首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Najd strike-slip fault system extends over the northeastern Arabian Shield in a zone >1200 km in length and >300 km wide. Faults trend NW-SE with strike lengths >500 km but small sinistral displacements of <25 km. Cumulative displacement across the zone is >240 km. Najd faults were active in the late Proterozoic and post-date cratonization of the Shield. Associated secondary structures include grabens, thrust faults, folds and dike swarms. In the southwest of the Najd system, near Zalm, initial faulting was dextral and began earlier than formerly thought. Emplacement of a plutonic complex was controlled by Najd fractures of dextral geometry and displacements. The same fractures were active before and after deposition of a group of volcanosedimentary rocks in grabens orientated consistently with development in a dextral strike-slip regime. Graben deformation was controlled by sinistral motion along the same fractures responsible for graben development and also by younger fractures of sinistral geometry and displacement. Dike swarms in the area are also consistent with early dextral and later sinistral shear of Najd trend. Structures in the Zalm area occur throughout the Najd system and the consistent chronology of older dextral structures dislocated and deformed by younger sinistral faults suggests a reversal in the sense of motion of the Najd system as a whole.  相似文献   

2.
《Precambrian Research》1986,31(3):259-274
The cratonisation of the Arabian Shield involved the accretion of ensimatic arc terranes in the west and south followed by continental collisions along the Nabitah and Al Amar sutures and the onset of the Najd strike-slip orogen. Volcanosedimentary successions which post-date these collisions have been proposed as the products of magmatism in transitional volcanic arcs. One such succession, the Bani Ghayy group, lies unconformably above a series of volcanosedimentary rocks associated with an older active continental margin and was deposited in three separate, elongate, fault-bounded grabens. Each graben contains coarse fanglomerate and fan delta deposits along the margin and proximal greywackes toward the centre. Reef limestones occur locally whereas volcanogenic rocks are widespread. The latter are geochemically bimodal and with the sediments are typical of continental rifting environments although deformed ultramafic rocks within internal reverse faults suggests that the grabens were floored, in part, by primitive mantle derived crust. Deposition of the Bani Ghayy group post-dates incipient motions along fractures of the Najd fault system. The orientation of the Bani Ghayy grabens and the geometry of the boundary faults are consistent with development in a regime of northwest-trending dextral shear. However, the Bani Ghayy grabens are displaced and deformed by later movements of the same faults but in a sinistral sense. Other successions correlated with the Bani Ghayy also preserve features consistent with deposition in continental grabens and the possibility that they represent arc volcanism is discounted.  相似文献   

3.
The Thakkhola–Mustang graben is located at the northern side of the Dhaulagiri and Annapurna ranges in North Central Nepal. The structural pattern is mainly characterised by the N020–040° Thakkhola Fault system responsible for the development of the half-graben. A detailed study of the substrate and the sedimentary fill in several outcrops indicates polyphased faulting:-pre-sedimentation faulting (Miocene), with a mainly NNW–SSE to N–S compressional stress expressed in the substratum by N020–040° and N180–N010° sinistral and N130–140° dextral conjugate strike-slip faults;-syn-sedimentation faulting (Pliocene–Pleistocene), characterised by a W–E to WNW–ESE extensional stress and tectonic subsidence of the half-graben during the Tetang period (Pliocene probably), followed by a doming of the Tetang deposits and a short period of erosion (cf. Pliocene planation surface and unconformity between the Tetang and Thakkhola Formations); the Thakkhola period (Pleistocene) is characterized by a W–E to WNW–ESE extensional stress and a major subsidence of the half graben;-post-sedimentation recurrent extensional faulting and N–S and NE–SW normal faults in the late Quaternary terrace formations.Geodynamic interpretation of the faulting is discussed in relation to the following:
  • 1.the geographic situation of the Thakkhola–Mustang half-graben in the southern part of Tibet and its setting in the Tethyan series above the South Tibetan Detachment System (STDS);
  • 2.the geodynamic conditions of the convergence between India and Eurasia and the dextral east–west shearing between the High Himalayas and south Tibet;
  • 3.the possible relations between the sinistral Thakkhola and the dextral Karakorum strike-slip faults in a N–S compressional stress regime during the Miocene.
  相似文献   

4.
The Wadi Fatira area occurs at the southern margin of the Northern Eastern Desert (NED) of Egypt and is occupied by highly sheared metavolcanics tectonically alternated with banded iron formations and intruded by Barud tonalite–granodiorite, post-tectonic gabbroic and granitic intrusions. Detailed structural investigation showed that the schists and migmatitic amphibolites are formed by shearing in metavolcanics and syntectonic Barud tonalite–granodiorite due to movement along the Wadi Fatira shear zone (WFSZ). This shear zone starts as a NW–SE striking fault along Wadi Barud Al Azraq and the Eastern part of Wadi Fatira and turns to a E–W trending fault to the north of Wadi Fatira. Microstructural shear sense indicators such as asymmetric geometry of porphyroclasts such as σ-type and asymmetric folds deforming fine-grained bands which are frequently found around porphyroclasts indicate sinistral sense of shearing along the WFSZ. This shear zone is characterized by transitions from local convergence to local extension along their E–W and NW–SE trending parts, respectively. The NW–SE part of the WFSZ is of about 200 m in width and characterized by synmagmatic extensional features such as intrusion of synkinematic tonalite, creation of NE–SE trending normal faults, and formation of migmatitic amphibolites and schlieric tonalites. This part of the shear zone is metamorphosed under synthermal peak metamorphic conditions (725°C at 2–4 kbar). The E–W compressional part of the WFSZ is up to 3 km in width and composed of hornblende, chlorite, actinolite, and biotite schists together with sheared intermediate and acidic metatuffs. Contractional and transpressional structures in this part of the WFSZ include E–W trending major asymmetrical anticline and syncline, nearly vertical foliation and steeply pitching stretching lineations, NNE dipping minor thrusts, and minor intrafolial folds with their hinges parallel to the stretching lineation. PT estimates using mineral analyses of plagioclase and hornblende from schists and foliated metavolcanics indicate prograde metamorphism under medium-grade amphibolite facies (500–600°C at 3–7 kbar) retrogressed to low-grade greenschist facies (227–317°C). The foliation in Barud tonalite–granodiorite close to the E–W part of the WFSZ runs parallel to the plane of shearing and the tonalite show numerous magmatic flow structures overprinted by folding and ductile shearing. The WFSZ is similar to structures resulted from combined simple shear and orthogonal shortening of oblique transpressive shear zones and their sense of movement is comparable with the characteristics of the Najd Fault System.  相似文献   

5.
An assessment of the southern Betsimisaraka Suture (B.S.) of southeastern Madagascar using remote sensing and field investigation reveals a complex deformation history. Image processing of Landsat ETM+data and JERS-I Synthetic Aperture Radar (SAR) imagery was integrated with field observations of structural geology and field petrography. The southern B.S. divides the Precambrian basement rocks of Madagascar in two parts. The western part includes Proterozoic rocks whereas the eastern part is an Archean block, named the Masora block. The southern part of the B.S. includes high-grade metamorphic rocks, recording strong deformation and has mineral deposits including chromite, nickel, and emerald, characteristic of oceanic material that is compatible with a suture zone.Large-scale structural features indicate ductile deformation including three generations of folding (F1, F2, and F3) associated with dextral shearing. The first folding event (F1) shows a succession of folds with NE striking axial planes. The second folding event (F2) mainly has north–south striking axial planes and the last event (F3) is represented by mega folds that have ENE–WSW axial plane directions and have NNW and SSE contractional strain patterns. Closure of the Mozambique Ocean between two components of Gondwana sandwiched rocks of the B.S. and formed upright folds and shortening zones which produced N–S trending lineaments. Later dextral movements followed the contraction and formed NW–SE trending lineaments and N–S trending normal faults associated with dextral strike slip faults and fractures.  相似文献   

6.
Al Jabal Al Akhdar is a NE/SW- to ENE/WSW-trending mobile part in Northern Cyrenaica province and is considered a large sedimentary belt in northeast Libya. Ras Al Hilal-Al Athrun area is situated in the northern part of this belt and is covered by Upper Cretaceous–Tertiary sedimentary successions with small outcrops of Quaternary deposits. Unmappable and very restricted thin layers of Palaeocene rocks are also encountered, but still under debate whether they are formed in situ or represent allochthonous remnants of Palaeocene age. The Upper Cretaceous rocks form low-lying to unmappable exposures and occupy the core of a major WSW-plunging anticline. To the west, south, and southeast, they are flanked by high-relief Eocene, Oligocene, and Lower Miocene rocks. Detailed structural analyses indicated structural inversion during Late Cretaceous–Miocene times in response to a right lateral compressional shear. The structural pattern is themed by the development of an E–W major shear zone that confines inside a system of wrench tectonics proceeded elsewhere by transpression. The deformation within this system revealed three phases of consistent ductile and brittle structures (D1, D2, and D3) conformable with three main tectonic stages during Late Cretaceous, Eocene, and Oligocene–Early Miocene times. Quaternary deposits, however, showed at a local scale some of brittle structures accommodated with such deformation and thus reflect the continuity of wrenching post-the Miocene. D1 deformation is manifested, in Late Cretaceous, via pure wrenching to convergent wrenching and formation of common E- to ENE-plunging folds. These folds are minor, tight, overturned, upright, and recumbent. They are accompanied with WNW–ESE to E–W dextral and N–S sinistral strike-slip faults, reverse to thrust faults and pop-up or flower structures. D2 deformation initiated at the end of Lutetian (Middle Eocene) by wrenching and elsewhere transpression then enhanced by the development of minor ENE–WSW to E–W asymmetric, close, and, rarely, recumbent folds as well as rejuvenation of the Late Cretaceous strike-slip faults and formation of minor NNW–SSE normal faults. At the end of Eocene, D2 led to localization of the movement within E–W major shear zone, formation of the early stage of the WSW-plunging Ras Al Hilal major anticline, preservation of the contemporaneity (at a major scale) between the synthetic WNW–ESE to E–W and ENE–WSW strike-slip faults and antithetic N–S strike-slip faults, and continuity of the NW–SE normal faults. D3 deformation is continued, during the Oligocene-Early Miocene, with the appearance of a spectacular feature of the major anticline and reactivation along the E–W shear zone and the preexisting faults. Estimating stress directions assumed an acted principal horizontal stress from the NNW (N33°W) direction.  相似文献   

7.
东昆仑东段中更新世以来的成山作用及其动力转换   总被引:6,自引:6,他引:6  
对东昆仑造山带东段第四纪构造及与地貌关系的分析表明,现代山盆相间的地貌格局成型于中更新世,且在中更新世以来发生了多次构造变形体制的转换。根据布青山北部查干额热格地区第四系剖面的构造、地层时代及地层与构造关系的分析表明,中更新世时期为伸展构造体制,昆仑山内部开始发生了差异隆升,布青山开始崛起。中更新世末应力体制发生急剧变化,由伸展体制转为收缩事件,又急速转为伸展构造体系,短暂的收缩事件造成了中更新世冲洪积层的褶皱,随后的伸展则导致了影响深刻的向北依次断落的阶地状正断层系统。晚更新世应力体系再度发生重大转换,伸展正断层体系被左旋走滑运动体系所代替,并一直延续至今。中更新世以来多次隆升构造变形体制的转换说明东昆仑地区的成山过程受控于多种动力背景,而非单一的挤压抬升。隆升构造变形体系的确定及其时代约束为深入刻划青藏高原东北缘隆升作用的动力过程提供了重要信息。  相似文献   

8.
The Asturian Arc was produced in the Early Permian by a large E–W dextral strike–slip fault (North Iberian Megashear) which affected the Cantabrian and Palentian zones of the northeastern Iberian Massif. These two zones had previously been juxtaposed by an earlier Kasimovian NW–SE sinistral strike–slip fault (Covadonga Fault). The occurrence of multiple successive vertical fault sets in this area favoured its rotation around a vertical axis (mille-feuille effect). Along with other parallel faults, the Covadonga Fault became the western margin of a proto-Tethys marine basin, which was filled with turbidities and shallow coal-basin successions of Kasimovian and Gzhelian ages. The Covadonga Fault also displaced the West Asturian Leonese Zone to the northwest, dragging along part of the Cantabrian Zone (the Picos de Europa Unit) and emplacing a largely pelitic succession (Palentian Zone) in what would become the Asturian Arc core. The Picos de Europa Unit was later thrust over the Palentian Zone during clockwise rotation. In late Gzhelian time, two large E–W dextral strike–slip faults developed along the North Iberian Margin (North Iberian Megashear) and south of the Pyrenean Axial Zone (South Pyrenean Fault). The block south of the North Iberian Megashear and the South Pyrenean Fault was bent into a concave, E-facing shape prior to the Late Permian until both arms of the formerly NW–SE-trending Palaeozoic orogen became oriented E–W (in present-day coordinates). Arc rotation caused detachment in the upper crust of the Cantabrian Zone, and the basement Covadonga Fault was later resurrected along the original fault line as a clonic fault (the Ventaniella Fault) after the Arc was completed. Various oblique extensional NW–SE lineaments opened along the North Iberian Megashear due to dextral fault activity, during which numerous granitic bodies intruded and were later bent during arc formation. Palaeomagnetic data indicate that remagnetization episodes might be associated with thermal fluid circulation during faulting. Finally, it is concluded that the two types of late Palaeozoic–Early Permian orogenic evolution existed in the northeastern tip of the Iberian Massif: the first was a shear-and-thrust-dominated tectonic episode from the Late Devonian to the late Moscovian (Variscan Orogeny); it was followed by a fault-dominated, rotational tectonic episode from the early Kasimovian to the Middle Permian (Alleghenian Orogeny). The Alleghenian deformation was active throughout a broad E–W-directed shear zone between the North Iberian Megashear and the South Pyrenean Fault, which created the basement of the Pyrenean and Alpine belts. The southern European area may then be considered as having been built by dispersal of blocks previously separated by NW–SE sinistral megashears and faults of early Stephanian (Kasimovian) age, later cut by E–W Early Permian megashears, faults, and associated pull-apart basins.  相似文献   

9.
In the central part of the internal Western Alps, widespread multidirectional normal faulting resulted in an orogen-scale radial extension during the Neogene. We revisit the frontal Piémont units, between Doire and Ubaye, where contrasting lithologies allow analysing the interference with the N–S trending Oligocene compressive structures. A major extensional structure is the orogen-perpendicular Chenaillet graben, whose development was guided by an E–W trending transfer fault zone between the Chaberton backfold to the north and the Rochebrune backthrust to the south. The Chaberton hinge zone was passively crosscut by planar normal faults, resulting in a E–W trending step-type structure. Within the Rochebrune nappe, E–W trending listric normal faults bound tilted blocks that slipped northward along the basal backthrust surface reactivated as an extensional detachment. Gravity-driven gliding is suggested by the general northward tilting of the structure in relation with the collapse of the Chenaillet graben. The stress tensors computed from brittle deformation analysis confirm the predominance of orogen-parallel extension in the entire frontal Piémont zone. This can be compared with the nearby Briançonnnais nappe stack where the extensional reactivation of thrust surfaces locally resulted in prominent orogen-perpendicular extension. Such a contrasting situation illustrates how the main direction of the late-Alpine extension may be regionally governed by the nature and orientation of the pre-existing structures inherited from the main collision stage.  相似文献   

10.
This paper presents the first paleostress results obtained from displacement and fracture systems within the Lower Eocene sediments at Jabal Hafit, Abu Dhabi Emirate, UAE. Detailed investigation of Paleogene structures at Jabal Hafit reveal the existence of both extensional structures (normal faults) and compressional structures (strike-slip and reverse faults). Structural analysis and paleostress reconstructions show that the Paleogene kinematic history is characterized by the succession of four paleostress stages. Orientation of principal stresses was found from fault-slip data using an improved right-dihedra method, followed by rotational optimisation (TENSOR program).The paleostress results confirm four transtensional tectonic stages (T1–T4) which affected the study area. The first tectonic stage (T1) is characterized by SHmax NW–SE σ2-orientation. This stage produced NW–SE striking joints (tension veins) and E–W to ENE–WSW striking dextral strike-slip faults. The proposed age of this stage is Early Eocene. The second stage (T2) had SHmax N–S σ2-orientation. N–S striking joints and NNE–SSW striking sinistral strike-slip faults, E–W striking reverse faults and N–S striking normal faults were created during this stage. The T2 stage is interpreted to be post-Early Eocene in age. The third stage (T3) is characterized by SHmax E–W σ2-orientation. This stage reactivated the E–W reverse faults as sinistral strike-slip faults and created E–W striking joints and NE–SW reverse faults. The proposed age for T3 is post-Middle Eocene. During the T3 (SHmax E–W σ2-orientation) stage the NNW-plunging Hafit anticline was formed. The last tectonic stage that affected the study area (T4) is characterized by SHmax NE–SW σ2-orientation. During this stage, the ENE–WSW faults were reactivated as sinistral strike-slip and reverse faults. NE–SW oriented joints were also created during the T4 (SHmax NE–SW σ2-orientation) stage. The interpreted age of this stage is post-Middle Miocene time but younger than T3 (SHmax E–W σ2-orientation) stage.  相似文献   

11.
The NW–SE shortening between the African and the Eurasian plates is accommodated in the eastern Betic Cordillera along a broad area that includes large N‐vergent folds and kilometric NE–SW sinistral faults with related seismicity. We have selected the best exposed small‐scale tectonic structures located in the western Huércal‐Overa Basin (Betic Cordillera) to discuss the seismotectonic implications of such structures usually developed in seismogenic zones. Subvertical ESE–WNW pure dextral faults and E–W to ENE–ESW dextral‐reverse faults and folds deform the Quaternary sediments. The La Molata structure is the most impressive example, including dextral ESE–WNW Neogene faults, active southward‐dipping reverse faults and associated ENE–WSW folds. A molar M1 assigned to Mimomys savini allows for precise dating of the folded sediments (0.95–0.83 Ma). Strain rates calculated across this structure give ~0.006 mm a?1 horizontal shortening from the Middle Pleistocene up until now. The widespread active deformations on small‐scale structures contribute to elastic energy dissipation around the large seismogenic zones of the eastern Betics, decreasing the seismic hazard of major fault zones. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
《Geodinamica Acta》2001,14(1-3):45-55
Field studies on the Neogene successions in south of İzmir reveal that subsequent Neogene continental basins were developed in the region. Initially a vast lake basin was formed during the Early–Middle Miocene period. The lacustrine sediments underwent an approximately N–S shortening deformation to the end of Middle Miocene. A small portion of the basin fill was later trapped within the N–S-trending, fault-bounded graben basin, the Çubukludağ graben, opened during the Late Miocene. Oblique-slip normal faults with minor sinistral displacement are formed possibly under N–S extensional regime, and controlled the sediment deposition. Following this the region suffered a phase of denudation which produced a regionwide erosional surface suggesting that the extension interrupted to the end of Late Miocene–Early Pliocene period. After this event the E–W-trending major grabens and horsts of western Anatolia began to form. The graben bounding faults cut across the Upper Miocene–Pliocene lacustrine sediments and fragmented the erosional surface. The Çubukludağ graben began to work as a cross graben between the E–W grabens, since that period.  相似文献   

13.
The ENE-trending, ca. 306–287 Ma, Totoltepec pluton is part of a Carboniferous–Permian continental magmatic arc on the western Pangaean margin. The 15 km?×?5 km pluton is bounded by two N–S Permian dextral faults, an E–W thrust to the south, and an E–W normal fault to the north. Thermobarometric data indicate that the main, ca. 289–287 Ma, part of the pluton was emplaced at ≤20 km depth and ≥700°C and was exhumed to 11 km and 400°C in 4 ± 2 million years. We have documented the following intrusive sequence: (1) the 306 Ma northern marginal mafic phase; (2) the 287 Ma main trondhjemitic phase; and (3) ca. 289–283 Ma sub-vertical dikes that vary from (a) N39E, undeformed with crystal growth perpendicular to the margins, through (b) ca. N50–73E, foliated and folded with sinistral shear indicators, to (c) N73–140E and boudinaged. The obliquity of the boundary between the folded and stretched dikes relative to the N–S dextral faults suggests sequential emplacement in a transtensional regime (with 20% E–W extension), followed by different degrees of clockwise rotation passing through a shortening field accompanied by sinistral shear into an extensional field. The ca. 289–287 Ma intrusion also contains a steep ENE-striking foliation and hornblende lineations varying from sub-horizontal to steeply plunging, probably the result of emplacement in a triclinic strain regime. We infer that magmatism ceased when some of the dextral motion was transferred from the western to the eastern bounding fault, causing thrusting to take place along the southern boundary of the pluton. This mechanism is also invoked for the rapid uplift and exhumation of the pluton between ca. 287 Ma and 283 Ma. The distinctive characteristics of the Totoltepec pluton should prove useful in identifying similar tectonic settings within continental arcs.  相似文献   

14.
Many types of hydrothermal deposits (e.g. W, Bi, Pb, Zn, Ag) are confined by faults and hidden granodiorite in the Luowei Orefield in Xidamingshan, Guangxi, China. The orebodies in the Luowei W–Bi deposit are predominantly layered and distributed along bedding in sandstones of the Cambrian Xiaoneichong Formation. The orebodies in the Lujing Pb–Zn deposit are controlled mainly by west‐south‐west (WSW)‐trending faults, and those in the Fenghuangshan Ag deposit are controlled mainly by west‐north‐west (WNW)‐trending faults, which were reverse faults during mineralization and were later reactivated as sinistral strike‐slip faults. The Luowei fault was formed postmineralization and resulted in sinistral displacement of the subsurface granodiorite and the Cambrian strata. A tectonomagmatic mineralization model of the Luowei Orefield is proposed, and the following conclusions were made. (i) Under a regional N–S compressive stress regime, WSW‐ and WNW‐trending reverse faults and N–S‐trending tensional fractures were formed. (ii) Magma intruded along the tensional fractures. Under the force of magmatic thermodynamics, mineralizing fluid migrated along bedding planes in sandstones and formed W–Bi orebodies at favorable sites. Some fluid migrated along WSW‐ and WNW‐trending faults to sites farther from the magma source, forming vein‐type Pb–Zn and Ag orebodies. (iii) After mineralization, under ~E–W compression, a NW‐trending left‐lateral slip fault was formed, cutting the subsurface granodiorite and orebodies. Concurrently, sinistral shear slip occurred on WNW‐trending ore‐controlling faults. However, the small displacement on these faults did not change the overall distributions of the rock mass and orebodies.  相似文献   

15.
西准噶尔达拉布特断裂带中段晚古生代构造分析   总被引:2,自引:0,他引:2  
林伟  孙萍  薛振华  张仲培 《岩石学报》2017,33(10):2987-3001
走滑断裂构造在中亚造山带增生及演化过程的研究中扮演了重要角色,其主要构造单元均被走滑断裂带所分割。西准噶尔造山带是中亚增生型造山带的重要组成部分,达拉布特断裂是西准噶尔造山带中一条重要的走滑断裂,其复杂的构造表现吸引了大量研究者的关注。前人不仅在其构造解释上存在着走滑断层、逆冲断层或压扭性断层等诸多争议,且在其活动时代问题上也有不同的看法。本文依据在达拉布特断裂带中段开展的详细野外构造学工作,结合前人针对该地区石炭纪火山岩、浊积岩和造山后花岗岩侵入体所做的同位素年代学工作成果,对达拉布特断裂的活动性质和活动时代进行了讨论。结果确认在中二叠统沉积之前,达拉布特断裂带存在两期变形事件,分别对应于320Ma左右沿NE-SW的较深层次的左行走滑事件D1和表现为脆-韧性转换域的轴面倾向SE的褶皱作用构造事件D2。前者为主期变形事件,而后者发生在中二叠统沉积之前。本文同时报道了沿达拉布特断裂带出露右行走滑构造形迹,并讨论了其可能的成因。沿达拉布特断裂带的多期构造事件记录了西准噶尔地区造山后大规模走滑构造调整过程,是晚古生代晚期中亚各个陆块拼合后大规模陆内调整在西准噶尔造山带的具体体现。  相似文献   

16.
《Geodinamica Acta》2003,16(2-6):131-147
Combining fieldwork and surface data, we have reconstructed the Cenozoic structural and tectonic evolution of the Northern Bresse. Analysis of drainage network geometry allowed to detect three major fault zones trending NE–SW, E–W and NW–SE, and smooth folds with NNE trending axes, all corroborated with shallow well data in the graben and fieldwork on edges. Cenozoic paleostress succession was determined through fault slip and calcite twin inversions, taking into account data of relative chronology. A N–S major compression, attributed to the Pyrenean orogenesis, has activated strike-slip faults trending NNE along the western edge and NE–SW in the graben. After a transitional minor E–W trending extension, the Oligocene WNW extension has structured the graben by a collapse along NNE to NE–SW normal faults. A local NNW extension closes this phase. The Alpine collision has led to an ENE compression at Early Miocene. The following WNW trending major compression has generated shallow deformation in Bresse, but no deformation along the western edge. The calculation of potential reactivation of pre-existing faults enables to propose a structural sketch map for this event, with a NE–SW trending transfer fault zone, inactivity of the NNE edge faults, and possibly large wavelength folding, which could explain the deposit agency and repartition of Miocene to Quaternary deformation.  相似文献   

17.
《Geodinamica Acta》2001,14(1-3):31-43
This paper describes the Neogene evolution of northwestern Anatolia based on geological data collected in the course of a new mapping program. The geological history of the region, as recorded by the Neogene sedimentary and magmatic rocks that overlie the Paleozoic–Triassic basement, began after a lake invasion during the Early Miocene period with the deposition of shale-dominated successions. They were accompanied by calc-alkaline intermediate lavas and pyroclastic rocks ejected through NNE trending fractures and faults. The Lower–Middle Miocene successions were deformed under a compressional regime at the end of the Middle Miocene. The deposition of the overlying Upper Miocene–Lower Pliocene successions was restricted to within NE–SW trending graben basins. The graben bounding faults are oblique with a major strike-slip displacement, formed under approximately the N–S extension. The morphological irregularities formed during the Miocene graben formations were obliterated during a severe erosional phase to the end of the deposition of this lacustrine succession. The present E–W graben system as exemplified from the well-developed Edremit graben, postdates the erosional phase, which has formed during the Plio-Quaternary period.  相似文献   

18.
位于秦岭西段北侧天水市附近的李子园群系张维吉等建立,由遭受不同程度变质作用改造的新元古代至早古生代火山沉积岩系构成。对关子镇一带李子园群研究后,发现该群至少遭受了两期强烈变形。早期为伴生低绿片岩相变质作用的近东西向右行剪切,晚期为北西—南东向的左行剪切。通过对变质矿物黑云母的40Ar39Ar定年研究,确定早期变质变形事件发生在石炭纪初(355Ma)  相似文献   

19.
为了解周边国家的地质构造特征,经实地调研与前人资料整理,将缅甸构造单元边界确认为9条断裂.即:那加山-若开山逆冲断裂(F1)、平梨铺-卑谬伸展断裂(F2)、实皆-勃固右行平移断裂(F3)、葡萄-格杜逆冲断裂(F4)、英昆-八莫伸展断裂(F5)、南坎-抹谷右行平移断裂(F6)、曼德勒-垒固左行平移断裂(F7)、锡当-三塔左行平移断裂(F8)、孟宾-清迈逆冲断裂(F9).这9条断裂构成钦邦-若开邦结合带(E-N1)(Ⅰ1)、西克钦邦结合带(E-N1)(Ⅰ2)、蒙育瓦-勃生岛弧带(E-N1)(Ⅱ1)、瑞保-仰光弧后盆地(E-N1)(Ⅱ2)、密支那岛弧带(E-N1)(Ⅱ3)、八莫陆缘弧(T3-K)(Ⅲ1)、毛淡棉陆缘弧(T3-K)(Ⅲ2)、德林依达地块(Pz2)(Ⅲ3)、保山-掸邦陆块(C-T2)(Ⅳ)、昌宁-孟连-清莱结合带(C-T2)(Ⅴ)10个一级、二级大地构造单元的边界.  相似文献   

20.
Abstract

Field studies on the Neogene successions in south of ?zmir reveal that subsequent Neogene continental basins were developed in the region. Initially a vast lake basin was formed during the early-Middle Miocene period. The lacustrine sediments underwent an approximately N-S shortening deformation to the end of Middle Miocene. A small portion of the basin fill was later trapped within the N-S-trending, fault-bounded graben basin, the Çubukluda? graben, opened during the Late Miocene. Oblique-slip normal faults with minor sinistral displacement are formed possibly under N–S extensional regime, and controlled the sediment deposition. Following this the region suffered a phase of denudation which produced a regionwide erosional surface suggesting that the extension interrupted to the end of Late Miocene–Early Pliocene period. After this event the E–W-trending major grabens and horsts of western Anatolia began to form. The graben bounding faults cut across the Upper Miocene–Pliocene lacustrine sediments and fragmented the erosional surface. The Çubukluda? graben began to work as a cross garden between the E–W grabens, since that period. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号