首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 644 毫秒
1.
We discuss the interpretation method and results of magnetotelluric soundings in combination with other geological and geophysical data. The interpretation method was developed by studying possible distortions in MTS curves using 3D-numerical modeling of the magnetotelluric field. Deep conductivity was studied by using longitudinal MTS curves below a period of 400 s, which are nearly unaffected by the induction effect due to marine electrical currents. Transverse curves were used to obtain more detail for the geoelectric model. Inversion of average longitudinal MTS curves resulted in a geoelectric section of the lithosphere down to a depth of 60 km. Anomalies of high conductivity in the lithosphere were detected and were found to produce certain effects in gravity and seismic velocities. MTS and seismic tomography data were used to determine the possible origin of the high conductivity anomaly and to estimate rock porosity and the concentration of magma melts.  相似文献   

2.
This paper reports the results of magnetotelluric sounding (MTS) in the area where the Bol’she-Bannyi hydrothermal springs are discharged. The MTS curves were inverted on the assumption of a twodimensional inhomogeneous model using longitudinal and transverse curves of apparent resistivity. It was found that the geoelectric section contains a nearly vertical anomaly of high electrical conductivity at depths of 5.5–8 km, which is the signature of a deep-seated fault. The resulting geoelectric section for the upper crust and data from regional magnetotelluric soundings were used as a basis for developing a conceptual deep model of the Bol’she-Bannyi hydrothermal system. We quote an approximate estimate of rock porosity. According to the model, deep fluids come from a crustal layer into the subvertical deep-seated fault then penetrate via fissures into the sedimentary–volcanogenic cover, and finally arrive at the ground surface in zones of high rock permeability. We provide a recommendation for drilling a deep well in order to determine the potential of the Bol’she-Bannyi hydrothermal field.  相似文献   

3.
We consider the methods and results of magnetotelluric sounding in the AMTS and MTS modifications. Audiomagnetotelluric sounding (AMTS) was carried out for the first time in the area of a recent Tolbachik eruption. The results from our analysis of the magnetotelluric parameters show that the geoelectric medium involving a regional fault can be fitted by a 2D inhomogeneous model. The longitudinal and transverse sounding curves were assumed as the leading elements for interpretation. A joint analysis of these curves and of pseudo-sections of impedance phases provides evidence of a geoelectric inhomogeneity in the area where the Naboko Vent is situated. A bimodal inversion of the AMTS curves yielded a geoelectric section that contains a conductive inhomogeneity that is possibly related to a fault that carried fluids up to the ground surface. Along with AMTS, we used MTS curves in a broader range to identify a crustal conductive anomaly at depths of 15–35 km. The data from AMTS, MTS, and other geological and geophysical information were used to develop a conceptual model for the area of study that characterizes a possible origin of the anomalous zones. We obtained approximate estimates of rock porosity in the fault zone that transported magma melts upward into the overlying rocks in the area of the Naboko Vent.  相似文献   

4.
We consider the key features in the responses of magnetic tippers and MTS curves to the sharp contrast in electric conductivity at the interface between the land and the sea waters of the Sea of Okhotsk and the Pacific bounding Kamchatka. The zones with different intensity of the coast effect are revealed. Stronger manifestations of the effect are found to occur in the East Kamchatka, which is related to the induction effects of the electric currents concentrated in the Kuril-Kamchatka trench. Indentation of the coastline resulted in the appearance of three-dimensional (3D) effects in the magnetotelluric field of the eastern Kamchatka. These effects in the variations of the geomagnetic field are vanishing with an increasing period, giving room to low-frequency effects in the MT field, which are associated with the flow of electric currents around Kamchatka (the around-flow effect). It is shown that the transverse MTS curves over the entire region of Kamchatka suffer from the S effect at low frequencies and do not characterize the deep geoelectric structure. Only in the middle segments of the West and Central Kamchatka, the longitudinal MTS curves are weakly subjected to the induction effects and thus reflect the distribution of the deep electric conductivity. On the eastern coast of Kamchatka both the longitudinal and transverse MTS curves are strongly distorted by the 3D effects caused by the abundant capes and bays. The interpretation of MTS data in this region should necessarily invoke the 3D modeling of an MT field.  相似文献   

5.
大地电磁各向异性二维模拟及实例分析   总被引:3,自引:2,他引:1       下载免费PDF全文
经过半个多世纪的发展,国内外利用大地电磁法研究地球内部电性结构取得了令人瞩目的成就,这些研究成果多数是基于电性各向同性理论.然而地球内部普遍存在电性各向异性现象,地壳和上地幔中存在的电性各向异性是地电模型、地下结构和构造模型间一个重要的联系因素.本文首先由麦克斯韦方程出发,引入张量电导率,根据二维电性各向异性结构的特点,得到一组关于平行走向的电场分量Ex和磁场分量Hx的偏微分方程.使用有限差分法求解偏微分方程,求出Ex和Hx的近似解,并以此求得其它场分量;随后,通过对普通及特殊的二维电性各向异性结构做正演模拟,研究其对观测大地电磁场的影响,从而认识在普通及某种特定地质条件下的电磁传播特性,为其后对大地电磁实测资料的处理解释奠定理论基础;最后,以本文的研究成果为基础,将电性各向异性理论引入对实测大地电磁资料的处理解释中,通过对新疆某地的大地电磁资料做二维正演拟合解释,说明了电性各向异性现象的普遍存在,也验证了理论的正确性及算法的实用性,为今后分析解释大地电磁资料中的电性各向异性现象提供理论依据和技术指导,并开拓了对大地电磁实测资料处理的思路和方法.  相似文献   

6.
A method of approximate magnetotelluric sounding (MTS) data inversion is developed on the basis of the representation of the inverse operator by an artificial neural network in classes of geoelectric structures. A methodology of the neural network inversion of magnetotelluric data is proposed for a family of classes of geoelectric structures and the uncertainty of the inferred results is estimated. A neural network algorithm of MTS data inversion is tested using synthetic 2-D data.  相似文献   

7.
We present results of a study of the seismicity and the geoelectric structure of the Eastern Carpathians. After the evaluation of the seismicity, new methods of processing and analyzing seismic data are developed, which allow constructing an averaged horizontal-layered velocity model of the crust in the Carpathian region of Ukraine, tracing the seismic active faults and localizing the seismic events both in horizontal and in vertical direction with a better precision. For the study of the conductivity structure beneath the Eastern Carpathians, the collected magnetovariation and magnetotelluric data are used. The depth of electrical conductivity anomalies are estimated and the resulting quasi-3D model of the conductivity structure beneath the Carpathians is compared with the seismicity in the depth range of 10 ± 2.5 km. The comparison suggests possible geological mechanisms: the seismic events occur mainly in resistive solid rock domains which surround aseismic high-conductivity zones, consisting of at least partially melted material. Aqueous fluids, or a joint effect of several mechanisms, may also play an active role in this distribution.  相似文献   

8.
The MTS data acquired in Kamchatka during the last 30 years have been analyzed and summarized. Our interpretation is based on curves oriented along and across Kamchatka. Longitudinal and transverse curves can be affected by local geoelectric inhomogeneities. These were suppressed by conformal averaging. A bimodal interpretation of average longitudinal and transverse curves yielded a deep geoelectric model, which can be adopted as a starting point to be subsequently refined by 3D numerical modeling. The model involves a crustal conductive layer extending along central Kamchatka. In the east of the peninsula this layer is connected with crustal transverse conductive zones as wide as 50 km. Those zones have extensions toward the Pacific Ocean. Major centers of present-day volcanism occur in the transverse zones. The upper mantle contains an asthenospheric conductive layer forming an uplift beneath the present-day volcanic belt of Kamchatka.  相似文献   

9.
Various hypotheses of the geoelectric structure of the Transcaucasian region reflecting a priori geological and geophysical information and data from profile magnetotelluric (MT) soundings are analyzed. These hypotheses are used to construct simplified 3-D models of electrical conductivity differing in the patterns of the shallow and deep structure of the region. Numerical modeling of MT fields is performed. Comparative analysis of its results indicates that the most probable conductivity model consistent with the available data is a model involving a high-conductivity channel connecting the Black and Caspian seas.  相似文献   

10.
In tectonically active regions electrical conductivity anisotropies are the dominating features. The importance of conductivity anisotropy in the interpretation of magnetotelluric data is well known. In the present study numerical results presented which show the effect of a substratum with inclined anisotropy on the magnetotelluric response. The pronounced change on the magnetotelluric response is found for the models in which the substratum underlies (i) conductive and (ii) resistive overburden.  相似文献   

11.
The results of magnetotelluric and magnetovariational studies in the Uzon caldera are considered. An analysis of magnetotelluric parameters yielded the required method of interpretation. The MTS curves were interpreted in the framework of a 2D model using the REBOCC program. Geoelectric cross sections of the caldera were constructed along two orthogonal lines. Anomalies of high electrical conductivity were identified in the sediments and in the basement and were found to be confined to the locations of geothermal springs. The higher conductivity of these anomalies is here related to the presence of highly mineralized hydrothermal solutions. Electrical conductivity was used for an approximate estimation of porosity in the sediments and basement. A subvertical zone of higher porosity was identified at depths of 1.5–3.5 km in the caldera with a connection to the channelways of fluids rising into the sediments. It is hypothesized that highly mineralized solutions are diluted with vadose water in that zone and come through fissures onto the ground surface in the form of hot springs. The totality of these data suggested a conceptual model to characterize the main features in the generation of hydrothermal springs in the Uzon caldera.  相似文献   

12.
The paper presents the results of 2D inversion of deep magnetotelluric (MT) and magnetovariational (MV) soundings along the Naryn Line. The method of partial (sequential) inversions is used. According to this method, at the first stage, magnetovariation responses are used for the localization of deep anomalies of electrical conductivity, and then the magnetotelluric sounding data are invoked to refine the structure of the host medium and the structural details in the upper part of the section. It is shown that this approach enables one to estimate the informativeness of separate components of the electromagnetic field, to reduce the distorting influence of the near-surface geoelectric inhomogeneities, and to increase the stability of the final solution of the inverse problem.  相似文献   

13.
The paper analyzes the correlation between the electrical conductivity and temperature in the upper crust of the Bishkek geodynamic research area (the Northern Tien Shan). Electrical conductivity profiles constructed from magnetotelluric data and thermograms from the boreholes near magnetotelluric sounding (MTS) points are used for estimations. The correlation analysis of conductivity and temperature profiles to depths of 3–4 km showed that, first, the correlation coefficients do not depend on the distance between the borehole and the nearest MTS point; second, the good correlation between the conductivity and temperature observed for the majority of borehole-MTS point pairs is accounted for by the fact that the study parameters vary with depth in a manner normal for laminated sedimentary rocks; and, third, a low correlation is due to specific features of the geological structure between the borehole and MTS point under consideration.  相似文献   

14.

Synchronous annual variations in the geoelectric and geomagnetic field are studied on the basis of long-term electromagnetic monitoring. It is shown that the annual geoelectric variations have intraterrestrial origin and are not related to the annual geomagnetic variations. Temporal variations in the magnetotelluric impedance and magnetic tipper, which characterize the electrical conductivity of the geological environment, are analyzed. It is established that annual variations in the magnetotelluric impedance mainly describe the variations in the electrical conductivity of surface crustal layers and are less sensitive to the deep electrical conductivity of the Earth. The annual variations in the imaginary magnetic tipper at the periods of 1000–3000 s probably reflect the changes in conductivity of a deep transversal low-resistive zone (the fault). It is suggested that annual variations in the geoelectrical and geomagnetic fields, as well as in the electrical conductivity of the geological environment, arise as a response to the changes in the geodynamical processes caused by the revolution of the Earth around the Sun.

  相似文献   

15.

The three-dimensional (3D) geoelectric model of the Kuznetsk-Alatau folded area is reconstructed by magnetotelluric inversion using 3D fitting. It is established that the zones of ore mineralization within the Batenevsky massif are confined to the subvertical faults characterized by the electric resistivity of 100–300 Ω m. Blocks with ρ ≈ 10−100 Ω m are identified at a depth below 10 km in the western part of the model. The blocks are located close to the areas marked by the increased thermal flux, reduced seismic velocities, and elevated Moho boundary. This is probably associated with the presence of the rift zone in this area.

  相似文献   

16.
2-D Versus 3-D Magnetotelluric Data Interpretation   总被引:6,自引:0,他引:6  
In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.  相似文献   

17.
The three-dimensional (3D) geoelectric model of the Kuznetsk-Alatau folded area is reconstructed by magnetotelluric inversion using 3D fitting. It is established that the zones of ore mineralization within the Batenevsky massif are confined to the subvertical faults characterized by the electric resistivity of 100?C300 ?? m. Blocks with ?? ?? 10?100 ?? m are identified at a depth below 10 km in the western part of the model. The blocks are located close to the areas marked by the increased thermal flux, reduced seismic velocities, and elevated Moho boundary. This is probably associated with the presence of the rift zone in this area.  相似文献   

18.
We measured and interpreted 30 physical magnetotelluric sounding sites using an SGS-E station and 20 km of electrical profiling observations using SDVR-4M instrumentation. We constructed a map of seismicity, an interpretation map, and four geoelectric sections, which give an idea of the deep structure for the Kulu earthquake-generating zone. A general geoelectric upper crustal model was developed for the zone down to depths of 20–22 km. Three nearly vertical conductive volumes were identified (thickness 3–5 km, depth 10–22 km), which provide the positions of seismically active deep-seated faults that pinpoint the Kulu earthquake-generating zone. The preliminary boundary of the zone was determined. It was found that earth-quake epicenters are confined to lithosphere volumes with increased concentrations of conductive layers and zones.  相似文献   

19.
The plane harmonic electromagnetic fields are considered in the theory of magnetotelluric methods in the range of frequencies from 0.0001 Hz to 20 kHz. These fields are natural by their origin and contain information on the depths from tens of meters up to 100 km and more. The magnetotelluric soundings, which use the fields of radio stations, expand the frequency band almost up to 1 MHz and make it possible to study the depths from the first few meters. The method of radio-wave interference sounding supplements geoelectric prospecting on plane waves into the range of even higher frequencies (up to 100 MHz). In this case, the conduction and displacement currents become comparable, which makes it possible to distinguish objects both by their electrical conductivity and by their dielectric permittivity. For the two-layered model of a medium, there exist simple kinematic methods of data interpretation of a radio-interferometry sounding. Within multilayer, and especially horizontally heterogeneous, media, methods for solving equations of electrodynamics and inverse problems of geophysics are required. In the present paper, the foundations of the theory of radio-interferometry sounding, the methodology, its role in geoelectric prospecting, and the opportunities for the solution of geological problems are discussed.  相似文献   

20.
The magnetotelluric data for the southern part of Kamchatka Peninsula are interpreted in the mode of three-dimensional (3D) model fitting of the invariant characteristics of impedance and tipper matrices. The interpretation yielded the distribution of electric conductivity in the crust and mantle of the Earth. Conductive blocks are revealed in the junction zone of the Kamchatka depression and Pribrezhnyi horst, as well as beneath the Mutnovskii-Vilyuchik and Avacha-Koryak groups of volcanoes. These blocks are confined to the sublatitudinally trending regional faults and to the upper part of the asthenosphere. The locations of the conductive zones are correlated to the distributions of low-density and low-velocity domains and areas of high seismic and volcanic activity, which is probably due to the significant fluid saturation of these zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号