首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高频地波雷达海面有效波高探测实验研究   总被引:4,自引:2,他引:2  
利用安装于福建龙海的OSMAR071高频地波雷达和位于雷达波束范围内金门料罗湾口的波浪浮标在2008年11月1日至2009年4月30日半年期间的观测结果,对Barrick波高模型进行改进和模型系数拟合、标定,讨论了改进模型系数的稳定性。结果表明,该模型能适应噪声和干扰等因素对宽波束雷达有效波高探测结果的影响。雷达观测反演回报的有效波高与浮标观测结果对比,二者时间序列的均方根误差为0.39m,相关系数为0.67。  相似文献   

2.
Directional wave information from the SeaSonde   总被引:1,自引:0,他引:1  
This paper describes methods used for the derivation of wave information from SeaSonde data, and gives examples of their application to measured data. The SeaSonde is a compact high-frequency (HF) radar system operated from the coast or offshore platform to produce current velocity maps and local estimates of the directional wave spectrum. Two methods are described to obtain wave information from the second-order radar spectrum: integral inversion and fitting with a model of the ocean wave spectrum. We describe results from both standard- and long-range systems and include comparisons with simultaneous measurements from an S4 current meter. Due to general properties of the radar spectrum common to all HF radar systems, existing interpretation methods fail when the waveheight exceeds a limiting value defined by the radar frequency. As a result, standard- and long-range SeaSondes provide wave information for different wave height conditions because of their differing radar frequencies. Standard-range SeaSondes are useful for low and moderate waveheights, whereas long-range systems with lower transmit frequencies provide information when the waves are high. We propose a low-cost low-power system, to be used exclusively for local wave measurements, which would be capable of switching transmit frequency when the waveheight exceeds the critical limit, thereby allowing observation of waves throughout the waveheight range.  相似文献   

3.
High-frequency (HF) radar wave processing is often based on the inversion of the Barrick-Weber equations, introduced in 1977. This theory reaches its limitations if the length of the Bragg-scattering wave raises to the order of the significant waveheight, because some assumptions are no longer met. In this case, the only solution is moving to lower radar frequencies, which is not possible or desirable in all cases. This paper describes work on an empirical solution which intends to overcome this limitation. However, during high sea state, the first-order Bragg peaks sometimes could not be clearly identified which avoids the access to the second-order sidebands. These cases cause problems to the algorithm which have not been solved yet and currently limit the maximum significant waveheight to about the same values as reported for the integral inversion method. The regression parameters of the empirical solution calibrated from the European Radar Ocean Sensing (EuroROSE) data set are constant values for the complete experiment and when applied to the HF radar data they reconstruct the measurements by a colocated wave buoy quite well. When including a radar-frequency-dependent scaling factor to the regression parameters, the new algorithm can also be used at different radar frequencies. The second-order frequency bands used for the empirical solution are sometimes disturbed by radio interference and ship echoes. Investigations are presented to identify and solve these situations  相似文献   

4.
Operational Wave, Current, and Wind Measurements With the Pisces HF Radar   总被引:1,自引:0,他引:1  
This paper presents results of a trial of a Pisces HF radar system aimed at assessing its use as a component of a wave-monitoring network being installed around the coasts of England and Wales. The radar system has been operating since December 2003 and the trial continued to June 2005. The data have been processed in near-real time and displayed on a website. Radar measurements of the directional spectrum and derived parameters are compared with those measured with a directional waverider and with products from the Met Office, United Kingdom, operational wave model. Radar measurements of currents and winds are also compared with Met Office model products and, in the case of winds, with the QuikSCAT scatterometer. Statistics on data availability and accuracy are presented. The results demonstrate that useful availability and accuracy in wave and wind parameters are obtained above a waveheight threshold of 2 m and at ranges up to 120 km at the radar operating frequencies (7-10 MHz) used. Waveheight measurements above about 1 m can be made with reasonable accuracy (e.g., mean difference of 2.5% during January-February 2004). Period and direction parameters in low seas are often contaminated by noise in the radar signal. The comparisons provide some evidence of wave model limitations in offshore wind and swell conditions  相似文献   

5.
In this paper, results are presented on the comparison of X-band radar backscattering coefficient (RBC) from an oilcovered sea surface that features the Elfouhaily and Durden-Vesecky waveheight spectra. The Durden-Vesecky spectrum applies to a fully-developed sea, while the Elfouhaily spectrum accounts for the fetch of arbitrary length. Using these two waveheight spectra, a one-dimensional random rough surface is simulated by the Monte Carlo method, and the method of moments (MoM) is applied to yield the RBC. Comparison of the results with TerraSAR-X synthetic aperture radar (SAR) data acquired over the coastal waters polluted by the Hebei Spirit oil tanker shows that the Elfouhaily spectrum yields better agreement than the Durden-Vesecky spectrum for the fully-developed sea, and that the fetch-dependent Elfouhaily spectrum improves the agreement with SAR data in comparison with the fetch-independent spectrum for the fully developed sea. A possible application to estimate the amount of spilled oil is also suggested.  相似文献   

6.
X- andL-band simultaneously obtained synthetic aperture radar (SAR) data of ocean gravity waves collected during the Marineland Experiment were analyzed using wave contrast measurements. The Marineland data collected in 1975 represents a unique historical data set for testing still-evolving theoretical models of the SAR ocean wave imaging process. The wave contrast measurements referred to are direct measurements of the backscatter variation between wave crests and troughs. These modulation depth measurements, which are indicators of wave detectability, were made as a function of: a) the settings used in processing the SAR signal histories to partially account for wave motion; b) wave propagation direction with respect to radar look direction for bothX- andL-band SAR data; c) SAR resolution; and d) number of coherent looks. The contrast measurements indicated that ocean waves imaged by a SAR are most discernible whenX-band frequency is used (as compared toL-band), and when the ocean waves are traveling in the range direction. Ocean waves can be detected by bothX- andL-band SAR, provided that the radar surface resolution is small compared to the ocean wavelength (at least 1/4 of the ocean wavelength is indicated by this work). Finally, wave detection withL-band SAR can be improved by adjusting the focal distance and rotation of the cylindrical telescope in the SAR optical processor to account for wave motion. The latter adjustments are found to be proportional to a value that is near the wave phase velocity.  相似文献   

7.
Radar systems often experience difficulties when tracking low-altitude targets over the ocean because of multipath effects. Whenever the radar cannot resolve the target from its image, it will track a false target position which can move far above or below the actual position. In this paper, mathematical models are utilized to quantitatively determine the degradation in tracking ability of a monopulse radar due to multipath. The model incorporates provisions for the antenna sum and difference patterns, including sidelobes, and for the antenna polarization. Divergence factors are utilized to account for the curvature of the earth's lossy surface. More accurate calculations of the phase length of the direct and reflected rays using the spherical earth model are included. Smooth and rough surface models are used to model the prevailing sea state. The smooth surface model determines both stable and unstable equilibrium directions toward which the target position is indicated. The rough surface model defines a band of maximum error in the indicated position, as a function of the surface waveheight, and it includes both the rough specular and the rough diffuse reflection term.  相似文献   

8.
Waverider buoys were installed in approximately 16 m of water offshore of the Size-well-Dunwich Bank off the East Coast of England and in approximately 11 m of water inshore of it. Minimum water depth over the bank was approximately 4.5 m at mid-tide level. Simultaneous records were obtained for substantial periods between November 1978 and May 1979. These show negligible attenuation for small waves, but as the offshore waveheight increased, the inshore waveheight tended to saturate at an Hs of about 3 m. The form of the relationship between inshore and offshore waveheight is predicted theoretically assuming that high individual waves which cross the bank are limited by breaking. The theoretical curve agrees well with the measured data. The measured saturation level corresponds to a wave breaking when its height is approximately 0.5 the water depth, which is considerably lower than the usual engineering criterion. However, some published tank results also appear to show the same low value.  相似文献   

9.
About 10 years ago, the advanced application flight experiment radiometer scatterometer (AAFE RADSCAT) made its first successful measurements of ocean radar scattering cross section from a NASA C-130 aircraft. This instrument was developed as a research tool to evaluate the use of microwave frequency remote sensors (particularly radars) to provide wind-speed information at the ocean's surface. The AAFE RADSCAT flight missions and analyses helped establish the feasibility of the satellite scatterometer for measuring both wind speed and direction. Probably the most important function of the AAFE RADSCAT was to provide a data base of ocean normalized radar cross-section (NRCS) measurements as a function of the surface wind vector at 13.9 GHz. NRCS measurements over a wide parametric range of incidence angles, azimuth angles, and winds were obtained in a series of RADSCAT aircraft missions from 1973 to 1977. Presented herein are analyses of data from the 26 RADSCAT flights during which the quality of the sensor and the surface wind measurements were felt to be understood. Subsets of this data base were used to model the relationship between theKu-band radar signature and the ocean-surface wind vector. The models developed partly from portions of this data base, supplemented with data from the Seasat (JASIN Report), were used for inversion of the Seasat-A Satellite Scatterometer (SASS) radar measurements to vector winds. This paper summarizes results from a comprehensive analysis of the RADSCAT/ocean wind signature deduced from this complete data set.  相似文献   

10.
An analysis of the radar backscattering from the ocean surface covered by oil spill is presented using a microwave scattering model and Monte-Carlo simulation. In the analysis, a one-dimensional rough sea surface is numerically generated with an ocean waveheight spectrum for a given wind velocity. A two-layered medium is then generated by adding a thin oil layer on the simulated rough sea surface. The electric fields backscattered from the sea surface with two-layered medium are computed with the method of moments (MoM), and the backscattering coefficients are statistically obtained with N independent samples for each oil-spilled surface using the Monte-Carlo technique for various conditions of surface roughness, oil-layer thickness, frequency, polarization and incidence angle. The numerical simulation results are compared with theoretical models for clean sea surfaces and SAR images of an oil-spilled sea surface caused by the Hebei (Hebei province, China) Spirit oil tanker in 2007. Further, conditions for better oil spill extraction are sought by the numerical simulation on the effects of wind speed and oil-layer thickness at different incidence angles on the backscattering coefficients.  相似文献   

11.
Long-range source localization is shown to be affected by a mesoscale eddy whose realization is solely a cyclonic current (no thermal manifestation). The sensitivity of a matched-field type processor (known ocean) to an eddy is demonstrated, as well as its sensitivity to a mismatch between the parameters of the eddy and the processor assumptions. Optimum uncertain field processing techniques are used to overcome these sensitivities by incorporating uncertainties about the environment into the processor. These processors operate on data produced by a special 3-D ray tracer using actual sound speed data and two different models for eddy current structure  相似文献   

12.
HF radar data quality requirements for wave measurement   总被引:1,自引:0,他引:1  
HF radar wave measurements are presented focussing on theoretical limitations, and thus radar operating parameters, and quality control requirements to ensure robust measurements across a range of sea states. Data from three radar deployments, off the west coast of Norway, Celtic Sea and Liverpool Bay using two different radar systems, WERA and Pisces, and different radio frequency ranges, are used to demonstrate the wave measurement capability of HF radar and to illustrate the points made. Aspects of the measurements that require further improvements are identified. These include modifications to the underlying theory particularly in high sea states, identification and removal of ships and interference from the radar signals before wave processing and/or intelligent partitioning to remove these from the wave spectrum. The need to match the radio frequency to the expected wave peak frequency and waveheight range, with lower radio frequencies performing better at higher waveheights and lower peak frequencies and vice versa, is demonstrated. For operations across a wide range of oceanographic conditions a radar able to operate at more than one frequency is recommended for robust wave measurement. Careful quality control is needed to ensure accurate wave measurements.  相似文献   

13.
We discuss the advantages provided by the combined use of a polarization microwave radiometer and a short-pulse radar altimeter for sea roughness monitoring. A brief analysis of the potential of each device taken separately is carried out, which shows the advisability of their combination. The method and the results of the experiment performed with an airborneK-band radiometer and an altimeter are described. It is shown that, in regions of fully developed roughness, a correlation exists between the polarization characteristics of the microwave radiation by the sea surface and the rms sea waveheight as measured by the altimeter. Correlation is not found in regions where the roughness is not developed. Therefore, the combination of the two instruments makes it possible to sense the regions of fully developed sea roughness.  相似文献   

14.
根据海面微波散射的多尺度模型以及波流相互作用理论,对一维弱流场调制下的海面微波散射截面进行了数值模拟。结果表明,利用数值方法直接求解波作用量方程获得的海浪调制谱并结合多尺度模型可以较好地模拟弱流场引起的雷达散射截面的变化。内波等海洋现象调制了海浪谱,使得雷达散射截面反映出这些海洋特征,整个调制过程的模拟对于分析这些海洋现象并更好地利用其雷达数据具有重要意义。  相似文献   

15.
The relationships among an ocean wave spectrum,a fully polarimetric coherence matrix,and radar parameters are deduced with an electromagnetic wave theory.Furthermore,the relationship between the polarimetric entropy and ocean wave spectrum is established based on the definition of entropy and a twoscale scattering model of the ocean surface.It is the first time that the polarimetric entropy of the ocean surface is presented in theory.Meanwhile,the relationships among the fully polarimetric entropy and the parameters related to radar and ocean are discussed.The study is the basis of further monitoring targets on the ocean surface and deriving oceanic information with the entropy from the ocean surface.The contrast enhancement between human-made targets and the ocean surface with the entropy is presented with quad-pol airborne synthetic aperture radar(AIRSAR) data.  相似文献   

16.
通过简要回顾半个世纪以来海洋雷达技术发展历程的特点和规律,结合海洋雷达技术发展现状,介绍海洋雷达涉及的关键技术并进行应用场景分析。总结我国海洋雷达技术近30 a来的发展及其与国际水平的主要差距,提出"十三五"期间我国海洋雷达技术优先发展项目的建议,即超视距雷达广域海洋监测技术、浮动/机动平台高分辨率海洋雷达技术、新体制微波海洋雷达技术以及海洋雷达数据管理与应用技术等。  相似文献   

17.
A model-based approach to solve a deep water ocean acoustic signal processing problem based on a state-space representation of the normal-mode propagation model is developed. The design of a model-based processor (MBP) for signal enhancement employing an array consisting of a large number of sensors for a deep ocean surveillance operation is discussed. The processor provides enhanced estimates of the measured pressure-field, modes, and residual (innovations) sequence indicating the performance or adequacy of the propagation model relative to the data. It is shown that due to the structure of the normal-mode model the state-space propagator is not only feasible for this large scale problem, but in fact, can be implemented by a set of decoupled parallel second-order processors, implying a real-time capability. In the paper we discuss the design and application of the processor to a realistic set of simulated pressure-field data developed from a set of experiments and sound speed parameters  相似文献   

18.
All ocean wave components contribute to the second-order scattering of a high-frequency (HF) radio wave by the sea surface. It is therefore theoretically possible to estimate the ocean wave spectrum from the radar backscatter. To extract the wave information, it is necessary to solve the nonlinear integral equation that describes the relationship between the backscatter spectrum and the ocean wave directional spectrum. Different inversion techniques have been developed for this problem by different researchers, but there is at present no accepted “best” method. This paper gives an assessment of the current status of two methods for deriving sea-state information from HF radar observations of the sea surface. The methods are applied to simulated data and to an experimental data set with sea-truth being provided by a directional wave buoy  相似文献   

19.
由武汉大学研发的海洋状态监测及分析雷达(OSMAR),被布置于东中国海沿岸的6个雷达站点,用于观测海表面速度(海流,波浪,风)。本研究以雷达观测的流场为例,阐述了一个业务化海表面流雷达观测及数据服务平台,给出了一个从数据获取、传输、处理、可视化以及服务的业务化流程。详细描述了业务化平台中包含三个系统(雷达观测系统、数据服务系统、可视化服务系统),以及各系统间的数据流。各站点获取的流速将在雷达观测系统中数据接收和预处理中心进行集成,然后传输到数据服务系统进行质量控制。用户可以在数据服务系统的主界面上对数据进行浏览,也能够获取这些数据。可视化服务系统能够在球体平台上对数据产品进行直观展示。通过业务化平台可以对东中国海的海流进行实时监测,也能够对海流的日变化以及季节性变化进行研究。  相似文献   

20.
In this paper, we describe a high-frequency (HF) radar capable of multifrequency operation over the HF band for dual-use application to ship classification and mapping ocean current shear and vector winds. The radar is based on a digital transceiver peripheral component interconnect (PCI) card family that supports antenna arrays of four to 32 elements with a single computer, with larger arrays possible using multiple computers and receiver cards. The radar makes use of broadband loop antennas for receive elements, and a number of different possibilities for transmit antennas, depending on the operating bandwidth desired. An option exists in the choice of monostatic or multistatic operation, the latter providing the ability to use several transmit sites, with all radar echo signal reception and processing conducted at a single master receiver site. As applications for such a multifrequency radar capability, we show measurement and modeling examples of multiple frequency HF radar cross section (RCS) of ships as an approach to ship target classification. Results of using 32 radar frequencies to measure the fine structure in ocean current vertical shear are also shown, providing evidence of one edge of a 1-3-m deep uniform flow masked at the surface by wind-driven current shear in a different direction. Other applications of current-shear measurements, such as vector wind mapping and volumetric current estimation in coastal waters, are also discussed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号