1.11 N/m2; average 0.27 N/m2) than on the salt marsh (up to 0.14 N/m2; average, 0.06 N/m2). On the mudflat, τcw was larger than the critical erosion shear stress (τce = 0.103 N/m2) for 70% of the period of submergence, whereas τcw was always lower than τce at the salt marsh site (τce = 0.116 N/m2). This result indicates that the sediment dynamics on the mudflat were dominated by erosion, whereas at the salt marsh they were governed by deposition, which is in agreement with the observed bed-level change during the study period (− 3.3 mm/tide on the mudflat and 3.0 mm/tide on the salt marsh). A comparison of τcw values calculated using the [van Rijn, 1993] and [Soulsby, 1995] models for bed shear stresses under combined current-wave action indicates that both models are applicable to the present case and effectively predict the bottom shear stress under combined current-wave action. Overall, we conclude that τcw in combination with τce is useful in assessing the hydrodynamic mechanisms that underlie the morphological evolution of exposed tidal wetlands.  相似文献   

20.
Evidence supporting water limitation in arid-semiarid ecosystems includes strong correlations between aboveground net primary production (ANPP) and annual precipitation as well as results from experimental water additions. Similarly, there is evidence of N limitation on ANPP in low precipitation ecosystems, but is this a widespread phenomenon? Are all arid-semiarid ecosystems equally limited by nitrogen? Is the response of N fertilization modulated by water availability?We conducted a meta-analysis of ANPP responses to N fertilization across arid to subhumid ecosystems to quantify N limitation, using the effect-size index R which is the ratio of ANPP in fertilized to control plots. Nitrogen addition increased ANPP across all studies by an average of 50%, and nitrogen effects increased significantly (P = 0.03) along the 50-650 mm yr−1 precipitation gradient. The response ratio decreased with mean annual temperature in arid and semiarid ecosystems but was insensitive in subhumid systems. Sown pastures showed significant (P = 0.007) higher responses than natural ecosystems. Neither plant-life form nor chemical form of the applied fertilizer showed significant effects on the primary production response to N addition. Our results showed that nitrogen limitation is a widespread phenomenon in low-precipitation ecosystems and that its importance increases with annual precipitation from arid to subhumid regions. Both water and N availability limit primary production, probably at different times during the year; with frequency of N limitation increasing and frequency of water limitation decreasing as annual precipitation increases. Expected increase N deposition, which could be significant even in arid ecosystems, would increase aboveground net primary production in water-limited ecosystems that account for 40% of the terrestrial surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号