首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
结合纹理的SVM遥感影像分类研究   总被引:7,自引:0,他引:7  
陈波  张友静  陈亮 《测绘工程》2007,16(5):23-27
针对传统统计模式识别分类方法分类精度不高,分类时未加入像元灰度的空间分布和结构特征以及分类时样本不足等缺陷,采用一种结合纹理的支持向量机(SVM)遥感图像分类方法。该方法在对Landsat7 ETM遥感影像进行纹理特征提取的基础上,构建了结合纹理的SVM分类模型。以河南省汝阳县为试验区,利用此模型对该区域的土地利用类型进行分类研究,并将分类结果与最大似然法和单源数据(光谱)SVM分类结果进行定性和定量比较分析。研究结果表明:该方法能够有效地解决单数据源分类效果破碎、分类精度不高等问题;对高维输入向量具有较高的推广能力;总精度达到90%,比单源信息的SVM分类法提高了6%,而与最大似然法相比,总精度提高了近9%,取得了良好的效果。  相似文献   

2.
人工蜂群算法优化的SVM遥感影像分类   总被引:2,自引:0,他引:2  
李楠  朱秀芳  潘耀忠  詹培 《遥感学报》2018,22(4):559-569
SVM分类器的参数设定对分类精度有着显著的影响,针对现有人工智能算法优化参数易陷入局部最优的现状,提出了一种基于人工蜂群算法改进SVM参数的遥感分类方法(ABC-SVM)。该方法模仿蜜蜂采蜜的行为,以训练样本的交叉验证精度代表蜜源的丰富程度,通过蜂群的分工协作搜索出最优蜜源(即SVM分类器最优参数),最终利用参数优化后的SVM分类器实现遥感影像的分类。本文先后比较了3种人工智能算法(包括人工蜂群算法优化的SVM(ABC-SVM)、遗传算法GA(Genetic Algorithm)优化的SVM(GA-SVM)、粒子群算法PSO(Practical Swarm Optimization)优化的SVM(PSO-SVM))在UCI标准数据集上的分类精度和效率,以及3种人工智能算法优化的SVM算法与未经优化参数的SVM算法在遥感影像上分类的差异。结果显示:(1)在利用UCI数据集测试3种人工智能算法优化的SVM算法的结果中,ABC-SVM显示出更高的分类精度、更高的适应度和更快的收敛速度;(2)在利用遥感影像验证4种分类算法精度的结果中,人工智能算法优化后的SVM比未经参数优化的SVM算法的分类精度更高;其中,ABC-SVM分类精度最高,分别比遗传算法、粒子群算法的结果高1.67%、1.50%。  相似文献   

3.
粒子群优化算法用于高光谱遥感影像分类的自动波段选择   总被引:1,自引:0,他引:1  
丁胜  袁修孝  陈黎 《测绘学报》2010,39(3):0-302
针对传统SVM分类方法的缺点,采用粒子群优化(particle swarm optimization,PSO)算法自动选择合适的渡段影像并对SVM核函数参数进行优化,提出一种新的PSO-BSSVM分类模型.经过对高光谱遥感影像的分类试验,并与K_最近邻(K-NN)、径向基神经网络(RBF-NN)和标准的支持向量机(SVM)三种分类方法进行对比实验,证明PSO-BSSVM方法能优选高光谱遥感影像的波段和优化SVM参数,明显提高影像的分类精度.  相似文献   

4.
基于SVM和PWC的遥感影像混合像元分解   总被引:3,自引:0,他引:3  
支持向量机与两两配对方法结合可分解遥感影像混合像元.首先支持向量机的输出值转化为两两配对的后验概率,再由两两配对的概率值求得多类后验概率,最终像元所属类别的后验概率作为地物的组分信息.利用多波段遥感数据验证了此方法的可行性,并将结果与线性分解模型进行比较.结果表明,SVM与PWC结合进行混合像元分解在准确性方面优于一般线性模型的精度,并且此方法可用于图像分类中.  相似文献   

5.
张磊  邵振峰 《测绘科学》2014,39(11):114-117,66
文章提出了一种结合改进的最佳指数法(OIF)和支持向量机(SVM)进行高光谱遥感影像分类新方法.利用本文提出的稳定系数进行波段初选择,根据相关系数选择波段组合生成新影像,并对新影像进行OIF计算,得到OIF值最大的波段组合为最佳波段组合;构建SVM分类器,对最佳波段组合分类;最后将分类结果与其他监督分类方法比较,并在相同核函数下与PCA和SVM结合的方法进行精度比较分析.实验结果表明,本文方法能够有效提取最佳波段组合,在SVM算法下获得较高分类精度.  相似文献   

6.
王小美  逄云峰  杜培军  谭琨  李光丽 《测绘科学》2011,36(2):139-141,177
为了验证噪声对支持向量机分类器性能的影响,对"SVM可以有效用于含噪声和不确定性数据"这一观点进行定量分析评价,采用国产OMISII传感器获得的高光谱遥感数据进行了试验,为了更好地比较SVM分类器的抗噪性,先对原始数据进行支持向量机分类,然后在高光谱遥感影像中人为添加不同比例的椒盐噪声和条带噪声,然后进行支持向量机分类...  相似文献   

7.
高光谱遥感影像分类研究进展   总被引:4,自引:0,他引:4  
随着模式识别、机器学习、遥感技术等相关学科领域的发展,高光谱遥感影像分类研究取得快速进展。本文系统总结和评述了当前高光谱遥感影像分类的相关研究进展,在总结分类策略的基础上,重点从以核方法为代表的新型分类器设计、特征挖掘、空间-光谱分类、基于主动学习和半监督学习的分类、基于稀疏表达的分类、多分类器集成六个方面对高光谱影像像素级分类最新研究进行了综述。针对今后的研究方向,指出高光谱遥感影像分类一方面要适应大数据、智能化高光谱对地观测的发展前沿,继续引入机器学习领域的新理论、新方法,综合利用多源遥感数据、多维特征空间互补的优势,提高分类精度、分类器泛化能力和自动化程度;另一方面要关注高光谱遥感应用的需求,突出高光谱遥感记录精细光谱特征的优势,针对应用需求发展有效的分类方法。  相似文献   

8.
针对无法直接获取训练样本的遥感影像分类问题,从满足条件的其他影像中选择替代训练样本是最直接的方法,但由于地物类型在不同影像中的辐射环境不同,导致替代训练样本对待分类影像的代表性较差,无法保证分类精度.以直推式支持向量机(transductive support vector machine,TSVM)分类为例,发展了一种基于半监督学习的遥感影像训练样本时空拓展方法.该方法采用非监督方法从待分类影像中选择大量未标记样本,挖掘各类地物在特征空间中的结构信息;以替代训练样本所拟合的分类面为初始面,通过自适应渐进式的优化,实现对待分类影像的高精度分类.该方法要求训练样本的来源影像与待分类影像具有相似的地物分布和相近的时相.以SPOT5和QuickBird影像分类为例,分别通过基于像元的和基于分割对象的分类实验证实,该文提出的方法可有效地实现训练样本的时空拓展应用.  相似文献   

9.
对比分析了线性核函数和非线性核函数支持向量机(SVM)算法在样本类别不足情况下城市高光谱影像分类中的应用。选用甘肃张掖地区高光谱影像作为试验区,依据高分影像和地面调研信息获取参考样本数据,利用非线性核函数和线性核函数的支持向量机进行影像分类,获取每一类别的分类后验概率图,并对分类后验概率图采用0.2、0.4、0.6、0.8、0.9的后验概率截断,分析了不同截断概率下的地物分类精度变化情况。结果表明,线性核函数和非线性核函数SVM方法的结论相似,随着截断概率的增加,分类结果中用户精度提高或保持稳定,制图精度下降或保持稳定,总体分类精度先提高后降低,但波动幅度不大。因此,SVM的后验概率可以用于指导类别不足时城市高光谱影像的分类。通过分析各类地物的混淆矩阵可知,非线性核函数的SVM方法比线性核函数SVM方法更敏感,在低后验概率下就可以准确提取出未分类信息,而线性核函数SVM在高后验概率下才能提取出未分类信息,而且还混入了许多训练过的类别信息。非线性核函数SVM方法的分类精度更稳定,利用后验概率提取未分类信息的可信度更高。  相似文献   

10.
针对高光谱影像数据具有波段众多、数据量较大的特点,本文提出了一种基于波段子集的独立分量分析(ICA)特征提取的高光谱遥感影像分类的新方法。以北京昌平小汤山地区的高光谱影像为例,根据高光谱遥感影像的相邻波段的相关性进行子空间划分,在各个波段子集上采用ICA算法进行特征提取,将各个子空间提取的特征合并组成特征向量,采用支持向量机(SVM)分类器进行分类。结果表明:该方法分类精度最佳(分类精度89.04%,Kappa系数0.8605,明显优于其它特征提取方法的SVM分类,有效地提高了高光谱数据的分类精度。  相似文献   

11.
刘冰  吴超  林怡 《测绘工程》2016,25(7):13-17
针对湿地空间信息的复杂性和SVM的分类性能,设计一种基于混合核函数的特征加权SVM分类模型,综合利用多种特征信息,避免被弱相关特征所支配,从而提供更佳的映射性能和泛化能力。实验结果表明,该分类模型兼具良好的外推和内推能力,能够有效地融合不同信息源特征,得到更完整和准确的分类结果,在总体精度、Kappa系数等多项指标上都表现出更高的水平。  相似文献   

12.
谭琨  杜培军  王小美 《测绘科学》2011,36(1):55-57,31
本文为验证SVM对高维特征的适应性和可靠性,针对不同特征提取方法与特征组合,以国产OMISⅡ传感器获得的北京昌平地区高光谱遥感据为例,对SVM分类器中特征维数对分类准确率的影响进行了试验,通过对主成分分析、最小噪声分离算法、相关系数分组后特征提取、导数光谱等的分析,表明SVM分类器的分类精度随着特征维数波动,其中主成分分析降维后提取的特征具有用于分类能够获得最高的准确率。通过与最大似然法和光谱角制图分类算法的比较,说明在同样的特征输入情况下SVM分类算法分类的准确率高于最大似然法和光谱角制图分类器。  相似文献   

13.
优化子空间SVM集成的高光谱图像分类   总被引:2,自引:0,他引:2  
随机子空间集成是很有前景的高光谱图像分类技术,子空间的多样性和单个子空间的性能与集成后的分类精度密切相关。传统方法在增强单个子空间性能的同时,往往会获得大量最优但相似的子空间,因而减小它们之间的多样性,限制集成系统的分类精度。为此,提出优化子空间SVM集成的高光谱图像分类方法。该方法采用支持向量机(SVM)作为基分类器,并通过SVM之间的模式差别对随机子空间进行k-means聚类,最后选择每类中J-M距离最大的子空间进行集成,从而实现高光谱图像分类。实验结果显示,优化子空间SVM集成的高光谱图像分类方法能够有效解决小样本情况下的Hughes效应问题;总体精度达到75%–80%,Kappa系数达到0.61–0.74;比随机子空间集成方法和随机森林方法分类精度更高、更稳定,适合高光谱图像分类。  相似文献   

14.
基于SVM的多源遥感影像分类研究   总被引:4,自引:0,他引:4  
本文通过分析单源遥感影像分类的现状和困难,以SAR和SPOT-5影像为实验数据,提出了基于支持向量机(Support Vector Machine,SVM)理论的多源遥感影像分类方法。研究结果表明,本文的方法能够有效地解决单源影像信息分类效果破碎的问题,正确识别地物,对高维输入向量具有高的推广能力,正确率达到94.97%,比多源影像的最大似然分类(Maximum Likelihood Classification,MLC)方法正确率更高。  相似文献   

15.
针对高光谱影像分类问题,提出了一种显著性特征提取方法。首先,利用超像素分割算法将高光谱影像3个相邻波段分割为若干个小区域。然后,基于分割得到的小区域计算反映不同区域的显著性特征。最后,沿着光谱方向采用大小为3、步长为1的滑窗法获得所有波段的显著性特征。进一步将提取的显著性特征与光谱特征进行结合,并将结合后的特征输入到支持向量机中进行分类。利用Pavia大学、Indian Pines和Salinas 3组高光谱影像数据进行分类试验。试验结果表明,与传统的空间特征提取方法和基于卷积神经网络的高光谱影像分类方法相比,提取的显著性特征能够获得更高的高光谱影像分类精度,且结合光谱特征能够进一步提高分类精度。  相似文献   

16.
改进支持向量机的高分遥感影像道路提取   总被引:2,自引:0,他引:2  
朱恩泽  宋伟东  戴激光 《测绘科学》2016,41(12):224-228
针对支持向量机受分类数的限制在高分辨率遥感影像中无法直接获取高精度道路网信息的问题,该文提出一种新的混合的基于支持向量机的方法:首先,利用模糊C均值聚类方法将输入的遥感影像分为3类,以减少支持向量机的错分现象;其次,运用支持向量机将不同类别的像素分为道路类和非道路类;最后,应用马尔科夫随机场对分类结果进行噪声去除,并采用形态学进行后处理,进而得到精确道路网信息。实验结果表明:该算法不仅能够从高分辨率遥感影像中提取出道路网,而且精度优于直接使用支持向量机算法以及对比算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号